Quantitative Assessment of Fixational Disparity Using a Binocular Eye-Tracking Technique in Children with Strabismus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Materials
2.6. Inspection Procedure
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SD | Standard deviation |
Sig. | Significant |
Pre-OP | Preoperative |
Post-OP | Postoperative |
BCVA | Best-corrected visual acuity |
L | Left |
R | Right |
References
- Duchesne, J.; Coubard, O.A. Measuring vergence and fixation disparity in 3D space. Eur. J. Neurosci. 2021, 53, 1473–1486. [Google Scholar] [CrossRef] [PubMed]
- Rigas, I.; Friedman, L.; Komogortsev, O. Study of an Extensive Set of Eye Movement Features: Extraction Methods and Statistical Analysis. J. Eye Mov. Res. 2018, 11. [Google Scholar] [CrossRef] [PubMed]
- Traxler, M.J.; Long, D.L.; Tooley, K.M.; Johns, C.L.; Zirnstein, M.; Jonathan, E. Individual Differences in Eye-Movements During Reading: Working Memory and Speed-of-Processing Effects. J. Eye Mov. Res. 2012, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Poffa, R.; Joos, R. The influence of vergence facility on binocular eye movements during reading. J. Eye Mov. Res. 2019, 12. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Zheng, C.; Zhao, Y.; Gao, J.; Deng, Z.; Zhang, X.; Chen, J. Effects of Vergence Eye Movement Planning on Size Perception and Early Visual Processing. J. Cogn. Neurosci. 2024, 36, 2793–2806. [Google Scholar] [CrossRef]
- Jaschinski, W. Individual Objective and Subjective Fixation Disparity in Near Vision. PLoS ONE 2017, 12, e0170190. [Google Scholar] [CrossRef]
- Alvarez, T.L.; Kim, E.H.; Yaramothu, C.; Granger-Donetti, B. The influence of age on adaptation of disparity vergence and phoria. Vis. Res. 2017, 133, 1–11. [Google Scholar] [CrossRef]
- Canessa, A.; Gibaldi, A.; Chessa, M.; Fato, M.; Solari, F.; Sabatini, S.P. A dataset of stereoscopic images and ground-truth disparity mimicking human fixations in peripersonal space. Sci. Data 2017, 4, 170034. [Google Scholar] [CrossRef]
- Balaban, C.D.; Nayak, N.S.; Williams, E.C.; Kiderman, A.; Hoffer, M.E. Frequency dependence of coordinated pupil and eye movements for binocular disparity tracking. Front. Neurol. 2023, 14, 1081084. [Google Scholar] [CrossRef]
- Aizenman, A.M.; Koulieris, G.A.; Gibaldi, A.; Sehgal, V.; Levi, D.M.; Banks, M.S. The Statistics of Eye Movements and Binocular Disparities during VR Gaming: Implications for Headset Design. ACM Trans. Graph. 2023, 42, 1–15. [Google Scholar] [CrossRef]
- Schroth, V.; Joos, R.; Alshuth, E.; Jaschinski, W. Effects of aligning prisms on the objective and subjective fixation disparity in far distance. J. Eye Mov. Res. 2019, 12. [Google Scholar] [CrossRef] [PubMed]
- Al-Haddad, C.; Hoyeck, S.; Torbey, J.; Houry, R.; Boustany, R.M.N. Eye Tracking Abnormalities in School-Aged Children with Strabismus and With and Without Amblyopia. J. Pediatr. Ophthalmol. Strabismus 2019, 56, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Mihara, M.; Hayashi, A.; Kakeue, K.; Tamura, R. Changes in saccadic eye movement and smooth pursuit gain in patients with acquired comitant esotropia after strabismus surgery. J. Eye Mov. Res. 2023, 16. [Google Scholar] [CrossRef] [PubMed]
- Economides, J.R.; Adams, D.L.; Horton, J.C. Variability of Ocular Deviation in Strabismus. JAMA Ophthalmol. 2016, 134, 63–69. [Google Scholar] [CrossRef]
- Chen, Z.H.; Fu, H.; Lo, W.L.; Chi, Z.; Xu, B. Eye-tracking-aided digital system for strabismus diagnosis. Healthc. Technol. Lett. 2018, 5, 1–6. [Google Scholar] [CrossRef]
- Iwata, Y.; Handa, T.; Ishikawa, H. Objective measurement of nine gaze-directions using an eye-tracking device. J. Eye Mov. Res. 2020, 13. [Google Scholar] [CrossRef]
- Hutchinson, A.K.; Morse, C.L.; Hercinovic, A.; Cruz, O.A.; Sprunger, D.T.; Repka, M.X.; Lambert, S.R.; Wallace, D.K. Pediatric Eye Evaluations Preferred Practice Pattern. Ophthalmology 2022, 130, P222–P270. [Google Scholar] [CrossRef]
- Kowler, E. Eye movements: The past 25 years. Vis. Res. 2011, 51, 1457–1483. [Google Scholar] [CrossRef]
- Putnam, N.M.; Hofer, H.J.; Doble, N.; Chen, L.; Carroll, J.; Williams, D.R. The locus of fixation and the foveal cone mosaic. J. Vis. 2005, 5, 632–639. [Google Scholar] [CrossRef]
- Jainta, S.; Hoormann, J.; Kloke, W.B.; Jaschinski, W. Binocularity during reading fixations: Properties of the minimum fixation disparity. Vis. Res. 2010, 50, 1775–1785. [Google Scholar] [CrossRef]
- Jainta, S.; Jaschinski, W.; Wilkins, A.J. Periodic letter strokes within a word affect fixation disparity during reading. J. Vis. 2010, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Svede, A.; Hoormann, J.; Jainta, S.; Jaschinski, W. Subjective fixation disparity affected by dynamic asymmetry, resting vergence, and nonius bias. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4356–4361. [Google Scholar] [CrossRef] [PubMed]
- Otero-Millan, J.; Macknik, S.L.; Martinez-Conde, S. Fixational eye movements and binocular vision. Front. Integr. Neurosci. 2014, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Walton, M.M.; Ono, S.; Mustari, M. Vertical and oblique saccade disconjugacy in strabismus. Investig. Ophthalmol. Vis. Sci. 2014, 55, 275–290. [Google Scholar] [CrossRef]
- Weiss, A.H.; Kelly, J.P.; Hopper, R.A.; Phillips, J.O. Crouzon Syndrome: Relationship of Eye Movements to Pattern Strabismus. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4394–4402. [Google Scholar] [CrossRef]
- Moon, Y.; Lee, W.J.; Shin, S.H.; Lee, J.Y.; Lee, S.J.; Ko, B.W.; Lim, H.W. Quantitative Analysis of Translatory Movements in Patients with Horizontal Strabismus. Investig. Ophthalmol. Vis. Sci. 2021, 62, 24. [Google Scholar] [CrossRef]
- Yeh, P.H.; Liu, C.H.; Sun, M.H.; Chi, S.C.; Hwang, Y.S. To measure the amount of ocular deviation in strabismus patients with an eye-tracking virtual reality headset. BMC Ophthalmol. 2021, 21, 246. [Google Scholar] [CrossRef]
- Zipori, A.B.; Colpa, L.; Wong, A.M.F.; Cushing, S.L.; Gordon, K.A. Postural stability and visual impairment: Assessing balance in children with strabismus and amblyopia. PLoS ONE 2018, 13, e0205857. [Google Scholar] [CrossRef]
- Denniss, J.; Scholes, C.; McGraw, P.V.; Nam, S.H.; Roach, N.W. Estimation of Contrast Sensitivity from Fixational Eye Movements. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5408–5416. [Google Scholar] [CrossRef]
- Zhou, Y.; Bian, H.; Yu, X.; Wen, W.; Zhao, C. Quantitative assessment of eye movements using a binocular paradigm: Comparison among amblyopic, recovered amblyopic and normal children. BMC Ophthalmol. 2022, 22, 365. [Google Scholar] [CrossRef]
- Ivanchenko, D.; Rifai, K.; Hafed, Z.M.; Schaeffel, F. A low-cost, high-performance video-based binocular eye tracker for psychophysical research. J. Eye Mov. Res. 2021, 14. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Bin, Z.; Xiaoqin, D.; Wenjing, H.; Yuandong, L.; Jinyu, Z.; Chen, Z.; Lin, W. Detecting Task Difficulty of Learners in Colonoscopy: Evidence from Eye-Tracking. J. Eye Mov. Res. 2021, 14. [Google Scholar]
- Leube, A.; Rifai, K.; Rifai, K. Sampling rate influences saccade detection in mobile eye tracking of a reading task. J. Eye Mov. Res. 2017, 10. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Lin, S.A.; Lin, P.W.; Huang, H.M. The difference of surgical outcomes between manifest exotropia and esotropia. Int. Ophthalmol. 2019, 39, 1427–1436. [Google Scholar] [CrossRef]
- Brodsky, M.C.; Fray, K.J. Dissociated horizontal deviation after surgery for infantile esotropia: Clinical characteristics and proposed pathophysiologic mechanisms. Arch. Ophthalmol. 2007, 125, 1683–1692. [Google Scholar] [CrossRef]
- Ellis, G.S., Jr.; Pritchard, C.H.; Baham, L.; Babiuch, A. Medial rectus surgery for convergence excess esotropia with an accommodative component: A comparison of augmented recession, slanted recession, and recession with posterior fixation. Am. Orthopt. J. 2012, 62, 50–60. [Google Scholar] [CrossRef]
- Pullela, M.; Degler, B.A.; Coats, D.K.; Das, V.E. Longitudinal Evaluation of Eye Misalignment and Eye Movements Following Surgical Correction of Strabismus in Monkeys. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6040–6047. [Google Scholar] [CrossRef]
- Maneschg, O.A.; Barboni, M.T.S.; Nagy, Z.Z.; Nemeth, J. Fixation stability after surgical treatment of strabismus and biofeedback fixation training in amblyopic eyes. BMC Ophthalmol. 2021, 21, 264. [Google Scholar] [CrossRef]
- Ding, J.; Levi, D.M. Recovery of stereopsis through perceptual learning in human adults with abnormal binocular vision. Proc. Natl. Acad. Sci. USA 2011, 108, E733–E741. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, M.; Zhang, J.; Zhou, J.; Wan, M.; Dai, Z.; Peng, T.; Min, S.H.; Hou, F.; Zhou, J.; et al. Can Clinical Measures of Postoperative Binocular Function Predict the Long-Term Stability of Postoperative Alignment in Intermittent Exotropia? J. Ophthalmol. 2020, 2020, 7392165. [Google Scholar] [CrossRef]
- Ahn, Y.J.; Park, Y.Y.; Chung, Y.W.; Park, S.H.; Shin, S.Y. Surgical and sensory outcomes in patients with intermittent exotropia according to preoperative refractive error. Eye 2019, 33, 1314–1320. [Google Scholar] [CrossRef] [PubMed]
- Kurup, S.P.; Barto, H.W.; Myung, G.; Mets, M.B. Stereoacuity outcomes following surgical correction of the nonaccommodative component in partially accommodative esotropia. J. AAPOS 2018, 22, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Leffler, C.T.; Vaziri, K.; Schwartz, S.G.; Cavuoto, K.M.; McKeown, C.A.; Kishor, K.S.; Janot, A.C. Rates of Reoperation and Abnormal Binocularity Following Strabismus Surgery in Children. Am. J. Ophthalmol. 2016, 162, 159–166.e9. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Fan, Y.; Chu, H.; Yan, L.; Wiederhold, B.K.; Wiederhold, M.; Liao, Y. Preliminary Study of Short-Term Visual Perceptual Training Based on Virtual Reality and Augmented Reality in Postoperative Strabismic Patients. Cyberpsychol. Behav. Soc. Netw. 2022, 25, 465–470. [Google Scholar] [CrossRef]
- Kang, S.L.; Beylergil, S.B.; Otero-Millan, J.; Shaikh, A.G.; Ghasia, F.F. Fixational Eye Movement Waveforms in Amblyopia: Characteristics of Fast and Slow Eye Movements. J. Eye Mov. Res. 2019, 12. [Google Scholar] [CrossRef]
- Raju, M.H.; Friedman, L.; Bouman, T.M.; Komogortsev, O.V. Filtering Eye-Tracking Data from an EyeLink 1000: Comparing Heuristic, Savitzky-Golay, IIR and FIR Digital Filters. J. Eye Mov. Res. 2021, 14. [Google Scholar] [CrossRef]
Category | Count | ||
---|---|---|---|
Control Group | Strabismus Group | Sig. | |
Age range (years) | 4–12 | 4–18 | |
Mean age [SD] | 7.37 [0.20] | 7.76 [3.59] | 0.82 |
Sex | |||
Male | 26 (43.3%) | 36 (63.2%) | |
Female | 34 (56.7%) | 21 (36.8%) | |
Total | 60 | 57 | 0.78 |
Category | Strabismus Group | Control Group | Sig. | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
Fixational disparities (pixel) | X-axis | Pre-OP | 214.61 | 32.14 | 103.78 | 16.43 | <0.001 |
Post-OP | 142.15 | 15.48 | |||||
Sig. | 0.03 | ||||||
Y-axis | Pre-OP | 133.97 | 14.67 | 96.6 | 6.37 | <0.001 | |
Post-OP | 123.69 | 12.64 | |||||
Sig. | 0.42 | ||||||
Stereoacuity (“) | Pre-OP | 243.38 | 40.44 | 50.33 | 4.83 | 0.02 | |
Post-OP | 221.29 | 40.19 | |||||
Sig. | <0.001 |
Category | Pre-OP | Post-OP | Sig. | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Exotropia | X-axis(pixel) | 181.52 | 30.87 | 135.14 | 18.84 | 0.18 |
Esotropia | 356.02 | 113.63 | 143.18 | 24.94 | 0.04 | |
Sig. | 0.04 | 0.84 | ||||
Exotropia | Y-axis (pixel) | 134.27 | 17.71 | 114.86 | 14.31 | 0.21 |
Esotropia | 120.86 | 27.30 | 120.18 | 19.48 | 0.48 | |
Sig. | 0.73 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Yang, X.; Chen, B.; Liao, Y. Quantitative Assessment of Fixational Disparity Using a Binocular Eye-Tracking Technique in Children with Strabismus. J. Eye Mov. Res. 2025, 18, 6. https://doi.org/10.3390/jemr18020006
Hou X, Yang X, Chen B, Liao Y. Quantitative Assessment of Fixational Disparity Using a Binocular Eye-Tracking Technique in Children with Strabismus. Journal of Eye Movement Research. 2025; 18(2):6. https://doi.org/10.3390/jemr18020006
Chicago/Turabian StyleHou, Xiaoyi, Xubo Yang, Bingjie Chen, and Yongchuan Liao. 2025. "Quantitative Assessment of Fixational Disparity Using a Binocular Eye-Tracking Technique in Children with Strabismus" Journal of Eye Movement Research 18, no. 2: 6. https://doi.org/10.3390/jemr18020006
APA StyleHou, X., Yang, X., Chen, B., & Liao, Y. (2025). Quantitative Assessment of Fixational Disparity Using a Binocular Eye-Tracking Technique in Children with Strabismus. Journal of Eye Movement Research, 18(2), 6. https://doi.org/10.3390/jemr18020006