Mechanical Characterization of Low Permeable Siltstone under Different Reservoir Saturation Conditions: An Experimental Study
Abstract
:1. Introduction
2. Experimental methodology
2.1. Rock Specimens
2.2. Specimen Preparation
2.3. Specimen Saturation
2.4. Testing Procedure
3. Results and Discussion
3.1. Compressive Strength of Siltstone Under Different Fluid Saturation Conditions
3.2. Effect of Fluid Saturation on Tensile Strength of Siltstone
3.3. Effect of Fluid Saturation on Brittle Characteristics of Siltstone
3.4. Effect of Fluid Saturation on Fracture Propagation in Siltstone
3.5. Correlation of Reservoir Rock strength with NaCl Ionic Concentration and its DOS
4. Conclusions
- ➢
- Any type of NaCl ionic solution causes the strength to be reduced, mainly through weakening the bonding between the clay mineral and rock and breaking the solid–solid bonds and creating new weaker solid-liquid bonds. For example, dry specimens exhibited the highest UCS value in testing (61.6 MPa) and full saturation with 10%, 20%, and 25% NaCl caused the strength to be reduced by around 38.9%, 30.5%, and 36.7%, respectively.
- ➢
- Increasing the NaCl concentration in saturation fluid generally enhances the compressive strength of the rock through the NaCl crystallization effect in the pore structure, an excessive amount of NaCl molecules may cause the rock strength to be reduced through the corrosive influence which occurs at high ionic concentrations. For example, according to the test results, there is a strength increment in brine-saturated specimens up to 20% NaCl concentration of the saturation fluid and further increasing the NaCl ionic concentration to 25% causes strength reduction.
- ➢
- Similar to the compressive strength, the tensile strength of siltstone also decreases with NaCl ionic solution saturation, due to the same bond breaking and weakening effects.
- ➢
- However, the rate of strength reduction becomes much smaller after a particular degree of saturation, probably after filling the inter-granular pores. For example, in the test results, there is a high strength reduction in siltstone up to 25% DOS and further increasing the NaCl ionic solution saturation level up to 100% DOS causes the reduction rate to be significantly reduced.
- ➢
- Further, increasing the NaCl ionic concentration at any DOS causes siltstone tensile strength to be reduced, probably due to the interaction of NaCl ions with the siltstone rock matrix or the corrosive influence that is obviously greater at greater ionic concentrations. However, this trend is different to the compressive strength behavior, because the significant influence of NaCl crystals on compressive strength does not affect the tensile strength much due to the different load application. This is quite important for the hydro-fracturing process, as in this process fracture propagation mainly occurs through tensile failure and tensile strength is therefore the governing factor for the fracking process.
- ➢
- Regarding the effect of NaCl ionic solution saturation on the brittle characteristics of siltstone, saturation of siltstone with any NaCl ionic concentration generally causes its ductile properties to be enhanced, and the influence is greater at greater DOS, due to the polymer structure rearrangement which occurs in siltstone with fluid saturation. For example, according to the results, the elastic moduli of dry and saturated specimens vary between 19.33 and 9.55 GPa, and the dry specimens commonly have the highest elastic modulus and any saturation generally causes the E value to decrease. This is however not favorable for the hydro-fracturing process, as ductile rocks need more energy for fracturing, compared to brittle rocks.
- ➢
- However, having very highly concentrated NaCl ionic solution in siltstone causes its brittle properties to be enhanced, perhaps under high salinity concentrations, NaCl crystals occur in pore structure is much harder than low salinity concentrations and therefore the generally expecting its brittle characteristic affects the overall failure behavior of the siltstone. For example, according to the results, when the NaCl concentration is 25%, there is a quite high E value (19.33 GPa) in the tested siltstone for the 100% saturation condition, which is even higher than the E value for the dry condition (16 GPa).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethical approval
Informed Consent
References
- Perera, M.; Ranjith, P.; Choi, S.-K.; Bouazza, A. A parametric study of coal mass and cap rock behaviour and carbon dioxide flow during and after carbon dioxide injection. Fuel 2013, 106, 129–138. [Google Scholar] [CrossRef]
- Perera, M.; Ranjith, P.; Ranathunga, A.; Koay, A.; Zhao, J.; Choi, S. Optimization of enhanced coal-bed methane recovery using numerical simulation. J. Geophys. Eng. 2015, 12, 90. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Guo, B.; Ghalambor, A. Natural Gas Engineering Handbook; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Wasantha, P.; Ranjith, P.; Zhang, Q.; Xu, T. Do joint geometrical properties influence the fracturing behaviour of jointed rock? An investigation through joint orientation. Geomech. Geophys. Geo-Energy Geo-Resour. 2015, 1, 3–14. [Google Scholar] [CrossRef]
- Yang, Y.; Ju, Y.; Sun, Y.; Zhang, D. Numerical study of the stress field during crack growth in porous rocks. Geomech. Geophys. Geo-Energy Geo-Resour. 2015, 1, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Pacala, S.; Socolow, R. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 2004, 305, 968–972. [Google Scholar] [CrossRef]
- Kargbo, D.M.; Wilhelm, R.G.; Campbell, D.J. Natural gas plays in the marcellus shale: Challenges and potential opportunities. Environ. Sci. Technol. 2010, 44, 5679–5684. [Google Scholar] [CrossRef]
- Ahmed, N.A.; Cameron, M. The challenges and possible solutions of horizontal axis wind turbines as a clean energy solution for the future. Renew. Sustain. Energy Rev. 2014, 38, 439–460. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, M.; Al-Bazali, T.; Ong, S.; Chenevert, M.E.; Sharma, M.M.; Clark, D.E. Maintaining the stability of deviated and horizontal wells: Effects of mechanical, chemical and thermal phenomena on well designs. In Proceedings of the International Oil & Gas Conference and Exhibition in China, Beijing, China, 5–7 December 2006; Society of Petroleum Engineers: Richardson, TX, USA, 2006. [Google Scholar]
- Zhang, G.-Q.; Fan, T. A high-stress tri-axial cell with pore pressure for measuring rock properties and simulating hydraulic fracturing. Measurement 2014, 49, 236–245. [Google Scholar] [CrossRef]
- Wanniarachchi, W.; Ranjith, P.; Perera, M.; Lashin, A.; Al Arifi, N.; Li, J. Current opinions on foam-based hydro-fracturing in deep geological reservoirs. Geomech. Geophys. Geo-Energ. Geo-Resour. 2015, 1, 121–134. [Google Scholar] [CrossRef]
- Hoek, E.; Martin, C. Fracture initiation and propagation in intact rock—A review. J. Rock Mech. Geotech. Eng. 2014, 6, 287–300. [Google Scholar] [CrossRef]
- Atkinson, B.K. Fracture Mechanics of Rock; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Hossain, M.; Rahman, M.; Rahman, S. Hydraulic fracture initiation and propagation: Roles of wellbore trajectory, perforation and stress regimes. J. Pet. Sci. Eng. 2000, 27, 129–149. [Google Scholar] [CrossRef]
- Lyu, Q.; Long, X.; Ranjith, P.G.; Tan, J.; Kang, Y. Experimental investigation on the mechanical behaviours of a low-clay shale under water-based fluids. Eng. Geol. 2018, 233, 124–138. [Google Scholar] [CrossRef]
- Lyu, Q.; Long, X.; Ranjith, P.G.; Tan, J.; Kang, Y.; Wang, Z. Experimental investigation on the mechanical properties of a low-clay shale with different adsorption times in sub-/super-critical CO2. Energy 2018, 147, 1288–1298. [Google Scholar] [CrossRef]
- Czanderna, A.; Rao, C.R.; Honig, J. The anatase-rutile transition. Part 1—Kinetics of the transformation of pure anatase. Trans. Faraday Soc. 1958, 54, 1069–1073. [Google Scholar] [CrossRef]
- Fredrich, J.T.; Evans, B.; Wong, T.F. Micromechanics of the brittle to plastic transition in carrara marble. J. Geophys. Res. Solid Earth 1989, 94, 4129–4145. [Google Scholar] [CrossRef]
- Gibb, F.G. High-temperature, very deep, geological disposal: A safer alternative for high-level radioactive waste? Waste Manag. 1999, 19, 207–211. [Google Scholar] [CrossRef]
- Rao, Q.-H.; Wang, Z.; Xie, H.-F.; Xie, Q. Experimental study of mechanical properties of sandstone at high temperature. J. Cent. South Univ. Technol. 2007, 14, 478–483. [Google Scholar] [CrossRef]
- Tiab, D.; Donaldson, E.C. Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties; Gulf Professional Publishing: Houston, TX, USA, 2011. [Google Scholar]
- Dandekar, A.Y. Petroleum Reservoir Rock and Fluid Properties; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Al-Bazali, T.; Zhang, J.; Chenevert, M.E.; Sharma, M.M. Factors controlling the compressive strength and acoustic properties of shales when interacting with water-based fluids. Int. J. Rock Mech. Min. Sci. 2008, 45, 729–738. [Google Scholar] [CrossRef]
- Rathnaweera, T.; Ranjith, P.; Perera, M.; Haque, A.; Lashin, A.; Al Arifi, N.; Chandrasekharam, D.; Yang, S.; Xu, T.; Wang, S. CO2-induced mechanical behaviour of hawkesbury sandstone in the gosford basin: An experimental study. Mater. Sci. Eng. A 2015, 641, 123–137. [Google Scholar] [CrossRef]
- Shukla, R.; Ranjith, P.; Choi, S.; Haque, A.; Yellishetty, M.; Hong, L. Mechanical behaviour of reservoir rock under brine saturation. Rock Mech. Rock Eng. 2013, 46, 83–93. [Google Scholar] [CrossRef]
- Rathnaweera, T.; Ranjith, P.; Perera, M.; Lashin, A.; Al Arifi, N. Non-linear stress–strain behaviour of reservoir rock under brine saturation: An experimental study. Measurement 2015, 71, 56–72. [Google Scholar] [CrossRef]
- Farquhar, S.; Pearce, J.; Dawson, G.; Golab, A.; Sommacal, S.; Kirste, D.; Biddle, D.; Golding, S. A fresh approach to investigating CO2 storage: Experimental CO2-water-rock interactions in a low-salinity reservoir system. Chem. Geol. 2015, 399, 98–122. [Google Scholar] [CrossRef]
- Rathnaweera, T.; Ranjith, P.; Perera, M. Salinity-dependent strength and stress–strain characteristics of reservoir rocks in deep saline aquifers: An experimental study. Fuel 2014, 122, 1–11. [Google Scholar] [CrossRef]
- Nasvi, M.; Ranjith, P.; Sanjayan, J.; Haque, A.; Li, X. Mechanical behaviour of wellbore materials saturated in brine water with different salinity levels. Energy 2014, 66, 239–249. [Google Scholar] [CrossRef]
- Mohsenzadeh, A.; Al-Wahaibi, Y.; Al-Hajri, R.; Jibril, B. Effects of concentration, salinity and injection scenario of ionic liquids analogue in heavy oil recovery enhancement. J. Pet. Sci. Eng. 2015, 133, 114–122. [Google Scholar] [CrossRef]
- ASTM. D3967 Standard test method for splitting tensile strength of intact rock core specimens. In Annual Book of ASTM Standards; American Society for Testing and Materials: West Conshohocken, PA, USA, 2008. [Google Scholar]
- Brady, B.H.; Brown, E.T. Rock Mechanics: For Underground Mining; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Khazanehdari, J.; Sothcott, J. Variation in dynamic elastic shear modulus of sandstone upon fluid saturation and substitution. Geophysics 2003, 68, 472–481. [Google Scholar] [CrossRef]
- Perera, M.; Ranjith, P.; Peter, M. Effects of saturation medium and pressure on strength parameters of latrobe valley brown coal: Carbon dioxide, water and nitrogen saturations. Energy 2011, 36, 6941–6947. [Google Scholar] [CrossRef]
- Dove, P.M. The dissolution kinetics of quartz in sodium chloride solutions at 25 degrees to 300 degrees C. Am. J. Sci. 1994, 294, 665–712. [Google Scholar] [CrossRef]
- Min, F.; Peng, C.; Liu, L. Investigation on hydration layers of fine clay mineral particles in different electrolyte aqueous solutions. Powder Technol. 2015, 283, 368–372. [Google Scholar] [CrossRef]
- Hueckel, T. Chemo-plasticity of clays subjected to stress and flow of a single contaminant. Int. J. Numer. Anal. Methods Geomech. 1997, 21, 43–72. [Google Scholar] [CrossRef]
- Roshan, H.; Oeser, M. A non-isothermal constitutive model for chemically active elastoplastic rocks. Rock Mech. Rock Eng. 2012, 45, 361–374. [Google Scholar] [CrossRef]
- Feng, X.-T.; Chen, S.; Zhou, H. Real-time computerized tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion. Int. J. Rock Mech. Min. Sci. 2004, 41, 181–192. [Google Scholar] [CrossRef]
- Swolfs, H.S. Influence of Pore-Fluid Chemistry and Temperature on Fracture of Sandstone under Confining Pressure; Texas A & M University: College Station, TX, USA, 1971. [Google Scholar]
- Newton, R.C.; Manning, C.E. Quartz solubility in H2O-NaCl and H2O-CO2 solutions at deep crust-upper mantle pressures and temperatures: 2–15 kbar and 500–900 C. Geochim. Cosmochim. Acta 2000, 64, 2993–3005. [Google Scholar] [CrossRef]
- Thompson, J.G.; Uwins, P.J.; Whittaker, A.K.; Mackinnon, I.D. Structural characterisation of kaolinite: NaCl intercalate and its derivatives. Clays Clay Miner. 1992, 40, 369–380. [Google Scholar] [CrossRef]
- Dyke, C.; Dobereiner, L. Evaluating the strength and deformability of sandstones. Q. J. Eng. Geol. Hydrogeol. 1991, 24, 123–134. [Google Scholar] [CrossRef]
- Lockner, D. The Role of Acoustic Emission in the Study of Rock Fracture; International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts; Elsevier: Amsterdam, The Netherlands, 1993; pp. 883–899. [Google Scholar]
- Filipussi, D.; Guzmán, C.; Xargay, H.; Hucailuk, C.; Torres, D. Study of acoustic emission in a compression test of andesite rock. Procedia Mater. Sci. 2015, 9, 292–297. [Google Scholar] [CrossRef]
- Wang, S.; Huang, R.; Ni, P.; Pathegama Gamage, R.; Zhang, M. Fracture behavior of intact rock using acoustic emission: Experimental observation and realistic modeling. ASTM Geotech. Test. J. 2013, 36, 903–914. [Google Scholar] [CrossRef]
- Masuda, K.; Satoh, T.; Nishizawa, O. Ultrasonic transmission and acoustic emission monitoring of injection-induced fracture processes in rock samples. In Proceedings of the 47th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 23–26 June 2013; American Rock Mechanics Association: New York, NY, USA, 2013. [Google Scholar]
- Wasantha, P.; Ranjith, P.; Shao, S. Energy monitoring and analysis during deformation of bedded-sandstone: Use of acoustic emission. Ultrasonics 2014, 54, 217–226. [Google Scholar] [CrossRef]
- Perera, M.; Ranjith, P.; Viete, D. Effects of gaseous and super-critical carbon dioxide saturation on the mechanical properties of bituminous coal from the southern sydney basin. Appl. Energy 2013, 110, 73–81. [Google Scholar] [CrossRef]
NaCl % | DOS (%) | STS (MPa) | UCS (MPa) | Poisson’s Ratio | E (GPa) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Value | Avg. | SD | Value | Avg. | SD | Value | Avg. | SD | Value | Avg. | SD | ||
0 (Dry) | 0 DOS-1 | 7.35 | 7.33 | 0.03 | 60.78 | 61.59 | 0.79 | 0.31 | 0.30 | 0.01 | 16.44 | 16.00 | 0.32 |
0 DOS-2 | 7.35 | 61.32 | 0.29 | 15.68 | |||||||||
0 DOS-3 | 7.30 | 62.66 | 0.30 | 15.87 | |||||||||
10 | 25 DOS-1 | 6.00 | 6.20 | 0.29 | 41.76 | 40.75 | 0.80 | 0.33 | 0.34 | 0.01 | 12.50 | 12.65 | 0.22 |
25 DOS-2 | 6.00 | 40.67 | 0.35 | 12.50 | |||||||||
25 DOS-3 | 6.61 | 39.82 | 0.33 | 12.96 | |||||||||
50 DOS-1 | 5.60 | 5.60 | 38.32 | 40.38 | 1.70 | 0.39 | 0.37 | 0.01 | 15.80 | 15.51 | 0.49 | ||
50 DOS-2 | 5.73 | 0.10 | 40.33 | 0.36 | 15.91 | ||||||||
50 DOS-3 | 5.48 | 42.48 | 0.37 | 14.82 | |||||||||
75 DOS-1 | 5.58 | 5.38 | 0.14 | 42.07 | 39.86 | 1.78 | 0.33 | 0.31 | 0.01 | 15.00 | 14.29 | 0.50 | |
75 DOS-2 | 5.27 | 37.71 | 0.31 | 13.92 | |||||||||
75 DOS-3 | 5.29 | 39.80 | 0.30 | 13.95 | |||||||||
100 DOS-1 | 5.77 | 5.58 | 0.15 | 36.38 | 37.65 | 0.94 | 0.28 | 0.27 | 0.01 | 13.42 | 12.97 | 0.34 | |
100 DOS-2 | 5.56 | 38.62 | 0.27 | 12.62 | |||||||||
100 DOS-3 | 5.40 | 37.94 | 0.26 | 12.86 | |||||||||
20 | 25 DOS-1 | 5.77 | 5.70 | 0.22 | 55.41 | 54.31 | 1.00 | 0.27 | 0.26 | 0.01 | 15.34 | 15.41 | 0.45 |
25 DOS-2 | 5.93 | 52.98 | 0.27 | 14.89 | |||||||||
25 DOS-3 | 5.41 | 54.53 | 0.25 | 15.99 | |||||||||
50 DOS-1 | 5.35 | 5.55 | 0.15 | 51.32 | 53.03 | 1.42 | 0.32 | 0.30 | 0.01 | 13.30 | 14.19 | 0.67 | |
50 DOS-2 | 5.61 | 54.78 | 0.30 | 14.91 | |||||||||
50 DOS-3 | 5.70 | 52.99 | 0.28 | 14.37 | |||||||||
75 DOS-1 | 5.66 | 5.50 | 0.15 | 46.69 | 46.60 | 1.84 | 0.22 | 0.22 | 0.01 | 13.96 | 13.20 | 0.62 | |
75 DOS-2 | 5.30 | 48.81 | 0.21 | 12.43 | |||||||||
75 DOS-3 | 5.54 | 44.30 | 0.24 | 13.21 | |||||||||
100 DOS-1 | 5.68 | 5.51 | 0.16 | 42.98 | 42.80 | 0.80 | 0.30 | 0.31 | 0.01 | 13.30 | 13.75 | 0.60 | |
100 DOS-2 | 5.30 | 43.68 | 0.33 | 14.60 | |||||||||
100 DOS-3 | 5.54 | 41.75 | 0.32 | 13.34 | |||||||||
25 | 25 DOS-1 | 5.42 | 5.43 | 0.09 | 51.35 | 49.25 | 1.57 | 0.28 | 0.29 | 0.01 | 17.73 | 16.63 | 0.78 |
25 DOS-2 | 5.33 | 48.81 | 0.29 | 16.21 | |||||||||
25 DOS-3 | 5.55 | 47.58 | 0.30 | 15.96 | |||||||||
50 DOS-1 | 5.34 | 5.34 | 0.15 | 48.46 | 46.68 | 1.93 | 0.29 | 0.27 | 0.01 | 12.45 | 12.31 | 0.59 | |
50 DOS-2 | 5.15 | 44.00 | 0.27 | 11.53 | |||||||||
50 DOS-3 | 5.53 | 47.58 | 0.26 | 12.96 | |||||||||
75 DOS-1 | 5.02 | 5.17 | 0.21 | 43.76 | 46.76 | 2.12 | 0.37 | 0.37 | 0.01 | 9.99 | 9.55 | 0.35 | |
75 DOS-2 | 5.02 | 48.33 | 0.38 | 9.53 | |||||||||
75 DOS-3 | 5.46 | 48.19 | 0.36 | 9.12 | |||||||||
100 DOS-1 | 4.68 | 4.85 | 0.16 | 37.99 | 39.06 | 1.00 | 0.29 | 0.29 | 0.01 | 18.98 | 19.33 | 0.47 | |
100 DOS-2 | 4.81 | 40.40 | 0.30 | 20.00 | |||||||||
100 DOS-3 | 5.06 | 38.77 | 0.28 | 19.01 |
Class | Description | UCS (MPa) |
---|---|---|
A | Very high strength | >250 |
B | High strength | 100–250 |
C | Moderate strength | 50–100 |
D | Medium strength | 25–50 |
E | Low strength | 5–25 |
F | Very low strength | <5 |
10% NaCl | 20% NaCl | 25% NaCl | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DOS (%) | σcc | σci | σcd | σucs | σcc | σci | σcd | σucs | σcc | σci | σcd | σucs |
0 | 5.3 | 23.8 | 55.8 | 61.3 | 5.3 | 23.8 | 55.8 | 61.3 | 5.3 | 23.8 | 55.8 | 61.3 |
25 | 1.3 | 14 | 40 | 41.5 | 2.4 | 20 | 61 | 65.3 | 9.2 | 30.7 | 57.9 | 59.4 |
50 | 2.5 | 20 | 60 | 61.6 | 2.5 | 18 | 70 | 74 | 3.4 | 12.9 | 47.8 | 48.4 |
75 | 7 | 18 | 46.9 | 48.6 | 12.6 | 18.6 | 43.7 | 46.6 | 5.5 | 13.1 | 41.5 | 43.7 |
100 | 4.3 | 17.6 | 39 | 40.6 | 3.4 | 17.2 | 41.4 | 42.9 | 6.7 | 20.5 | 40 | 68.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanniarachchi, A.; Pathegama Gamage, R.; Lyu, Q.; Perera, S.; Wickramarathne, H.; Rathnaweera, T. Mechanical Characterization of Low Permeable Siltstone under Different Reservoir Saturation Conditions: An Experimental Study. Energies 2019, 12, 14. https://doi.org/10.3390/en12010014
Wanniarachchi A, Pathegama Gamage R, Lyu Q, Perera S, Wickramarathne H, Rathnaweera T. Mechanical Characterization of Low Permeable Siltstone under Different Reservoir Saturation Conditions: An Experimental Study. Energies. 2019; 12(1):14. https://doi.org/10.3390/en12010014
Chicago/Turabian StyleWanniarachchi, Ayal, Ranjith Pathegama Gamage, Qiao Lyu, Samintha Perera, Hiruni Wickramarathne, and Tharaka Rathnaweera. 2019. "Mechanical Characterization of Low Permeable Siltstone under Different Reservoir Saturation Conditions: An Experimental Study" Energies 12, no. 1: 14. https://doi.org/10.3390/en12010014
APA StyleWanniarachchi, A., Pathegama Gamage, R., Lyu, Q., Perera, S., Wickramarathne, H., & Rathnaweera, T. (2019). Mechanical Characterization of Low Permeable Siltstone under Different Reservoir Saturation Conditions: An Experimental Study. Energies, 12(1), 14. https://doi.org/10.3390/en12010014