Li-Ion Battery Fire Hazards and Safety Strategies
Abstract
:1. Introduction
2. The Thermal Runaway Process
3. Preventing Thermal Runaway Using Separators
4. Fire Prevention Using Flame Retardants
5. Fire and Explosion Prevention Using Cell Venting
6. Extinguishing Li-ion Battery Fires
7. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652. [Google Scholar] [CrossRef] [PubMed]
- FAA Office of Security and Hazardous Materials Safety. Available online: https://www.faa.gov/about/office_org/headquarters_offices/ash/ash_programs/hazmat/aircarrier_info/media/battery_incident_chart.pdf (accessed on 9 July 2018).
- Could Chevy Volt Lithium-Ion Battery Fires Burn out Interest in EVs and Hybrids? Available online: https://blogs.scientificamerican.com/observations/could-chevy-volt-lithium-ion-battery-fires-burn-out-interest-in-evs-and-hybrids/ (accessed on 31 July 2018).
- Can You Trust the Lithium-Ion Battery in Your Pocket? Available online: https://www.washingtonpost.com/news/the-switch/wp/2016/09/16/can-you-trust-the-lithium-ion-battery-in-your-pocket/?utm_term=.f7ae4130ed74 (accessed on 6 August 2017).
- Why Lithium-Ion Smartphone Batteries Keep Exploding. Available online: http://globalnews.ca/news/1714748/why-lithium-ion-smartphone-batteries-keep-exploding/ (accessed on 6 August 2017).
- Dramatic CCTV Footage Shows e-Cigarette Battery Exploding in Man’s Pocket-Prompting Storage Warning from Fire Services. Available online: https://www.telegraph.co.uk/news/2016/12/22/dramatic-cctv-footage-shows-e-cigarette-battery-exploding-mans/ (accessed on 31 July 2018).
- Man Says e-Cigarette Battery Exploded in His Pocket. Available online: https://www.cnn.com/2016/02/25/health/e-cigarette-explodes-in-mans-pocket/index.html (accessed on 6 August 2017).
- Saxena, S.; Kong, L.; Pecht, M.G. Exploding E-cigarettes: A battery safety issue. IEEE Access 2018, 6, 21442–21466. [Google Scholar] [CrossRef]
- Balakrishnan, P.; Ramesh, R.; Kumar, T. Safety mechanisms in lithium-ion batteries. J. Power Sources 2006, 155, 401–414. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, J.; Yao, X.; Chen, C. Thermal Behavior of Lithiated Graphite with Electrolyte in Lithium-Ion Batteries. J. Electrochem. Soc. 2006, 153, A329–A333. [Google Scholar] [CrossRef]
- Spotnitz, R.; Franklin, J. Abuse behavior of high-power, lithium-ion cells. J. Power Sources 2003, 113, 81–100. [Google Scholar] [CrossRef]
- Al Hallaj, S.; Maleki, H.; Hong, J.; Selman, J. Thermal modeling and design considerations of lithium-ion batteries. J. Power Sources 1999, 83, 1–8. [Google Scholar] [CrossRef]
- Feng, X.; Fang, M.; He, X.; Ouyang, M.; Lu, L.; Wang, H.; Zhang, M. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power Sources 2014, 255, 294–301. [Google Scholar] [CrossRef]
- Kong, W.; Li, H.; Huang, X.; Chen, L. Gas evolution behaviors for several cathode materials in lithium-ion batteries. J. Power Sources 2005, 142, 285–291. [Google Scholar] [CrossRef]
- Guo, G.; Long, B.; Cheng, B.; Zhou, S.; Xu, P.; Cao, B. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application. J. Power Sources 2010, 195, 2393–2398. [Google Scholar] [CrossRef]
- Forgez, C.; Do, D.V.; Friedrich, G.; Morcrette, M.; Delacourt, C. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J. Power Sources 2010, 195, 2961–2968. [Google Scholar] [CrossRef]
- Shin, J.S.; Han, C.H.; Jung, U.H.; Lee, S.I.; Kim, H.J.; Kim, K. Effect of Li2CO3 additive on gas generation in lithium-ion batteries. J. Power Sources 2002, 109, 47–52. [Google Scholar] [CrossRef]
- Golubkov, A.W.; Fuchs, D.; Wagner, J.; Wiltsche, H.; Stangl, C.; Fauler, G.; Voitic, G.; Thaler, A.; Hacker, V. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv. 2014, 4, 3633–3642. [Google Scholar] [CrossRef] [Green Version]
- Spinner, N.S.; Field, C.R.; Hammond, M.H.; Williams, B.A.; Myers, K.M.; Lubrano, A.L.; Rose-Pehrsson, S.L.; Tuttle, S.G. Physical and chemical analysis of lithium-ion battery cell-to-cell failure events inside custom fire chamber. J. Power Sources 2015, 279, 713–721. [Google Scholar] [CrossRef]
- Hammami, A.; Raymond, N.; Armand, M. Lithium-ion batteries: Runaway risk of forming toxic compounds. Nature 2003, 424, 635–636. [Google Scholar] [CrossRef] [PubMed]
- Roth, E.P.; Crafts, C.C.; Doughty, D.H.; McBreen, J. Advanced Technology Development Program for Lithium-Ion Batteries: Thermal Abuse Performance of 18650 Li-Ion Cells; Sandia Report; Sandia National Laboratories: Albuquerque, NM, USA, 2004.
- Feng, X.; Sun, J.; Ouyang, M.; Wang, F.; He, X.; Lu, L.; Peng, H. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J. Power Sources 2015, 275, 261–273. [Google Scholar] [CrossRef]
- Lopez, C.F.; Jeevarajan, J.A.; Mukherjee, P.P. Experimental analysis of thermal runaway and propagation in lithium-ion battery modules. J. Electrochem. Soc. 2015, 162, A1905–A1915. [Google Scholar] [CrossRef]
- Lamb, J.; Orendorff, C.J.; Steele, L.A.M.; Spangler, S.W. Failure propagation in multi-cell lithium ion battereis. J. Power Sources 2015, 283, 517–523. [Google Scholar] [CrossRef]
- Venugopal, G.; Moore, J.; Howard, J.; Pendalwar, S. Characterization of microporous separators for lithium-ion batteries. J. Power Sources 1999, 77, 34–41. [Google Scholar] [CrossRef]
- Finegan, D.P.; Scheel, M.; Robinson, J.B.; Tjaden, B.; Hunt, I.; Mason, T.J.; Millichamp, J.; Michiel, M.D.; Offer, G.J.; Hinds, G.; et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 2015, 6, 6924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orendorff, C.J. The role of separators in lithium-ion cell safety. Electrochem. Soc. Interf. 2012, 21, 61–65. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, H.; Zhang, J. Lithium-Ion Batteries: Advanced Materials and Technologies; CRC Press: Boca Raton, FL, USA, 2011; ISBN 9781439841280. [Google Scholar]
- Xu, K.; Zhang, S.; Allen, J.L.; Jow, T.R. Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate. J. Electrochem. Soc. 2002, 149, A1079–A1082. [Google Scholar] [CrossRef]
- Xu, K.; Ding, M.S.; Zhang, S.; Allen, J.L.; Jow, T.R. Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: I. Physical and electrochemical properties. J. Electrochem. Soc. 2003, 150, A161–A169. [Google Scholar] [CrossRef]
- Zhang, S.S. A review on electrolyte additives for lithium-ion batteries. J. Power Sources 2006, 162, 1379–1394. [Google Scholar] [CrossRef]
- Choi, J.A.; Sun, Y.K.; Shim, E.G.; Scrosati, B.; Kim, D.W. Effect of 1-butyl-1-methylpyrrolidinium hexafluorophosphate as a flame-retarding additive on the cycling performance and thermal properties of lithium-ion batteries. Electrochim. Acta 2011, 56, 10179–10184. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Sun, J.; Chen, C. Improved thermal stability of lithium ion battery by using cresyl diphenyl phosphate as an electrolyte additive. J. Power Sources 2010, 195, 7457–7461. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Sun, J.; Chen, C. Cresyl diphenyl phosphate effect on the thermal stabilities and electrochemical performances of electrodes in lithium ion battery. J. Power Sources 2011, 196, 5960–5965. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, J.; Yao, X.; Chen, C. 4-Isopropyl phenyl diphenyl phosphate as flame-retardant additive for lithium-ion battery electrolyte. Electrochem. Solid-State Letters 2005, 8, A467–A470. [Google Scholar] [CrossRef]
- Liu, K.; Liu, W.; Qiu, Y.; Kong, B.; Sun, Y.; Chen, Z.; Zhuo, D.; Lin, D.; Cui, Y. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci. Adv. 2017, 3, e1601978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbizzani, C.; Gabrielli, G.; Mastragostino, M. Thermal stability and flammability of electrolytes for lithium-ion batteries. J. Power Sources 2011, 196, 4801–4805. [Google Scholar] [CrossRef]
- Wang, J.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 2018, 3, 22–29. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, J.; Yu, L.; Ren, X.; Engelhard, M.H.; Niu, C.; Lee, H.; Xu, W.; Xiao, J.; Liu, J.; Zhang, J.G. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2018, 2, 1–11. [Google Scholar] [CrossRef]
- Xiang, H.; Xu, H.; Wang, Z.; Chen, C. Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes. J. Power Sources 2007, 173, 562–564. [Google Scholar] [CrossRef]
- Shim, E.G.; Nam, T.H.; Kim, J.G.; Kim, H.S.; Moon, S.I. Diphenyloctyl phosphate as a flame-retardant additive in electrolyte for Li-ion batteries. J. Power Sources 2008, 175, 533–539. [Google Scholar] [CrossRef]
- Lee, C.W.; Venkatachalapathy, R.; Prakash, J.A. novel flame-retardant additive for lithium batteries. Electrochem. Solid-State Lett. 2000, 3, 63–65. [Google Scholar] [CrossRef]
- Yao, X.; Xie, S.; Chen, C.; Wang, Q.; Sun, J.; Li, Y.; Lu, S. Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries. J. Power Sources 2005, 144, 170–175. [Google Scholar] [CrossRef]
- Shim, E.G.; Nam, T.H.; Kim, J.G.; Kim, H.S.; Moon, S.I. Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive. J. Power Sources 2007, 172, 919–924. [Google Scholar] [CrossRef]
- Kim, K.; Ahn, S.; Kim, H.S.; Liu, H.K. Electrochemical and thermal properties of 2, 4, 6-tris (trifluoromethyl)-1, 3, 5-triazine as a flame retardant additive in Li-ion batteries. Electrochim. Acta 2009, 54, 2259–2265. [Google Scholar] [CrossRef]
- Nam, T.H.; Shim, E.G.; Kim, J.G.; Kim, H.S.; Moon, S.I. Diphenyloctyl phosphate and tris (2,2,2-trifluoroethyl) phosphite as flame-retardant additives for Li-ion cell electrolytes at elevated temperature. J. Power Sources 2008, 180, 561–567. [Google Scholar] [CrossRef]
- Rechargeable Batteries for Cellular Telephones; IEEE Standard 1725; IEEE Power Engineering Society Press: New York, NY, USA, 2011.
- Mier, F.A.; Morales, R.; Coultas-McKenney, C.A.; Hargather, M.J.; Ostanek, J. Overcharge and thermal destructive testing of lithium metal oxide and lithium metal phosphate batteries incorporating optical diagnostics. J. Energy Storage 2017, 13, 378–386. [Google Scholar] [CrossRef]
- Chu, A.C.; Gozdz, A.S.; Riley, G.N., Jr.; Hoff, C.M. Battery Tab Location Design and Method of Construction. U.S. Patent US8084158B2, 27 December 2011. [Google Scholar]
- Kaschmitter, J.L.; Martucci, F.L.; Mayer, S.T.; Souh, J.H.; Thompson, S. Cell Cap Assembly Having Frangible Tab Disconnect Mechanism. U.S. Patent 5,609,972, 11 March 1997. [Google Scholar]
- Hua, J.; Yang, J. Mesoporous Lithium-Ion Battery Vented at Both Ends, and Method for Manufacturing Same. W.O. Patent 2,016,008,137, 21 January 2016. [Google Scholar]
- Finegan, D.P.; Darcy, E.; Keyser, M.; Tjaden, B.; Heenan, T.M.M.; Jervis, R.; Bailey, J.J.; Vo, N.T.; Magdysyuk, O.V.; Drakopoulos, M.; et al. Identifying the cause of rupture of Li-ion batteries during thermal runaway. Adv. Sci. 2018, 5, 1700369. [Google Scholar] [CrossRef] [PubMed]
- IEC Standard 62133. Secondary Cells and Batteries Containing Alkaline or Other Non-acid Electrolytes—Safety Requirements for Portable Sealed Secondary Cells, and for Batteries Made from Them, for Use in Portable Applications; IEC Standard 62133: Geneva, Switzerland, 2012. [Google Scholar]
- Josefowitz, W.; Kranz, H.; Macerata, D.; Soczka-Guth, T.; Mettlach, H.; Porcellato, D.; Orsini, F.; Hansson, J. Assessment and Testing of Advanced Energy Storage Systems for Propulsion–European Testing Report. In Proceedings of the 21st Worldwide Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition, Monte Carlo, Monaco, 2–6 April 2005. [Google Scholar]
- National Fire Protection Association. Portable Fire Extinguishers; National Fire Protection Association: Quincy, MA, USA, 2013. [Google Scholar]
- Mikolajczak, C.; Kahn, M.; White, K.; Long, R.T. Lithium-ion Batteries Hazard and Use Assessment; Springer Science & Business Media Press: New York, NY, USA, 2012; ISBN 978-1-4614-3485-6. [Google Scholar]
- Long, R.T.; Blum, A.F.; Bress, T.J.; Cotts, B.R. Best Practices for Emergency Response to Incidents Involving Electric Vehicles Battery Hazards: A Report on Full-Scale Testing Results; National Fire Protection Research Foundation: Quincy, MA, USA, 2013. [Google Scholar]
- Lithium-Ion Battery Car Fires Pose A New Challenge for Firefighters. Available online: http://www.rightinginjustice.com/news/2017/02/06/lithium-ion-battery-car-fires-pose-a-new-challenge-for-firefighters/ (accessed on 6 August 2017).
Abbrev. | Full Name | Ref. |
---|---|---|
BMP-PF6 | 1-Butyl-1-methylpyrrolidinium hexafluorophosphate | [32] |
CDP | Cresyl diphenyl phosphate | [33] |
DMMP | Dimethyl methyl phosphonate | [40] |
DPOF | Diphenyloctyl phosphate | [41] |
HMPN | Hexamethylcyclophosphazene | [29] |
IPPP | 4-Isopropyl phenyl diphenyl phosphate | [35] |
[NP(OCH3)2]3 | Hexamethoxycyclotriphosphazene | [42] |
TEP | Triethyl phosphate | [29] |
TMP | Trimethyl phosphate | [29] |
TMP(a) | Trimethyl phosphate | [43] |
TMP(i) | Trimethyl phosphite | [43] |
TPP | Triphenyl phosphate | [44] |
TTFMT | 2,4,6-Tris(trifluoromethyl)-1,3,5-triazine (TTFMT) | [45] |
TTFP | Tris(2,2,2-trifluoroethyl) phosphite | [46] |
Hazard Level | Description | Classification Criteria and Effect |
---|---|---|
0 | No effect | No effect. No loss of functionality. |
1 | Passive protection activated | No defect; no leakage; no venting, fire, or flame; no rupture; no explosion; no exothermic reaction or thermal runaway. Cell reversibly damaged. Repair of protection device needed. |
2 | Defect/damage | No leakage; no venting, fire, or flame; no rupture; no explosion; no exothermic reaction or thermal runaway. Cell irreversibly damaged. Repair needed. |
3 | Leakage Δmass < 50% | No venting, fire, or flame* no rupture; no explosion. Weight loss <50% of electrolyte weight (electrolyte = solvent + salt). |
4 | Venting Δmass ≥ 50% | No fire or flame*; no rupture; no explosion. Weight loss ≥50% of electrolyte weight (electrolyte = solvent + salt). |
5 | Fire or flame | No rupture; no explosion (i.e., no flying parts). |
6 | Rupture | No explosion, but flying parts of the active mass. |
7 | Explosion | Explosion (i.e., disintegration of the cell). |
Class | Description |
---|---|
A | Fires in ordinary combustible materials, such as wood, cloth, paper, rubber, and many plastics. |
B | Fires in flammable liquids, combustible liquids, petroleum greases, tars, oils, oil-based paints, solvents, lacquers, alcohols, and flammable gases. |
C | Fires that involve energized electrical equipment. |
D | Fires in combustible metals, such as magnesium, titanium, zirconium, sodium, lithium, and potassium. |
K | Fires in cooking appliances that involve combustible cooking media (vegetable or animal oils and fats). |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, L.; Li, C.; Jiang, J.; Pecht, M.G. Li-Ion Battery Fire Hazards and Safety Strategies. Energies 2018, 11, 2191. https://doi.org/10.3390/en11092191
Kong L, Li C, Jiang J, Pecht MG. Li-Ion Battery Fire Hazards and Safety Strategies. Energies. 2018; 11(9):2191. https://doi.org/10.3390/en11092191
Chicago/Turabian StyleKong, Lingxi, Chuan Li, Jiuchun Jiang, and Michael G. Pecht. 2018. "Li-Ion Battery Fire Hazards and Safety Strategies" Energies 11, no. 9: 2191. https://doi.org/10.3390/en11092191
APA StyleKong, L., Li, C., Jiang, J., & Pecht, M. G. (2018). Li-Ion Battery Fire Hazards and Safety Strategies. Energies, 11(9), 2191. https://doi.org/10.3390/en11092191