Numerical Simulations for a Partial Disk MHD Generator Performance
Abstract
:1. Introduction
2. Numerical Model
2.1. Numerical Simulation Domain
2.2. Mathematical Model
2.2.1. Governing Equations for MHD Plasma Flows.
2.2.2. Governing Equations for Charged Particles.
2.2.3. Governing Equations for Electrical-Magnetic
2.3. Boundary Conditions and Numerical Procedures
2.4. Grid Meshes Selection
3. Simulation Results and Discussion
3.1. Comparison of Simulation Results between Partial Disk and General Disk Generator
3.2. Discussion of Optimal Angle of Partial Disk Generator
4. Conclusions
- In the designed partial disk channel, the strength of Lorentz force is lower than that of the general disk channel, so the radial velocity is higher, and the static pressure is smaller. The plasma prefers to stay in a recombination process, which is beneficial to plasma uniformity and ionization stability. Moreover, the structure is conducive to obtain a high power output by diminishing energy losses of Joule heating. Consequently, higher enthalpy extraction ratio and electrical efficiency are achieved.
- The optimum enthalpy extraction and electrical efficiency can be achieved when the angle is from 5 to 10 degrees among those partial disk channel. After the angle exceeds 15 degrees, the generator performance is clearly in a decline tendency and close to the general disk generator.
- Different from that in the general disk channel, the Joule heating effect is weak in the partial disk channels, so the electron number density decreases moderately downstream. The electron number density is higher in upstream near the anode than that in downstream, it seems to be a source to keep the electron number density in uniform distribution downstream near the cathode, which is beneficial to electrical power output, instead of converting internal energy.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rosa, R.J. Magnetohydrodynamic Energy Conversion; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Liberati, A.; Murakami, T.; Okuno, Y.; Yamasaki, H. Numerical simulation on performance of disk MHD generator in the closed-loop experimental facility. IEEE Trans. Plasma Sci. 2006, 34, 2669–2677. [Google Scholar] [CrossRef]
- Liberati, A.; Okuno, Y. Influence of anode-region boundary-layer separation on disk MHD-generator performance. IEEE Trans. Plasma Sci. 2007, 3, 1588–1597. [Google Scholar] [CrossRef]
- Harada, N.; Tashiro, T. Influence of Recombination Coefficient on Discharge Structure and Plasma Stability in Closed Cycle MHD Generator with He/Xe Working Gas. In Proceedings of the AIAA Plasma dynamics and Lasers Conference, Orlando, FL, USA, 23–26 June 2003. [Google Scholar] [CrossRef]
- Harada, N.; Hishikawa, M.; Nara, N.; Sakamoto, N. Plasma Stability, Generator Performance and Stable Operation of Mixed Inert Gas Non-Equilibrium MHD Generator; MISM: Moscow, Russia, 2005; Volume 1, pp. 59–69. Available online: http://mhd.ing.unibo.it/Old_Proceedings/2005_Moscow/Moscow%202005/Vol1/07%20-%20Plasma%20Stability,%20Generator%20Performance%20and%20Stable%20Operation%20of%20Mixed%20Inert%20Gas%20Nonequilibrium.pdf (accessed on 29 January 2015).
- Harada, N.; Le, C.K.; Tashiro, T. Closed Cycle MHD Generator Using He/Xe Working Plasma. In Proceedings of the AIAA Plasmadynamics and Lasers Conference, Maui, HI, USA, 20–23 May 2002. [Google Scholar] [CrossRef]
- Murakami, T.; Okuno, Y. Simulation and demonstration of magnetohydrodynamic energy conversion in a high-temperature inert gas. Phys. Plasmas 2009, 16, 425–429. [Google Scholar] [CrossRef]
- Murakami, T.; Okuno, Y. High-density magnetohydrodynamic energy conversion in a high-temperature inert gas. Appl. Phys. Lett. 2008, 93, 041504. [Google Scholar] [CrossRef]
- Tanaka, M.; Okuno, Y. Performance of a seed-free disk magnetohydrodynamic generator with self-excited joule heating in the nozzle. IEEE Trans. Plasma Sci. 2017, 45, 454–460. [Google Scholar] [CrossRef]
- Tanaka, M.; Murakami, T.; Okuno, Y. Plasma characteristics and performance of magnetohydrodynamic generator with high-temperature inert gas plasma. IEEE Trans. Plasma Sci. 2014, 42, 4020–4025. [Google Scholar] [CrossRef]
- Liberati, A.; Okuno, Y. Numerical Simulation of High Mach Number: Low Static Pressure Plasma in a Highly Efficient Disk MHD Generator. In Proceedings of the AIAA Plasma dynamics and Lasers Conference, Seattle, WA, USA, 23–26 June 2008. [Google Scholar] [CrossRef]
- Liberati, A.; Murakami, T.; Okuno, Y.; Yamasaki, H. Numerical Simulation of Less Divergent Disk MHD Generator with High Magnetic Flux Density. In Proceedings of the AIAA Plasmadynamics and Lasers Conference, San Francisco, CA, USA, 5–8 June 2006. [Google Scholar] [CrossRef]
- Murakami, T.; Okuno, Y. Experiment and Simulation of MHD Power Generation Using Convexly Divergent Channel. In Proceedings of the AIAA Plasma dynamics and Lasers Conference, Honolulu, HI, USA, 27–30 June 2013; pp. 861–872. [Google Scholar] [CrossRef]
- Harada, N. Characteristics of a disk MHD generator with inlet swirl. Energy Convers. Manag. 1995, 40, 305–318. [Google Scholar] [CrossRef]
- Liu, H.; Xu, K.; Zhu, T.; Ye, W. Multiple temperature kinetic model and its applications to micro-scale gas flows. Comput. Fluids 2012, 67, 115–122. [Google Scholar] [CrossRef]
- Zhu, T.; Ye, W. Theoretical and numerical studies of noncontinuum gas-phase heat conduction in micro/nano devices. Numer. Heat Transfer Part B Fundam. 2010, 57, 203–226. [Google Scholar] [CrossRef]
- Aidun, C.K.; Clausen, J.R. Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 2010, 42, 439–472. [Google Scholar] [CrossRef]
- Mitchner, M.; Kruger, C.H. Partially Ionized Gases; Wiley: New York, NY, USA, 1973. [Google Scholar]
- Zheng, X.; Haoyu, L.U.; Dajun, X.U.; Guobiao, C.A.I. Numerical simulation of 2D supersonic magnetohydrodynamic channel and study on hall effect. Chin. J. Aeronaut. 2011, 24, 136–144. [Google Scholar] [CrossRef]
- Sakai, T.; Matsumoto, M.; Murakami, T.; Okuno, Y. Numerical simulation of power generation characteristics of a disk MHD generator with high-temperature inert gas plasma. Electr. Eng. Jpn. 2012, 179, 23–30. [Google Scholar] [CrossRef]
- Biberman, L.M.; Vorob’Ev, V.S.; Yakubov, I.T. On the theory of ionization and recombination in a low-temperature plasma. Sov. J. Exp. Theor. Phys. 1969, 29, 1070–1073. [Google Scholar]
- Tanaka, M.; Murakami, T.; Okuno, Y. Numerical simulation of performance of high-temperature inert gas plasma faraday-type magnetohydrodynamic generator. J. Propuls. Power 2015, 38, 1–8. [Google Scholar] [CrossRef]
- Tanaka, M.; Zhuang, Y.; Komatsu, F.; Murakami, T.; Okuno, Y. Power Generation Experiments with a High Temperature Inert Gas Plasma Faraday Type MHD Generator. In Proceedings of the AIAA Plasma dynamics and Lasers Conference, San Diego, CA, USA, 24–27 June 2013; Volume 134, pp. 58–65. [Google Scholar] [CrossRef]
- Tanaka, M.; Murakami, T.; Okuno, Y. Plasma fluid flow behavior and power generation characteristics in a high-temperature inert gas plasma faraday MHD generator. Electr. Eng. Jpn. 2016, 194, 46–53. [Google Scholar] [CrossRef]
- Okuno, Y.; Watanabe, K.; Kawasaki, A.; Murakami, T. Experimental Studies of Seed-Free Pure-Inert-Gas Working MHD Power Generation. In Proceedings of the AIAA Plasma Dynamics and Lasers Conference, Honolulu, HI, USA, 27–30 June 2011. [Google Scholar] [CrossRef]
- Litchford, R.J.; Harada, N. Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma. In Proceedings of the Nuclear and Emerging Technologies for Space, Albuquerque, NM, USA, 7–10 February 2011. [Google Scholar]
- Tanaka, M.; Okuno, Y. High-Temperature Inert-Gas-Plasma Faraday-Type Magnetohydrodynamic Generator with Various Working Gases. J. Propuls. Power 2016, 32, 1–6. [Google Scholar] [CrossRef]
- Ichinokiyama, D.; Takayasu, F. Numerical Analysis of Non-equilibrium Disk MHD Generator with Swirl Vanes. In Proceedings of the International Energy Conversion Engineering Conference, Salt Lake City, UT, USA, 25–27 July 2016. [Google Scholar] [CrossRef]
Working fluid | Ar |
Total inflow pressure | 0.16 MPa |
Total inflow temperature | 9200 K |
Inlet static temperature | 8000 K |
Inlet electron temperature | 8000 K |
Magnetic flux density | 1 T |
Mesh Numbers | 260,000 | 380,000 | 520,000 | 624,000 |
---|---|---|---|---|
Electrical conductivity (103 S/m) | 0.88 | 0.85 | 0.83 | 0.82 |
Velocity (103 m/s) | 2.09 | 2.11 | 2.14 | 2.144 |
Static temperature (103 K) | 4.32 | 4.23 | 4.15 | 4.14 |
Electron temperature (103 K) | 6.78 | 6.52 | 6.38 | 6.35 |
Angle ° | 4 | 5 | 6 | 10 | 15 | General |
Enthalpy extraction ratio % | 21.19 | 23.26 | 23.07 | 23.16 | 21.3 | 10.4 |
Electrical efficiency % | 78.29 | 79.97 | 77.09 | 69.13 | 60.77 | 21.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Huang, H.-l.; Zhu, G.-p. Numerical Simulations for a Partial Disk MHD Generator Performance. Energies 2018, 11, 127. https://doi.org/10.3390/en11010127
Li L, Huang H-l, Zhu G-p. Numerical Simulations for a Partial Disk MHD Generator Performance. Energies. 2018; 11(1):127. https://doi.org/10.3390/en11010127
Chicago/Turabian StyleLi, Lai, Hu-lin Huang, and Gui-ping Zhu. 2018. "Numerical Simulations for a Partial Disk MHD Generator Performance" Energies 11, no. 1: 127. https://doi.org/10.3390/en11010127
APA StyleLi, L., Huang, H. -l., & Zhu, G. -p. (2018). Numerical Simulations for a Partial Disk MHD Generator Performance. Energies, 11(1), 127. https://doi.org/10.3390/en11010127