Characteristics of Clay-Abundant Shale Formations: Use of CO2 for Production Enhancement
Abstract
:1. Introduction
2. Productivity of Clay-Abundant Shale Formations
2.1. Effect of High Surface Area and High Cation-Exchange Capacity (CEC) of Clay Minerals on Shale Gas Productivity
2.1.1. Surface Area
2.1.2. Cation Exchange Capacity (CEC) of Clay Minerals
2.2. Effect of Clay Swelling
2.3. Effect of Clay on Formation Pore Distribution and Porosity
3. Gas Storage Capacity in Clay-Abundant Shale Formations
4. Mechanical Properties of Clay-Abundant Shale Formations
5. CO2 as Fracturing Fluid for Hydro Fracturing in Clay-Abundant Shales
5.1. Basic Thermodynamic Properties of CO2
5.2. Low Breakdown Pressure
5.3. Avoidance of Swelling-Related Issues
5.4. Contribution to Mitigation of the Greenhouse Gas Effect
5.5. Minimization of Issues Related to Residual Fluids
6. Field Examples of Gas/Oil Production Enhancement Using CO2 Injection into Clay-Abundant Formations
7. Conclusions
- ➢
- Clay-abundant shale formations have a positive influence on gas storage potential, because the laminated structures of fine clay particles can create high total surface area and high porosities, which provide great locus for gas adsorption.
- ➢
- However, clay-abundant formations have significant amounts of water due to the high affinity of clay contents to water molecules, and high water contents contribute to the reduction of gas storage capacity by occupying potential sorption sites in the shale mass and blocking the small pore throats.
- ➢
- In addition, contacts between quartz particles in clay-abundant shale plays are separated by small clay particles, resulting in reduced tensile and shear strength and enhanced ductile properties of shale formations, which affect the long-term safety of the shale gas recovery process and some advanced shale gas recovery enhancement techniques, such as hydro fracturing.
- ➢
- The swelling effect is critical, and occurs upon the interaction of clay minerals with water, causing a huge reduction in pore space and flow paths for gas movement in shale matrix, and the swelling of clay contents on the created fracture surfaces also greatly compress fracture space and even can close the created fractures. The use of traditional water-based fracturing fluids to enhance gas productivity in clay-abundant shale plays is therefore inappropriate, and non-water based fracturing fluids are preferred.
- ➢
- Liquid CO2 is an ideal fracturing medium for clay-abundant formations due to the large thermo pressure developed during the heat exchange between cold CO2 and reservoir rock, which works as a cracking pressure. The much lower viscosity of super-critical CO2 and the associated better penetrability through rock mass narrow pore throats, and create longer fractures. The use of CO2 as fracturing fluid induces minimal swelling effects. It also reduces the formation’s residual water and enables rapid clean-up, mainly due to the large compressibility and high diffusion rate of CO2. This also contributes to the mitigation of the greenhouse gas effect in the replacement process of adsorption methane by the injected CO2 with stronger adsorption.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wanniarachchi, W.; Ranjith, P.; Perera, M.; Lashin, A.; Al Arifi, N.; Li, J. Current opinions on foam-based hydro-fracturing in deep geological reservoirs. Geomech. Geophys. Geo-Energy Geo-Resour. 2015, 1, 121–134. [Google Scholar] [CrossRef]
- Conti, J.; Holtberg, P.; Diefenderfer, J.; Napolitano, S.; Schaal, A.; Turnure, J.; Westfall, L. Annual Energy Outlook 2014 with Projections to 2040; US Energy Information Administration: Washington, DC, USA, 2014.
- Daigle, H.; Screaton, E. Evolution of sediment permeability during burial and subduction. Geofluids 2015, 15, 84–105. [Google Scholar] [CrossRef]
- Kumar, H.; Elsworth, D.; Mathews, J.; Marone, C. Permeability evolution in sorbing media: Analogies between organic-rich shale and coal. Geofluids 2015, 16, 43–55. [Google Scholar] [CrossRef]
- Nicot, J.-P.; Scanlon, B.R. Water use for shale-gas production in Texas, US. Environ. Sci. Technol. 2012, 46, 3580–3586. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, X.; Jha, A.N.; Rogers, H. Natural gas from shale formation–The evolution, evidences and challenges of shale gas revolution in United States. Renew. Sustain. Energy Rev. 2014, 30, 1–28. [Google Scholar] [CrossRef]
- Rivard, C.; Lavoie, D.; Lefebvre, R.; Séjourné, S.; Lamontagne, C.; Duchesne, M. An overview of Canadian shale gas production and environmental concerns. Int. J. Coal Geol. 2014, 126, 64–76. [Google Scholar] [CrossRef]
- Johnson, E.G.; Johnson, L.A. Hydraulic fracture water usage in northeast British Columbia: Locations, volumes and trends. In Geoscience Report 2012; British Columbia Ministry of Energy and Mines: Fort St. John, BC, Canada, 2012; pp. 41–63. [Google Scholar]
- Boz, M.A.; Pe, M. Recycling of Produced and Flowback Water in Oil and Gas Drilling Operations through Hydraulic Fracturing in Texas. In Proceedings of the Shale Energy Engineering Conference 2014, Pittsburgh, PA, USA, 21–23 July 2014; pp. 45–52. [Google Scholar]
- Ghahremani, N.; Clapp, L. Feasibility of Using Brackish Groundwater Desalination Concentrate as Hydraulic Fracturing Fluid in the Eagle Ford Shale. In Shale Energy Engineering 2014: Technical Challenges, Environmental Issues, and Public Policy; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2014; pp. 23–32. [Google Scholar]
- Arnold, D. Liquid CO2 and sand: An alternative to water-based stimulation fluids. Pet. Eng. Int. 1998, 71, 89–92. [Google Scholar]
- Lal, M.S.; Amoco, B. Shale stability: Drilling fluid interaction and shale strength. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Caracas, Venezuela, 20–22 April 1999. SPE 54356. [Google Scholar]
- Røgen, B.; Fabricius, I.L. Influence of clay and silica on permeability and capillary entry pressure of chalk reservoirs in the North Sea. Pet. Geosci. 2002, 8, 287–293. [Google Scholar] [CrossRef]
- Ross, D.J.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Ross, D.J.; Bustin, R.M. Shale gas potential of the lower jurassic gordondale member, northeastern British Columbia, Canada. Bull. Can. Pet. Geol. 2007, 55, 51–75. [Google Scholar] [CrossRef]
- Bustin, R.M.; Bustin, A.M.; Cui, A.; Ross, D.; Pathi, V.M. Impact of shale properties on pore structure and storage characteristics. In Proceedings of the SPE Shale Gas Production Conference, Fort Worth, TX, USA, 16–18 November 2008; SPE 119892. Society of Petroleum Engineers: Richardson, TX, USA, 2008. [Google Scholar]
- Kuila, U.; Prasad, M. Surface area and pore-size distribution in clays and shales. In Proceedings of the 2011 SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 30 October–2 November 2011. SPE 146869. [Google Scholar]
- Wang, H.; Li, G.; Shen, Z. A feasibility analysis on shale gas exploitation with supercritical carbon dioxide. Energy Sources Part A Recovery Util. Environ. Eff. 2012, 34, 1426–1435. [Google Scholar] [CrossRef]
- Dusseault, M.B.; Loftsson, M.; Russell, D. The mechanical behavior of the Kettle Point oil shale. Can. Geotech. J. 1986, 23, 87–93. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Buller, D.; Hughes, S.N.; Market, J.; Petre, J.E.; Spain, D.R.; Odumosu, T. Petrophysical evaluation for enhancing hydraulic stimulation in horizontal shale gas wells. In Proceedings of the SPE Annual Technical Conference and Exhibition, Florence, Italy, 19–22 September 2010; SPE 132990. Society of Petroleum Engineers: Richardson, TX, USA, 2010. [Google Scholar]
- Ding, W.; Li, C.; Li, C.; Xu, C.; Jiu, K.; Zeng, W.; Wu, L. Fracture development in shale and its relationship to gas accumulation. Geosci. Front. 2012, 3, 97–105. [Google Scholar] [CrossRef]
- Zhang, D.; Pathegama Gamage, R.; Perera, M.S.A.; Zhang, C.; Wanniarachchi, W.A.M. Influence of Water Saturation on the Mechanical Behaviour of Low-Permeability Reservoir Rocks. Energies 2017, 10, 236. [Google Scholar] [CrossRef]
- Zhou, Z.; Gunter, W.; Kadatz, B.; Cameron, S. Effect of clay swelling on reservoir quality. J. Can. Pet. Technol. 1996, 35, 18–23. [Google Scholar] [CrossRef]
- Rahman, M.; Suarez, Y.; Chen, Z.; Rahman, S. Unsuccessful hydraulic fracturing cases in Australia: Investigation into causes of failures and their remedies. J. Pet. Sci. Eng. 2007, 57, 70–81. [Google Scholar] [CrossRef]
- Scott, C.A.; Sugg, Z.P. Global energy development and climate-induced water scarcity—Physical limits, sectoral constraints, and policy imperatives. Energies 2015, 8, 8211–8225. [Google Scholar] [CrossRef]
- Vengosh, A.; Warner, N.; Jackson, R.; Darrah, T. The effects of shale gas exploration and hydraulic fracturing on the quality of water resources in the United States. Procedia Earth Planet. Sci. 2013, 7, 863–866. [Google Scholar] [CrossRef]
- Kang, D.; Pe, H.; Li, J.; Pe, H.; Wre, D. Modeling of Land Movement due to Groundwater Pumping from an Aquifer System with Stress-Dependent Storage. In Shale Energy Engineering 2014; ASCE: Reston, VA, USA, 2014; pp. 1–10. [Google Scholar]
- Ziemkiewicz, P.F.; He, Y.; Quaranta, J.D. Characterization of Waste Waters from Hydraulic Fracturing. In Shale Energy Engineering 2014; ASCE: Reston, VA, USA, 2014; pp. 63–73. [Google Scholar]
- Birkle, P. Geochemical fingerprinting of hydraulic fracturing fluids from qusaiba hot shale and formation water from paleozoic petroleum systems, Saudi Arabia. Geofluids 2016, 16, 565–584. [Google Scholar] [CrossRef]
- Ampomah, W.; Balch, R.; Cather, M.; Rose-Coss, D.; Dai, Z.; Heath, J.; Dewers, T.; Mozley, P. Evaluation of CO2 storage mechanisms in CO2 enhanced oil recovery sites: Application to Morrow sandstone reservoir. Energy Fuels 2016, 30, 8545–8555. [Google Scholar] [CrossRef]
- Lindeberg, E.; Grimstad, A.-A.; Bergmo, P.; Wessel-Berg, D.; Torsæter, M.; Holt, T. Large scale tertiary CO2 EOR in mature water flooded Norwegian oil fields. Energy Procedia 2017, 114, 7096–7106. [Google Scholar] [CrossRef]
- Tudor, R.; Vozniak, C.; Peters, W.; Banks, M.-L. Technical Advances in Liquid CO2 Fracturing. In Proceedings of the 45th Annual Technical Meeting of the Petroleum Society of CIM, Calgary, AB, Canada, 12–15 June 1994; Petroleum Society of Canada: Calgary, AB, Canada, 1994. [Google Scholar]
- Campbell, S.M.; Fairchild, N.R., Jr.; Arnold, D.L. Liquid CO2 and Sand Stimulations in the Lewis Shale San Juan Basin New Mexico: A Case Study. In Proceedings of the SPE Rocky Mountain Regional/Low-Permeability Reservoirs Symposium and Exhibition, Denver, CO, USA, 12–15 March 2000; SPE 60317. Society of Petroleum Engineers: Richardson, TX, USA, 2000. [Google Scholar]
- Yost, A.B.; Mazza, R.L.; Gehr, J.B. CO2/Sand Fracturing in Devonian Shales. In Proceedings of the Eastern Regional Conference & Exhibition, Pittsburgh, PA, USA, 2–4 November 1993; Society of Petroleum Engineers: Richardson, TX, USA, 1993. [Google Scholar]
- Nuttall, B.C.; Eble, C.F.; Drahovzal, J.A.; Bustin, R.M. Analysis of Devonian Black Shales in Kentucky for Potential Carbon Dioxide Sequestration and Enhanced Natural Gas Production; Kentucky Geological Survey Report DE-FC26–02NT41442; University of Kentucky: Lexington, KY, USA, 2005. [Google Scholar]
- Chareonsuppanimit, P.; Mohammad, S.A.; Robinson, R.L.; Gasem, K.A. High-pressure adsorption of gases on shales: Measurements and modeling. Int. J. Coal Geol. 2012, 95, 34–46. [Google Scholar] [CrossRef]
- Godec, M.; Koperna, G.; Petrusak, R.; Oudinot, A. Potential for enhanced gas recovery and CO2 storage in the Marcellus Shale in the Eastern United States. Int. J. Coal Geol. 2013, 118, 95–104. [Google Scholar] [CrossRef]
- Metwally, Y.M.; Chesnokov, E.M. Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale. Appl. Clay Sci. 2012, 55, 138–150. [Google Scholar] [CrossRef]
- Chalmers, G.R.; Bustin, R.M.; Power, I.M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull. 2012, 96, 1099–1119. [Google Scholar]
- Bai, B.; Elgmati, M.; Zhang, H.; Wei, M. Rock characterization of Fayetteville shale gas plays. Fuel 2013, 105, 645–652. [Google Scholar] [CrossRef]
- Das, P.; Achalpurkar, M.; Pal, O. Impact of Formation Softening and Rock Mechanical Properties on Selection of Shale Stimulation Fluid: Laboratory Evaluation. In Proceedings of the SPE/EAGE European Unconventional Resources Conference and Exhibition, Vienna, Austria, 25–27 February 2014. SPE 167787. [Google Scholar]
- Khodja, M.; Canselier, J.P.; Bergaya, F.; Fourar, K.; Khodja, M.; Cohaut, N.; Benmounah, A. Shale problems and water-based drilling fluid optimisation in the Hassi Messaoud Algerian oil field. Appl. Clay Sci. 2010, 49, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Gross, D.; Sachsenhofer, R.; Bechtel, A.; Pytlak, L.; Rupprecht, B.; Wegerer, E. Organic geochemistry of Mississippian shales (Bowland Shale Formation) in central Britain: Implications for depositional environment, source rock and gas shale potential. Mar. Pet. Geol. 2015, 59, 1–21. [Google Scholar] [CrossRef]
- Sonstebo, E.F.; Horsrud, P. Effects of brines on mechanical properties of shales under different test conditions. Proceedinsg of the ISRM International Symposium-EUROCK 96, Turin, Italy, 2–5 September 1996; International Society for Rock Mechanics: Lisboa, Portugal, 1996; pp. 91–98. [Google Scholar]
- Rogala, A.; Krzysiek, J.; Bernaciak, M.; Hupka, J. Non-aqueous fracturing technologies for shale gas recovery. Physicochem. Probl. Miner. Process. 2013, 49, 313–321. [Google Scholar]
- Baptist, O.C.; Sweeney, S.A. The effect of clays on the permeability of reservoir sands to waters of different saline contents. Clays Clay Miner. 1954, 3, 505–515. [Google Scholar] [CrossRef]
- Shukla, R.; Ranjith, P.; Choi, S.; Haque, A.; Yellishetty, M.; Hong, L. Mechanical behaviour of reservoir rock under brine saturation. Rock Mech. Rock Eng. 2013, 46, 83–93. [Google Scholar] [CrossRef]
- Guo, Z.; Li, X.-Y.; Liu, C.; Feng, X.; Shen, Y. A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett Shale. J. Geophys. Eng. 2013, 10, 025006. [Google Scholar] [CrossRef]
- Eslinger, E.; Pevear, D.R. Clay Minerals for Petroleum Geologists and Engineers; Society of Economic Paleontologists and Mineralogists: Tulsa, OK, USA, 1988. [Google Scholar]
- Bergaya, F.; Lagaly, G. Handbook of Clay Science; Newnes: Oxford, UK, 2013. [Google Scholar]
- Van Olphen, H.; Fripiat, J. Data Handbook for Clay Minerals and Other Non-Metallic Materials; Pergamon: New York, NY, USA, 1979. [Google Scholar]
- Hang, P.T.; Brindley, G. Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII). Clays Clay Miner. 1970, 18, 203–212. [Google Scholar] [CrossRef]
- Kozeny, J. Über Kapillare Leitung des Wassers im Boden:(Aufstieg, Versickerung und Anwendung auf die Bewässerung); Hölder-Pichler-Tempsky: Wien, Austria, 1927. [Google Scholar]
- Mortensen, J.; Engstrom, F.; Lind, I. The relation among porosity permeability and specific surface of chalk from the Gorm Field Danish North Sea. SPE Reserv. Eval. Eng. 1998, 1, 245–251. [Google Scholar] [CrossRef]
- Olsen, D. CO2 EOR production properties of chalk. In Proceedings of the SPE EUROPEC/EAGE Annual Conference and Exhibition, Vienna, Austria, 23–26 May 2011; SPE 142993. Society of Petroleum Engineers: Richardson, TX, USA, 2011. [Google Scholar]
- Drever, J. The Geochemistry of Natural Waters; Prentice-Hall: Englewood Cliffs, NJ, USA, 1988. [Google Scholar]
- Fitch, A.; Du, J.; Gan, H.; Stucki, J.W. Effect of clay charge on swelling: A clay-modified electrode study. Clays Clay Miner. 1995, 43, 607–614. [Google Scholar] [CrossRef]
- Önal, M. Swelling and cation exchange capacity relationship for the samples obtained from a bentonite by acid activations and heat treatments. Appl. Clay Sci. 2007, 37, 74–80. [Google Scholar] [CrossRef]
- Sabtan, A.A. Geotechnical properties of expansive clay shale in Tabuk, Saudi Arabia. J. Asian Earth Sci. 2005, 25, 747–757. [Google Scholar] [CrossRef]
- Gomez-Gutierrez, I.; Bryson, L.; Hopkins, T. Correlations between geotechnical properties and the swell behavior of compacted shales. In Geo-Frontiers 2011; ASCE: Reston, VA, USA, 2011; pp. 4119–4128. [Google Scholar]
- Madsen, F.T.; Müller-Vonmoos, M. The swelling behaviour of clays. Appl. Clay Sci. 1989, 4, 143–156. [Google Scholar] [CrossRef]
- Slade, P.; Quirk, J.; Norrish, K. Crystalline swelling of smectite samples in concentrated NaCl solutions in relation to layer charge. Clays Clay Miner. 1991, 39, 234–238. [Google Scholar] [CrossRef]
- Amorim, C.L.G.; Lopes, R.T.; Barroso, R.C.; Queiroz, J.C.; Alves, D.B.; Perez, C.A.; Schelin, H.R. Effect of clay–water interactions on clay swelling by X-ray diffraction. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 580, 768–770. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Solano, N.; Bustin, R.M.; Bustin, A.M.M.; Chalmers, G.R.L.; He, L.; Melnichenko, Y.B.; Radliński, A.P.; Blach, T.P. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Katsube, T. Shale Permeability and Pore-Structure Evolution Characteristics; Current Research 2000-E15; Geological Survey of Canada: Ottawa, ON, Canada, 2000; pp. 1–9. [Google Scholar]
- Lu, X.-C.; Li, F.-C.; Watson, A.T. Adsorption studies of natural gas storage in Devonian Shales. SPE Form. Eval. 1995, 10, 109–113. [Google Scholar] [CrossRef]
- Liu, D.; Yuan, P.; Liu, H.; Li, T.; Tan, D.; Yuan, W.; He, H. High-pressure adsorption of methane on montmorillonite, kaolinite and illite. Appl. Clay Sci. 2013, 85, 25–30. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, G.; Chen, H.; Yin, X. The Construction of Shale Rock Physics Effective Model and Prediction of Rock Brittleness. In Proceedings of the 2014 SEG Annual Meeting, Denver, CO, USA, 26–31 October 2014; Society of Exploration Geophysicists: Tulsa, OK, USA, 2014; pp. 2861–2865. [Google Scholar]
- Katahara, K.W. Clay mineral elastic properties. In Proceedings of the 1996 SEG Annual Meeting, Denver, CO, USA, 10–15 November 1996; Society of Exploration Geophysicists: Tulsa, OK, USA, 1996. [Google Scholar]
- Wang, Z.; Wang, H.; Cates, M.E. Effective elastic properties of solid clays. Geophysics 2001, 66, 428–440. [Google Scholar] [CrossRef]
- Prasad, M.; Kopycinska, M.; Rabe, U.; Arnold, W. Measurement of Young’s modulus of clay minerals using atomic force acoustic microscopy. Geophys. Res. Lett. 2002, 29, 1311–1314. [Google Scholar] [CrossRef]
- Prasad, M.; Hofmann, R.; Batzle, M.; Kopycinska-Müller, M.; Rabe, U.; Arnold, W. Values of Mineral Modulus of Clay. In Proceedings of the 2005 SEG Annual Meeting, Houston, TX, USA, 6–11 November 2005; Society of Exploration Geophysicists: Tulsa, OK, USA, 2005. [Google Scholar]
- Pal-Bathija, A.; Prasad, M.; Liang, H.; Batzle, M.; Lu, N.; Upmanyu, M. Elastic properties of clay minerals. In Proceedings of the 2008 SEG Annual Meeting, Las Vegas, NV, USA, 9–14 November 2008; Society of Exploration Geophysicists: Las Vegas, NV, USA, 2008; pp. 1610–1614. [Google Scholar]
- Mondol, N.H.; Jahren, J.; Bjørlykke, K.; Brevik, I. Elastic properties of clay minerals. Lead. Edge 2008, 27, 758–770. [Google Scholar] [CrossRef]
- Han, D.-H.; Nur, A.; Morgan, D. Effects of porosity and clay content on wave velocities in sandstones. Geophysics 1986, 51, 2093–2107. [Google Scholar] [CrossRef]
- Chenevert, M.E. Shale alteration by water adsorption. J. Pet. Technol. 1970, 22, 1141–1148. [Google Scholar] [CrossRef]
- Wong, R. Swelling and softening behaviour of La Biche shale. Can. Geotech. J. 1998, 35, 206–221. [Google Scholar] [CrossRef]
- Wang, F.P.; Gale, J.F. Screening criteria for shale-gas systems. Gulf Coast Assoc. Geol. Soc. Trans. 2009, 59, 779–793. [Google Scholar]
- Crawford, H.; Neill, G.; Bucy, B.; Crawford, P. Carbon dioxide-a multipurpose additive for effective well stimulation. J. Pet. Technol. 1963, 15, 237–242. [Google Scholar] [CrossRef]
- Lillies, A.T.; King, S.R. Sand Fracturing With Liquid Carbon Dioxide. In Proceedings of the SPE Production Technology Symposium, Hobbs, NM, USA, 8–9 November 1982; SPE 11341. Society of Petroleum Engineers: Richardson, TX, USA, 1982. [Google Scholar]
- Zhou, X.; Burbey, T. Fluid effect on hydraulic fracture propagation behavior: A comparison between water and supercritical CO2-like fluid. Geofluids 2014, 14, 174–188. [Google Scholar] [CrossRef]
- Reig, P.; Luo, T.; Proctor, J.N. Global Shale Gas Development: Water Availability and Business Risks; World Resources Institute: Washington, DC, USA, 2014. [Google Scholar]
- Perera, M.; Ranjith, P.; Choi, S.-K.; Bouazza, A.; Kodikara, J.; Airey, D. A review of coal properties pertinent to carbon dioxide sequestration in coal seams: With special reference to Victorian brown coals. Environ. Earth Sci. 2011, 64, 223–235. [Google Scholar] [CrossRef]
- Niezgoda, T.; Miedzińska, D.; Małek, E.; Kędzierski, P.; Sławiński, G. Study on carbon dioxide thermodynamic behavior for the purpose of shale rock fracturing. Bull. Pol. Acad. Sci. Tech. Sci. 2013, 61, 605–612. [Google Scholar] [CrossRef]
- Mueller, M.; Amro, M.; Haefner, F.K.A.; Hossain, M.M. Stimulation of tight gas reservoir using coupled hydraulic and CO2 cold-frac technology. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, 22–24 October 2012; SPE 160365. Society of Petroleum Engineers: Richardson, TX, USA, 2012. [Google Scholar]
- Perera, M.; Ranjith, P.; Viete, D. Effects of gaseous and super-critical carbon dioxide saturation on the mechanical properties of bituminous coal from the Southern Sydney Basin. Appl. Energy 2013, 110, 73–81. [Google Scholar] [CrossRef]
- Lemmon, E.; Huber, M.; Mclinden, M. NIST Standard Reference Database 23: NIST Reference Fluid Thermodynamic and Transport Properties—REFPROP, Version 9.0; Standard Reference Data Program; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010.
- Haimson, B.; Fairhurst, C. Initiation and extension of hydraulic fractures in rocks. Soc. Pet. Eng. J. 1967, 7, 310–318. [Google Scholar] [CrossRef]
- Zhang, C.; Ranjith, P.; Perera, M.; Zhao, J.; Zhang, D.; Wanniarachchi, W. A novel approach to precise evaluation of carbon dioxide flow behaviour in siltstone under tri-axial drained conditions. J. Nat. Gas Sci. Eng. 2016, 34, 331–340. [Google Scholar] [CrossRef]
- Kolle, J.J. Coiled-tubing drilling with supercritical carbon dioxide. In Proceedings of the SPE/CIM International Conference on Horizontal Well Technology, Calgary, AB, Canada, 6–8 November 2000; SPE/PS-CIM 65534. Society of Petroleum Engineers: Richardson, TX, USA, 2000. [Google Scholar]
- Busch, A.; Bertier, P.; Gensterblum, Y.; Rother, G.; Spiers, C.; Zhang, M.; Wentinck, H. On sorption and swelling of CO2 in clays. Geomech. Geophys. Geo-Energy Geo-Resour. 2016, 2, 111–130. [Google Scholar] [CrossRef]
- Al Otaibi, F.M.; Khaldi, M.H.; Funk, J.J.; Shen, S.; Al-Qahtani, J. Supercritical CO2 Interaction with Montmorillonite Clay. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 16–18 April 2012; SPE 151777. Society of Petroleum Engineers: Richardson, TX, USA, 2012. [Google Scholar]
- Giesting, P.; Guggenheim, S.; van Groos, A.F.K.; Busch, A. Interaction of carbon dioxide with Na-exchanged montmorillonite at pressures to 640 bars: Implications for CO2 sequestration. Int. J. Greenh. Gas Control 2012, 8, 73–81. [Google Scholar] [CrossRef]
- Ilton, E.S.; Schaef, H.T.; Qafoku, O.; Rosso, K.M.; Felmy, A.R. In situ X-ray diffraction study of Na+ saturated montmorillonite exposed to variably wet super critical CO2. Environ. Sci. Technol. 2012, 46, 4241–4248. [Google Scholar] [CrossRef] [PubMed]
- King, S. Liquid CO2 for the Stimulation of Low-Permeability Reservoirs. In Proceedings of the SPE/DOE Low Permeability Gas Reservoirs Symposium, Denver, CO, USA, 14–16 March 1983; SPE/DOE 11616. Society of Petroleum Engineers: Richardson, TX, USA, 1983. [Google Scholar]
- Ranjith, P.; Perera, M. Effects of cleat performance on strength reduction of coal in CO2 sequestration. Energy 2012, 45, 1069–1075. [Google Scholar] [CrossRef]
- Perera, M.; Ranjith, P. Carbon dioxide sequestration effects on coal’s hydro-mechanical properties: A review. Int. J. Energy Res. 2012, 36, 1015–1031. [Google Scholar] [CrossRef]
- Perera, M.; Ranjith, P.; Choi, S.; Airey, D.; Weniger, P. Estimation of gas adsorption capacity in coal: A review and an analytical study. Int. J. Coal Prep. Util. 2012, 32, 25–55. [Google Scholar] [CrossRef]
- Jin, Z.; Firoozabadi, A. Methane and carbon dioxide adsorption in clay-like slit pores by Monte Carlo simulations. Fluid Phase Equilibr. 2013, 360, 456–465. [Google Scholar] [CrossRef]
- Melnitchenko, A.; Thompson, J.G.; Volzone, C.; Ortiga, J. Selective gas adsorption by metal exchanged amorphous kaolinite derivatives. Appl. Clay Sci. 2000, 17, 35–53. [Google Scholar] [CrossRef]
- Liu, F.; Ellett, K.; Xiao, Y.; Rupp, J.A. Assessing the feasibility of CO2 storage in the New Albany Shale (Devonian–Mississippian) with potential enhanced gas recovery using reservoir simulation. Int. J. Greenh. Gas Control 2013, 17, 111–126. [Google Scholar] [CrossRef]
- Taylor, R.S.; Fyten, G.; Romanson, R.; Mcintosh, G.; Litun, R.; Munn, D.; Bennion, B.; Piwowar, M.; Hoch, O. Montney Fracturing-Fluid Considerations. J. Can. Pet. Technol. 2010, 49, 28–36. [Google Scholar] [CrossRef]
- Holditch, S.A. Factors affecting water blocking and gas flow from hydraulically fractured gas wells. J. Pet. Technol. 1979, 31, 1515–1524. [Google Scholar] [CrossRef]
- Amyx, J.W.; Bass, D.M.; Whiting, R.L. Petroleum Reservoir Engineering; McGraw-Hill College: New York, NY, USA, 1960. [Google Scholar]
- Larsen, J.W.; Hall, P.; Wernett, P.C. Pore structure of the Argonne premium coals. Energy Fuels 1995, 9, 324–330. [Google Scholar] [CrossRef]
- Sinal, M.; Lancaster, G. Liquid CO2 fracturing: Advantages and limitations. J. Can. Pet. Technol. 1987, 26, 26–30. [Google Scholar] [CrossRef]
- Alam, M.M.; Hjuler, M.L.; Christensen, H.F.; Fabricius, I.L. Petrophysical and rock-mechanics effects of CO2 injection for enhanced oil recovery: Experimental study on chalk from South Arne field, North Sea. J. Pet. Sci. Eng. 2014, 122, 468–487. [Google Scholar] [CrossRef]
- El Hajj, H.; Odi, U.; Gupta, A. Carbonate reservoir interaction with supercritical carbon dioxide. In Proceedings of the IPTC 2013: International Petroleum Technology Conference, Beijing, China, 26–28 March 2013. IPTC 16561. [Google Scholar]
Formation | Smectite (%) | Illite (%) | Kaolinite (%) | Mica (%) | Chlorite (%) | Mixed Layer (%) | Total (%) | References |
---|---|---|---|---|---|---|---|---|
Barnett shale | 0.9 | 7.2 | 1.6 | 1.7 | 1.1 | 3.1 | 15.6 | [39] |
31.4 | 3.8 | 1.1 | 36.3 | [40] | ||||
Fayetteville shale | 20–25 | <5 | [41] | |||||
29 | 2 | 4 | 11 | 46 | [42] | |||
Hassi Messaoud Algerian | 0.35 | 5.3 | 1.35 | 7 | [43] | |||
Haynesville shale | 43.2 | 0.9 | 0.6 | 44.7 | [40] | |||
Doig siltstone | 5.5 | 0.0 | 0.0 | 5.5 | ||||
Woodford shale | 41.0 | 1.4 | 3.4 | 45.8 | ||||
Marcellus shale | 33.6 | 3.4 | 6.0 | 43.0 | ||||
Doig phosphate | 10.5 | 0.0 | 0.0 | 10.5 | ||||
Bowland shale | 2.6 | 15.3 | 19.1 | 2.0 | 18.9 | 57.9 | [44] | |
North Sea Tertiary shale | 42.8 | 1.3 | 7.9 | 0.6 | 52.6 | [45] | ||
Mancos shale | 11 | 1 | 1 | 19 | 32 | [42] | ||
Pierre II shale | 21 | 20 | 1 | 2 | 44 |
Sample | Initial Air Permeability, md, Ka1 | Ratio of Other Permeability to Ka1,% | Clay Minerals % of 12−µ Fraction | |||||
---|---|---|---|---|---|---|---|---|
Kaolinite | Illite | Mixed Layers * | ||||||
A | 27 | 12 | 1 | 0 | 89 | 4 | 7 | 26 |
B | 76 | 22 | 18 | 8 | 68 | 16 | 5 | 15 |
C | 52 | 64 | 64 | 19 | 105 | 14 | 14 | 0 |
D | 46 | 99 | 98 | 72 | 100 | 3 | 5 | 0 |
No. | Brittleness Measuring Formula | References | Remarks |
---|---|---|---|
1 | or , : shear velocity and compressional velocity , : samples porosity, : clay weigth%, : shear modulus, : bulk modulus, ρ: samples density | [76] | Clay content reduces the wave propagation velocity, which means lower shear modulus and greater ductility. |
2 | : quartz weight%, : clay(illite) weight% | [19] | Only consider one kind of clay mineral. |
3 | : quartz weight%, : carbon weight%, : clay weight% | [20] | Regard calcite and all clay minerals as ductile content. |
4 | : quartz weight%, Dol: dolomite weight%, Lm: limestone weight%, : total organic content weight%, : clay weight% | [79] | Consider dolomite to increase brittleness and organic matter to increase ductility. |
5 | = Mineral, a = specific brittleness factor, b = mineral distribution factor | [21] | Consider each mineral’s mechanical properties, and highlight the different effect of each clay mineral. |
6 | : Young’s modulus, λ: Poisson’s ratio | [69] | More accurate than E as the brittleness index, especially in clay-abundant shale formations. |
Operation Stage | Time | Treatment Method | Gas Flow Rate |
---|---|---|---|
1 | The 1960s | Water-based fracturing fluid | The best zone flow was 1.9 MMSCF/D;
the average (total) flow rate was 5.5 MMSCF/D. |
2 | The 1980s | Perforated completion and acidulation | Disappointingly low |
3 | The 1980s | Perforated, acidized and then water-based fracturing fluid | Flow rate is low at first, decreased by 50% after acidulation and by 80% after fracturing |
4 | The 1990s | Water-based gel fracturing fluid (Borate cross-linked gel) | 1.4 MMSCF/D |
The late 1990s | A clean-up remedial treatment using liquid CO2 | Maximum flow rate was 3.2 MMSCF/D and average was 2.2 MMSCF/D |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Pathegama Gamage, R.; Perera, M.S.A.; Zhao, J. Characteristics of Clay-Abundant Shale Formations: Use of CO2 for Production Enhancement. Energies 2017, 10, 1887. https://doi.org/10.3390/en10111887
Zhang C, Pathegama Gamage R, Perera MSA, Zhao J. Characteristics of Clay-Abundant Shale Formations: Use of CO2 for Production Enhancement. Energies. 2017; 10(11):1887. https://doi.org/10.3390/en10111887
Chicago/Turabian StyleZhang, Chengpeng, Ranjith Pathegama Gamage, Mandadige Samintha Anna Perera, and Jian Zhao. 2017. "Characteristics of Clay-Abundant Shale Formations: Use of CO2 for Production Enhancement" Energies 10, no. 11: 1887. https://doi.org/10.3390/en10111887
APA StyleZhang, C., Pathegama Gamage, R., Perera, M. S. A., & Zhao, J. (2017). Characteristics of Clay-Abundant Shale Formations: Use of CO2 for Production Enhancement. Energies, 10(11), 1887. https://doi.org/10.3390/en10111887