Real-World Measurement of Hybrid Buses’ Fuel Consumption and Pollutant Emissions in a Metropolitan Urban Road Network
Abstract
:1. Introduction
2. Methods
2.1. Test Vehicles
2.2. Equipment, Instruments, Measurements and Data Processing
2.3. Design of Trials
2.4. Testing Routes
2.5. Calculation Methods
3. Results and Discussion
3.1. Testing Conditions
3.2. Fuel Consumption Levels
3.3. Pollutant Emissions
3.4. Comparative Assessment over Different City Routes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paunović, K.; Belojević, G.; Jakovljević, B. Noise annoyance is related to the presence of urban public transport. Sci. Total Environ. 2014, 481, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Hertel, O.; Hvidberg, M.; Ketzel, M.; Storm, L.; Stausgaard, L. A proper choice of route significantly reduces air pollution exposure—A study on bicycle and bus trips in urban streets. Sci. Total Environ. 2008, 389, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Farsi, M.; Fetz, A.; Filippini, M. Economies of Scale and Scope in Local Public Transportation. J. Transp. Econ. Policy (JTEP) 2007, 41, 345–361. [Google Scholar]
- Jakob, A.; Craig, J.L.; Fisher, G. Transport cost analysis: A case study of the total costs of private and public transport in Auckland. Environ. Sci. Policy 2006, 9, 55–66. [Google Scholar] [CrossRef]
- Mayeres, I.; Ochelen, S.; Proost, S. The marginal external costs of urban transport. Transp. Res. Part D Transp. Environ. 1996, 1, 111–130. [Google Scholar] [CrossRef]
- Viton, P.A. A Translog Cost Function for Urban Bus Transit. J. Ind. Econ. 1981, 29, 287–304. [Google Scholar] [CrossRef]
- Gibby, R.; Dawson, R.; Sebaaly, P. Local Urban Transit Bus Impact on Pavements. J. Transp. Eng. 1996, 122, 215–217. [Google Scholar] [CrossRef]
- Hallmark, S.L.; Wang, B.; Sperry, R. Comparison of on-road emissions for hybrid and regular transit buses. J. Air Waste Manag. Assoc. 2013, 63, 1212–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.T.; Hammitt, J.K.; Levy, J.I. Fuels for Urban Transit Buses: A Cost-Effectiveness Analysis. Environ. Sci. Technol. 2003, 37, 1477–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerbec, M.; Samuel, R.O.; Kontić, D. Cost benefit analysis of three different urban bus drive systems using real driving data. Transp. Res. Part D Transp. Environ. 2015, 41, 433–444. [Google Scholar] [CrossRef]
- Hu, X.; Murgovski, N.; Johannesson, L.; Egardt, B. Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes. Appl. Energy 2013, 111, 1001–1009. [Google Scholar] [CrossRef]
- Lajunen, A. Energy consumption and cost-benefit analysis of hybrid and electric city buses. Transp. Res. Part C Emerg. Technol. 2014, 38, 1–15. [Google Scholar] [CrossRef]
- Millo, F.; Rolando, L.; Fuso, R.; Zhao, J. Development of a new hybrid bus for urban public transportation. Appl. Energy 2015, 157, 583–594. [Google Scholar] [CrossRef]
- Xiong, W.; Zhang, Y.; Yin, C. Optimal energy management for a series–parallel hybrid electric bus. Energy Convers. Manag. 2009, 50, 1730–1738. [Google Scholar] [CrossRef]
- Merkisz, J.; Pielecha, J. Emissions and fuel consumption during road test from diesel and hybrid buses under real road conditions. In Proceedings of the 2010 IEEE Vehicle Power and Propulsion Conference, Lille, France, 1–3 September 2010; pp. 1–5. [Google Scholar]
- Semercioğlu, H.; Bal, A.; Soylu, S. Examination of real world operating conditions and emissions of a hybrid city bus. In Proceedings of the International Conference on Energy and Automotive Technologies—ICAT 2010, Istanbul, Turkey, 5 November 2010. [Google Scholar]
- Guo, J.; Ge, Y.; Hao, L.; Tan, J.; Peng, Z.; Zhang, C. Comparison of real-world fuel economy and emissions from parallel hybrid and conventional diesel buses fitted with selective catalytic reduction systems. Appl. Energy 2015, 159, 433–441. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Y.; Liu, H.; Huang, R.; Yang, L.; Li, Z.; Fu, L.; Hao, J. Real-world fuel consumption and CO2 emissions of urban public buses in Beijing. Appl. Energy 2014, 113, 1645–1655. [Google Scholar] [CrossRef]
- Armas, O.; Lapuerta, M.; Mata, C. Methodology for the analysis of pollutant emissions from a city bus. Meas. Sci. Technol. 2012, 23, 045302. [Google Scholar] [CrossRef]
- Gómez, A.; Mata, C.; Armas, O. Effect of Ethanol–Diesel Fuel Blend on Diesel Engine Emissions Produced by Different Bus Fleets. J. Energy Eng. 2016, 142, E4015003. [Google Scholar] [CrossRef]
- Quiros, D.C.; Smith, J.; Thiruvengadam, A.; Huai, T.; Hu, S. Greenhouse gas emissions from heavy-duty natural gas, hybrid, and conventional diesel on-road trucks during freight transport. Atmos. Environ. 2017, 168, 36–45. [Google Scholar] [CrossRef]
- Graham, L.A.; Rideout, G.; Rosenblatt, D.; Hendren, J. Greenhouse gas emissions from heavy-duty vehicles. Atmos. Environ. 2008, 42, 4665–4681. [Google Scholar] [CrossRef]
- Stempien, J.P.; Chan, S.H. Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas. J. Power Sources 2017, 340, 347–355. [Google Scholar] [CrossRef]
- Wang, R.; Wu, Y.; Ke, W.; Zhang, S.; Zhou, B.; Hao, J. Can propulsion and fuel diversity for the bus fleet achieve the win–win strategy of energy conservation and environmental protection? Appl. Energy 2015, 147, 92–103. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Y.; Zhao, B.; Wu, X.; Shu, J.; Hao, J. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China’s Yangtze River Delta region. J. Environ. Sci. 2017, 51, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Slovic, A.D.; Ribeiro, H. Policy instruments surrounding urban air quality: The cases of São Paulo, New York City and Paris. Environ. Sci. Policy 2018, 81, 1–9. [Google Scholar] [CrossRef]
- Wang, S.; Hao, J. Air quality management in China: Issues, challenges, and options. J. Environ. Sci. 2012, 24, 2–13. [Google Scholar] [CrossRef]
- Andersson, J. Real World Emissions and Control: Use of PEMS on Heavy Duty Vehicles to Assess the Impact of Technology and Driving Conditions on Air Quality in Urban Areas. 2016. Available online: http://www.scottishairquality.scot/assets/documents/reports/08_Jon_Andersson_Edinburgh1-PEMS.pdf (accessed on 4 September 2018).
- Zhang, S.; Wu, Y.; Hu, J.; Huang, R.; Zhou, Y.; Bao, X.; Fu, L.; Hao, J. Can Euro V heavy-duty diesel engines, diesel hybrid and alternative fuel technologies mitigate NOX emissions? New evidence from on-road tests of buses in China. Appl. Energy 2014, 132, 118–126. [Google Scholar] [CrossRef]
- Squaiella, L.L.F.; Martins, C.A.; Lacava, P.T. Strategies for emission control in diesel engine to meet Euro VI. Fuel 2013, 104, 183–193. [Google Scholar] [CrossRef]
- Guan, B.; Zhan, R.; Lin, H.; Huang, Z. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Appl. Therm. Eng. 2014, 66, 395–414. [Google Scholar] [CrossRef]
- Jonson, J.E.; Borken-Kleefeld, J.; Simpson, D.; Nyíri, A.; Posch, M.; Heyes, C. Impact of excess NOX emissions from diesel cars on air quality, public health and eutrophication in Europe. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- Ntziachristos, L.; Papadimitriou, G.; Ligterink, N.; Hausberger, S. Implications of diesel emissions control failures to emission factors and road transport NOX evolution. Atmos. Environ. 2016, 141, 542–551. [Google Scholar] [CrossRef]
- André, M.; Hammarström, U. Driving speeds in Europe for pollutant emissions estimation. Transp. Res. Part D Transp. Environ. 2000, 5, 321–335. [Google Scholar] [CrossRef]
- Joumard, R.; André, M.; Vidon, R.; Tassel, P.; Pruvost, C. Influence of driving cycles on unit emissions from passenger cars. Atmos. Environ. 2000, 34, 4621–4628. [Google Scholar] [CrossRef]
- Verbeek, R.; Vermeulen, R.; Vonk, W.; Dekker, H. Real World NOX Emissions of Euro V Vehicles; TNO: The Hague, The Netherlands, 2010. [Google Scholar]
- Merkisz, J.; Rymaniak, Ł. Tests of urban bus specific emissions in terms of currently applicable heavy vehicles operating emission regulations. Combust. Engines 2017, 21–26. [Google Scholar] [CrossRef]
- ISO 5165:1998. Petroleum Products—Determination of the Ignition Quality of Diesel fuels—Cetane Engine Method; International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 3104:1994. Petroleum Products—Transparent and Opaque Liquids—Determination of Kinematic Viscosity and Calculation of Dynamic Viscosity; International Organization for Standardization: Geneva, Switzerland, 1994.
- Secretary for the Environment, H.K. Air Pollution Control (Motor Vehicle Fuel) (Amendment) Regulation 2010; Advisory Council on the Environment: Hong Kong, 2010.
- ISO 16183. Heavy-Duty Engines Measurement of Gaseous Emissions from Raw Exhaust Gas and of Particulate Emissions using Partial Flow Dilution Systems under Transient Test Conditions; International Organization for Standardization: Geneva, Switzerland, 2002.
- US EPA. Subpart J—Field Testing and Portable Emission Measurement Systems, CFR Part 1065; United States Environmental Protection Agency: Washington, DC, USA, 2015.
- European Commission. Commission Regulation (EU) No. 582/2011 Implementing and Amending Regulation (EC) No. 595/2009 of the European Parliament and of the Council with Respect to Emissions from Heavy Duty Vehicles (Euro VI) and Amending Annexes I and III to Directive 2007/46/EC of the European Parliament and of the Council; Official Journal of the European Union: Brussels, Belgium, 2011. [Google Scholar]
- UN. Agreement Concerning the Adoption of Uniform Technical Prescriptions for Wheeled Vehicles Addendum 100: Regulation No. 101; United Nations: New York, NY, USA, 2013. [Google Scholar]
- Shek, K.W.; Chan, W.T. Combined comfort model of thermal comfort and air quality on buses in Hong Kong. Sci. Total Environ. 2008, 389, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.; Watts, W.; Kittelson, D. Reduction of Accessory Overdrive and Parasitic Loading on a Parallel Electric Hybrid City Bus; SAE: Warrendale, PA, USA, 2012. [Google Scholar]
- Rothfusz, L. The Heat Index “Equation” (or, More Than You Ever Wanted to Know About Heat Index); National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology: Fort Worth, TX, USA, 1990. [Google Scholar]
- Bottiglione, F.; Contursi, T.; Gentile, A.; Mantriota, G. The Fuel Economy of Hybrid Buses: The Role of Ancillaries in Real Urban Driving. Energies 2014, 7, 4202–4220. [Google Scholar] [CrossRef] [Green Version]
- Sillman, S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos. Environ. 1999, 33, 1821–1845. [Google Scholar] [CrossRef]
- The Goverment of the Hong Kong SAR Transport and Housing Bureau. In Public Transport Strategy Study, Final Report; Transport and Housing Bureau: Hong Kong, 2017.
- O’Driscoll, R.; Stettler, M.E.J.; Molden, N.; Oxley, T.; ApSimon, H.M. Real world CO2 and NOX emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars. Sci. Total Environ. 2018, 621, 282–290. [Google Scholar] [CrossRef] [PubMed]
- The Goverment of the Hong Kong SAR Transport Department. The Annual Traffic Census 2015; Transport Department: Hong Kong, 2015.
- Gabrielsson, P.L.T. Urea-SCR in Automotive Applications. Top. Catal. 2004, 28, 177–184. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (Eds.)]; IPCC: Geneva, Switzerland, 2014.
- Colombo, M.; Nova, I.; Tronconi, E. A comparative study of the NH3-SCR reactions over a Cu-zeolite and a Fe-zeolite catalyst. Catal. Today 2010, 151, 223–230. [Google Scholar] [CrossRef]
- Kim, M.H.; Ham, S.-W. Determination of N2O Emissions Levels in the Selective Reduction of NOX by NH3 Over an On-Site-Used Commercial V2O5–WO3/TiO2 Catalyst Using a Modified Gas Cell. Top. Catal. 2010, 53, 597–607. [Google Scholar] [CrossRef]
- Muncrief, R.L.; Cruz, M.; Ng, H.; Harold, M. Impact of Auxiliary Loads on Fuel Economy and Emissions in Transit Bus Applications; SAE: Warrendale, PA, USA, 2012. [Google Scholar]
- Fontaras, G.; Pistikopoulos, P.; Samaras, Z. Experimental evaluation of hybrid vehicle fuel economy and pollutant emissions over real-world simulation driving cycles. Atmos. Environ. 2008, 42, 4023–4035. [Google Scholar] [CrossRef]
Specification | Euro V Conventional | Euro VI Hybrid |
---|---|---|
ID | 1–6 | 7–12 |
Year of registration | 2013–2015 | 2014 |
Emission standard | Euro V | Euro VI |
Technology | Conventional | Hybrid (serial) |
Fuel | Diesel | Diesel |
Emission control technology | SCR | DPF, EGR, SCR |
Mean mileage (min/max) (km) | 50,506 (23,391/92,143) | 26,299 (15,858/48,092) |
Transmission | Automatic | Automatic |
Gross vehicle weight (t) | 24 | 24 |
Weight before/after installation * (t) | 15.3/19.5 | 16.0/20.0 |
Number of cylinders | 6 | 6 |
Idle/max speed (RPM) | 700/2400 | 600/2850 |
Engine displacement (L) | 8.9 | 6.7 |
Engine rated power (kW@rpm) | 243@2100 | 204@2100 |
Engine peak torque (Nm@rpm) | 1500@1200–1400 | 1100@1200–1600 |
Route # | Bus Termini | Route Number | Driving Mode | Average One-Way Duration (h; min) | Distance (km) |
---|---|---|---|---|---|
1 | Kennedy Town–Hong Kong Stadium | 5B | Urban | 1 h; 2 min | 8.4 |
2 | Lai Chi Kok–Wan Chai North | 905 | Urban (mainly)/Highway | 1 h; 19 min | 16.3 |
3 | Star Ferry–Sau Mau Ping | 1A | Urban | 1 h; 8 min | 14.7 |
4 | Shun Lee–Macau Ferry | 619 | Urban (mainly)/Highway | 1 h; 15 min | 17.5 |
5 | Heng Fa Chuen–Wan Chai North | 8 | Urban (mainly)/Highway | 0 h; 53 min | 13.6 |
6 | Tin Shui Wai–Causeway Bay | 969 | Urban/Highway (mainly) | 1 h; 31 min | 43.9 |
Route # | Speed (km h−1) | Positive Acceleration (m s−2) | Positive Power (kW) | Engine Speed (rpm) | Exhaust Temperature (°C) | Ambient Temperature (°C) | Height Gain (%) | Height st. dev. (m) |
---|---|---|---|---|---|---|---|---|
Euro V Conventional | ||||||||
1 | 8.1 | 0.29 | 35.6 | 849 | 241 | 26.7 | 0.43 | 2.2 |
2 | 12.1 | 0.34 | 43.4 | 877 | 242 | 21.7 | 0.64 | 1.3 |
3 | 12.7 | 0.45 | 48.5 | 892 | 246 | 17.4 | 1.16 | 21.8 |
4 | 14.2 | 0.43 | 53.7 | n.a. | 274 | 19.7 | 1.88 | 30.3 |
5 | 16.3 | 0.32 | 56.1 | 960 | 299 | 32.1 | 2.24 | 21.8 |
6 | 29.5 | 0.32 | 61.2 | 1060 | 309 | 28.8 | 0.83 | 20.0 |
Euro VI Hybrid | ||||||||
1 | 8.2 | 0.40 † | 39.4 | 939 † | 286 † | 31.6 † | 0.40 | 2.4 |
2 | 12.5 | 0.40 † | 46.8 | 710 † | 241 | 18.9 † | 0.60 | 1.4 |
3 | 13.3 | 0.47 | 53.4 | 751 † | 260 | 20.5 † | 1.14 | 21.4 |
4 | 14.0 | 0.42 | 54.1 | 881 | 274 | 18.7 | 1.88 | 30.1 |
5 | 15.1 | 0.34 | 54.7 | 973 | 293 | 32.1 | 2.20 | 20.9 |
6 | 28.7 | 0.29 † | 62.5 | 1055 | 316 | 26.4 † | 0.82 | 20.3 |
Emission Factors (g km−1) | Emission Factors (g kWh−1) + | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Route # | Route Characteristics | NOx | NO | NO2 | CO | THC | NH3 * | N2O * | CO2e | NOx | CO | THC |
Euro V (conventional) buses | ||||||||||||
1 | SL/EL/AM/HM | 26.64 | 21.74 | 4.89 | 8.78 | 0.10 | 5.5 | 72 | 3020 | 7.98 | 2.77 | 0.03 |
2 | SM/EL/AL/HL | 9.55 | 8.26 | 1.29 | 9.24 | 0.07 | 11.9 | 221 | 2168 | 3.77 | 4.04 | 0.03 |
3 | SM/EL/AL/HH | 10.62 | 9.55 | 1.07 | 6.91 | 0.08 | 4.0 | 181 | 2190 | 4.40 | 2.96 | 0.04 |
4 | SM/EM/AL/HH | 8.81 | 7.96 | 0.84 | 5.10 | 0.07 | - | - | 2269 | 3.57 | 2.14 | 0.03 |
5 | SM/EH/AH/HH | 12.95 | 10.55 | 2.40 | 4.52 | 0.03 | 3.4 | 94 | 2194 | 4.47 | 1.67 | 0.01 |
6 | SH/EH/AM/HH | 6.58 | 5.45 | 1.13 | 2.24 | 0.03 | 2.2 | 59 | 1422 | 3.87 | 1.40 | 0.02 |
Euro V emission limit (transient testing) | 2.00 | 4.00 | 0.55 § | |||||||||
Euro VI (hybrid) buses | ||||||||||||
1 | SL/EM/AH/HM | 4.08 | 0.64 | 3.44 | 3.55 | 0.04 | 4.6 | 1177 | 3803 | 0.95 | 0.85 | 0.01 |
2 £ | SM/EL/AL/HL | 0.21 | 0.20 | 0.02 | 1.26 | 0.02 | 7.3 | 265 | 1770 | 0.06 | 0.55 | 0.01 |
3 £ | SM/EM/AL/HH | 0.48 | 0.37 | 0.10 | 1.81 | 0.01 | 2.4 | 494 | 1964 | 0.16 | 0.70 | 0.01 |
4 | SM/EM/AL/HH | 0.42 | 0.34 | 0.07 | 1.55 | 0.02 | 2.4 | 421 | 2162 | 0.14 | 0.59 | 0.01 |
5 | SM/EH/AH/HH | 0.70 | 0.13 | 0.58 | 1.92 | 0.01 | 2.7 | 540 | 2292 | 0.21 | 0.64 | 0.00 |
6 | SH/EH/AM/HH | 0.64 | 0.41 | 0.22 | 0.99 | 0.01 | 1.7 | 294 | 1390 | 0.32 | 0.60 | 0.01 |
Euro VI emission limit (transient testing) | 0.46 | 4.00 | 0.16 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keramydas, C.; Papadopoulos, G.; Ntziachristos, L.; Lo, T.-S.; Ng, K.-L.; Wong, H.-L.A.; Wong, C.K.-L. Real-World Measurement of Hybrid Buses’ Fuel Consumption and Pollutant Emissions in a Metropolitan Urban Road Network. Energies 2018, 11, 2569. https://doi.org/10.3390/en11102569
Keramydas C, Papadopoulos G, Ntziachristos L, Lo T-S, Ng K-L, Wong H-LA, Wong CK-L. Real-World Measurement of Hybrid Buses’ Fuel Consumption and Pollutant Emissions in a Metropolitan Urban Road Network. Energies. 2018; 11(10):2569. https://doi.org/10.3390/en11102569
Chicago/Turabian StyleKeramydas, Christos, Georgios Papadopoulos, Leonidas Ntziachristos, Ting-Shek Lo, Kwok-Lam Ng, Hok-Lai Anson Wong, and Carol Ka-Lok Wong. 2018. "Real-World Measurement of Hybrid Buses’ Fuel Consumption and Pollutant Emissions in a Metropolitan Urban Road Network" Energies 11, no. 10: 2569. https://doi.org/10.3390/en11102569