Cloud-Based Battery Condition Monitoring and Fault Diagnosis Platform for Large-Scale Lithium-Ion Battery Energy Storage Systems
Abstract
:1. Introduction
2. Cloud-Based Battery Condition Monitoring and Fault Diagnosis Platform
2.1. IoT Components (Wireless Module Management System)
2.2. Cloud Components (Cloud Battery Management Platform)
3. Cloud-Based Battery Condition Monitoring and Fault Diagnosis Algorithms
3.1. HF-Based Condition Monitoring
3.2. Outlier Mining-Based Fault Diagnosis
4. Results
4.1. Validation of a Small-Scale Cloud-Based BMS
4.2. Computational Cost Analysis
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430. [Google Scholar] [CrossRef]
- Roberts, B.P.; Sandberg, C. The role of energy storage in development of smart grids. Proc. IEEE 2011, 99, 1139–1144. [Google Scholar] [CrossRef]
- Kenning, T. LG Chem’s 1 GWh ‘Large Contract’ with AES Worth US $300 Million. 2015 Energy Storage News Media. Available online: http://www.energy-storage.news/news/lg-chem-signs-its-largest-supplycontract-for-stationary-storage-with-aes-e (accessed on 1 November 2017).
- Bragard, M.; Soltau, N.; Thomas, S.; de Doncker, R.W. The balance of renewable sources and user demands in grids: Power electronics for modular battery energy storage systems. IEEE Trans. Power Electron. 2010, 25, 3049–3056. [Google Scholar] [CrossRef]
- Neubauer, J.; Simpson, M. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction; Technical Report NREL/TP-5400-63162; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2015; pp. 1–22.
- Wu, L.; Gao, W.; Cui, Z.; Kou, X. A novel frequency regulation strategy with the application of energy storage system for large scale wind power integration. In Proceedings of the IEEE Green Technologies Conference, New Orleans, LA, USA, 15–17 April 2015; pp. 221–226. [Google Scholar]
- Dinger, A.; Martin, R.; Mosquet, X.; Rabi, M.; Rizoulis, D.; Russo, M.; Sticher, G. Batteries for electric cars-challenges: Opportunities and the outlook to 2020. Energy Environ. Publ. 2010, 87, 18–23. [Google Scholar]
- Neubauer, J.; Pesaran, A. The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications. J. Power Sources 2011, 196, 10351–10358. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Li, J.; Zhou, S.; Han, Y. Advances in Battery Manufacturing, Service, and Management Systems; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Kim, T.; Qiao, W.; Qu, L. A Multicell battery system design for electric and plug-in hybrid electric vehicles. In Proceedings of the 2012 IEEE International Electric Vehicle Conference, Greenville, SC, USA, 4–8 March 2012; pp. 1–7. [Google Scholar]
- Andrea, D. Battery Management Systems for Large Lithium-Ion Battery Packs; Artech House: Norwood, MA, USA, 2010. [Google Scholar]
- Texas Instrument. PowerLAN Gateway Battery Management Controller with Power Pump Cell Balancing; Electronic Publication: BQ78PL114 Datasheet; Texas Instrument: Dallas, TX, USA, 2009. [Google Scholar]
- Linear Technology Corporation. Multicell Battery Stack Monitor; Electronic Publication: LTC6803-2/LTC6803-4 Datasheet; Linear Technology Corporation: Milpitas, CA, USA, 2011. [Google Scholar]
- Kim, H.; Shin, K.G. Efficient sensing matters a lot for large-scale batteries. In Proceedings of the IEEE/ACM International Conference on Cyber-Physical Systems, Chicago, IL, USA, 12–14 April 2011; pp. 197–205. [Google Scholar]
- Weicker, P. A Systems Approach to Lithium-Ion Battery Management; Artech House: Norwood, MA, USA, 2014. [Google Scholar]
- Lee, M.; Lee, J.; Lee, I.L.J.; Chon, A. Wireless battery management system. In Proceedings of the International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Barcelona, Spain, 17–20 November 2103; pp. 1–5. [Google Scholar]
- Kim, T.; Wang, Y.; Sahinoglu, Z.; Wada, T.; Hara, S.; Qiao, W. Model-based condition monitoring for lithium-ion batteries. J. Power Sources 2015, 295, 16–27. [Google Scholar] [CrossRef]
- Wu, C.; Zhu, C.; Ge, Y.; Zhao, Y. A diagnosis approach for typical faults of lithium-ion battery based on extended Kalman filter. Int. J. Electrochem. Sci. 2016, 11, 5289–5301. [Google Scholar] [CrossRef]
- Si, X.; Wang, W.; Hu, C.; Zhou, D. Remaining useful life estimation—A review on the statistical data driven approaches. Eur. J. Oper. Res. 2010, 213, 1–14. [Google Scholar] [CrossRef]
- Vermesan, O.; Friess, P. Internet of Things-From Research and Innovation to Market Development; River Publishers: Gistrup, Denmark, 2014. [Google Scholar]
- Furtht, B.; Escalante, A. Handbook of Cloud Computing; Springer: New York, NY, USA, 2010. [Google Scholar]
- Tanizawa, T.; Szumiya, T.; Ikeda, K. Cloud-connected battery management system supporting e-mobility. Fujitsu Sci. Tech. J. 2015, 51, 27–35. [Google Scholar]
- Voltaiq. Available online: https://www.voltaiq.com/ (accessed on 1 November 2017).
- Rezvanizaniani, S.M.; Liu, Z.; Chen, Y.; Lee, J. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility. J. Power Sources 2014, 256, 110–124. [Google Scholar] [CrossRef]
- Kim, T.; Qiao, W.; Qu, L. Online SOC and SOH estimation for multicell lithium-ion batteries based on an adaptive hybrid battery model and sliding-mode observer. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 292–298. [Google Scholar]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. Sate and parameter estimation. J. Power Sources 2004, 134, 277–292. [Google Scholar] [CrossRef]
- Plett, G.L. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: Simultaneous state and parameter estimation. J. Power Sources 2006, 161, 1369–1384. [Google Scholar] [CrossRef]
- Kim, I. A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer. IEEE Trans. Power Electron. 2010, 25, 1013–1022. [Google Scholar]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Wu, C.; Zhu, C.; Ge, Y.; Zhao, Y. A review on fault mechanism and diagnosis approach for Li-ion batteries. J. Nanomater. 2015, 2015. [Google Scholar] [CrossRef]
- Rahman, M.A.; Anwar, S.; Izadian, A. Electrochemical model based fault diagnosis of lithium ion battery. Adv. Automob. Eng. 2016, 5, 1–9. [Google Scholar] [CrossRef]
- Dey, S.; Ayalew, B. A diagnostic scheme for detection, isolation and estimation of electrochemical faults in Lithium-ion cells. In Proceedings of the ASME 2015 Dynamic System and Control Conference, Columbus, OH, USA, 28–30 October 2015. [Google Scholar]
- Ouyang, M.; Zhang, M.; Feng, X.; Lu, L.; Li, J.; He, X.; Zheng, Y. Internal short circuit detection for battery pack using equivalent parameter and consistency method. J. Power Sources 2015, 294, 272–283. [Google Scholar] [CrossRef]
- Singh, A.; Izadian, A.; Anwar, S. Fault diagnosis of Li-Ion batteries using multiple-model adaptive estimation. In Proceedings of the IEEE 39th Industrial Electronics Society Annual Conference, Vienna, Austria, 10–13 November 2013. [Google Scholar]
- Dey, S.; Biron, Z.A.; Tatipamula, S.; Das, N.; Mohon, S.; Ayalew, B.; Pisu, P. Model-based real-time thermal fault diagnosis of Lithium-ion batteries. Control Eng. Pract. 2016, 56, 37–48. [Google Scholar] [CrossRef]
- Marcicki, J.; Simona, O.; Rizzoni, G. Nonlinear fault detection and isolation for a lithium-ion battery management system. In Proceedings of the ASME 2010 Dynamic Systems and Control Conference, Cambridge, MA, USA, 12–15 September 2010; Volume 1. [Google Scholar]
- Zheng, C.; Ge, Y.; Chen, Z.; Huang, D.; Liu, J.; Zho, S. Diagnosis Method for Li-ion battery fault based on an adaptive unscented Kalman filter. Energies 2017, 10, 1810. [Google Scholar] [CrossRef]
- Liu, Z.; Ahmed, Q.; Rizzoni, G.; He, H. Fault detection and isolation for lithium-ion battery system using structural analysis and sequential residual generation. In Proceedings of the ASME 7th Dynamic Systems and Control, San Antonio, TX, USA, 22–24 October 2014. [Google Scholar]
- Kim, J.; Cho, B.H. An innovative approach for characteristic analysis and state-of-health diagnosis for a Li-ion cell based on the discrete wavelet transform. J. Power Sources 2014, 260, 115–130. [Google Scholar] [CrossRef]
- Hong, J.; Wang, Z.; Liu, P. Voltage fault precaution and management of lithium-ion batteries based on entropy for electric vehicles. Energy Procedia 2016, 104, 44–49. [Google Scholar] [CrossRef]
- Kim, T.; Adhikaree, A.; Kang, D.; Kim, M.; Baek, J. A new hybrid filter-based online condition monitoring for lithium-ion batteries. In Proceedings of the 2017 IEEE International Conference on Electro Information Technology, Lincoln, NE, USA, 14–17 May 2017; pp. 22–27. [Google Scholar]
- Genc, R.; Alas, M.O.; Harputlu, E.; Repp, S.; Kremer, N.; Castellano, M.; Colak, S.G.; Ocakoglu, K.; Erdem, E. High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, P. Technology for the more and all electric aircraft of the future. In Proceedings of the IEEE International Conference on Automatica, Curico, Chile, 19–21 October 2016; pp. 1–5. [Google Scholar]
- Khan, M.M.S.; Faruque, M.O. Energy storage management for MVDC power system of all electric ship under different load condition. In Proceedings of the Electric Ship Technologies Symposium, Arlington, VA, USA, 14–17 August 2017; pp. 192–199. [Google Scholar]
- Luo, F.; Zhao, J.; Dong, Z.Y.; Chen, Y.; Xu, Y.; Zhang, X.; Wong, K.P. Cloud-based information infrastructure for next-generation power grid: Conception, architecture, and applications. IEEE Trans. Smart Grid 2015, 7, 1896–1912. [Google Scholar] [CrossRef]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Plett, G.L. Recursive approximate weighted total least squares estimation of battery cell total capacity. J. Power Sources 2011, 196, 2319–2331. [Google Scholar] [CrossRef]
- Angiulli, F.; Basta, S.; Pizzuti, C. Distance-based detection and prediction of outliers. IEEE Trans. Knowl. Data Eng. 2006, 18, 145–160. [Google Scholar] [CrossRef]
- Google Cloud Pricing Calculator in July 2017. Available online: https://cloud.google.com/products/calculator/ (accessed on 15 July 2017).
Risc (ohm) | 30 (Shorted Cell) | Risc (ohm) | Infinite (Normal and Aged Cells) |
---|---|---|---|
ρ | 2.47 × 10−3 | Vhmax (V) | 0.03 |
Ts | 1 s | a0 | 0.852 |
a1 | 63.867 | a2 | 3.692 |
a3 | 0.559 | a4 | 0.51 |
a5 | 0.508 |
Number of Cells | Number of Threads | Number of Cores | ||
---|---|---|---|---|
Single | Dual | Quad | ||
1 | 1 | 10.29 s | 7.10 s | 4.5 s |
10 | 10 | 11.23 s | 6.35 s | 3.79 s |
100 | 100 | 14.56 s | 7.39 s | 4.68 s |
1000 | 1000 | 21.23 s | 13.42 s | 8.53 s |
Estimated cost for 3 years ($) in committed usage | $561 | $1123 | $2247 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Makwana, D.; Adhikaree, A.; Vagdoda, J.S.; Lee, Y. Cloud-Based Battery Condition Monitoring and Fault Diagnosis Platform for Large-Scale Lithium-Ion Battery Energy Storage Systems. Energies 2018, 11, 125. https://doi.org/10.3390/en11010125
Kim T, Makwana D, Adhikaree A, Vagdoda JS, Lee Y. Cloud-Based Battery Condition Monitoring and Fault Diagnosis Platform for Large-Scale Lithium-Ion Battery Energy Storage Systems. Energies. 2018; 11(1):125. https://doi.org/10.3390/en11010125
Chicago/Turabian StyleKim, Taesic, Darshan Makwana, Amit Adhikaree, Jitendra Shamjibhai Vagdoda, and Young Lee. 2018. "Cloud-Based Battery Condition Monitoring and Fault Diagnosis Platform for Large-Scale Lithium-Ion Battery Energy Storage Systems" Energies 11, no. 1: 125. https://doi.org/10.3390/en11010125
APA StyleKim, T., Makwana, D., Adhikaree, A., Vagdoda, J. S., & Lee, Y. (2018). Cloud-Based Battery Condition Monitoring and Fault Diagnosis Platform for Large-Scale Lithium-Ion Battery Energy Storage Systems. Energies, 11(1), 125. https://doi.org/10.3390/en11010125