Optimal Operation of Interprovincial Hydropower System Including Xiluodu and Local Plants in Multiple Recipient Regions
Abstract
:1. Introduction
2. Xiluodu Hydropower Project
3. Problem Formulation
3.1. The Objective Function
3.2. Constraint Conditions
3.2.1. System Constraints
3.2.2. Plant Constraints
3.2.3. Plant Conditions
4. Problem Solution
4.1. Solving the Multi-Objective Optimization
4.2. Solving Minimax Optimization
4.3. Reformulating Nonlinearities of the Hydropower System
4.4. Optimization Method
- Step 1. Set the initial objective function value as positive infinity;
- Step 2. Put the original problem on the list to be solved;
- Step 3. Get one problem from the list. Here, the optimization search will stop until the list is empty;
- Step 4. Generate a convex relaxation of the function included in the current problem and then solve the relaxed convexified model. In this step, several mathematical techniques including convexification, linearization, interval analysis, preprocessing, constraint propagation, and algebraic reformulation are employed;
- Step 5. If there is no feasible solution for the relaxed problem, then go back to Step 3;
- Step 6. If the obtained solution is no smaller than the current objective value , then go back to Step 3;
- Step 7. If this solution of the relaxed problem is not feasible for the current problem, or if the objective values of the two problems are not the same, then go to Step 9. Otherwise, go to Step 8;
- Step 8. Set equal to the calculated objective value if is bigger than it, and then go to back Step 3;
- Step 9. Split the feasible region of the current problem into two parts that represent two new subproblems. Put them both on the list and go back to Step 3.
- The above procedure is a whole solution framework. Details are available from Reference [38].
5. Case Study
5.1. Input Data
5.2. Analysis of the Optimized Operation Schemes
5.3. Comparison to Conventional Optimization Model
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, L.; McPhee, J.; Yeh, W.W. A diversified multiobjective GA for optimizing reservoir rule curves. Adv. Water Resour. 2007, 30, 1082–1093. [Google Scholar] [CrossRef]
- Yu, X.; Sun, H.; Wang, H.; Liu, Z.; Zhao, J.; Zhou, T.; Qin, H. Multi-Objective Sustainable Operation of the Three Gorges Cascaded Hydropower System Using Multi-Swarm Comprehensive Learning Particle Swarm Optimization. Energies 2016, 9, 438. [Google Scholar] [CrossRef]
- Cheng, C.T.; Yan, L.Z.; Mirchi, A.; Madani, K. China’s booming hydropower: System modeling challenges and opportunities. J. Water Resour. Plan. Manag. 2017, 143, 1–5. [Google Scholar] [CrossRef]
- Li, X.Z.; Chen, Z.J.; Fan, X.C. Hydropower development situation and prospects in China. Renew. Sustain. Energy Rev. 2018, 82, 232–239. [Google Scholar] [CrossRef]
- Shen, J.J.; Cheng, C.T.; Zhang, J.; Lu, J.Y. Peak Operation of Cascaded Hydropower Plants Serving Multiple Provinces. Energies 2015, 8, 11295–11314. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.C.; Shu, Y.B.; Ruan, J.J.; Hu, Y. Ultra High Voltage Transmission in China: Developments, Current Status, and Future Prospects. Proc. IEEE 2009, 97, 555–583. [Google Scholar] [CrossRef]
- Shen, J.J.; Cheng, C.T.; Cheng, X.; Lund, R.J. Coordinated operations of large-scale UHVDC hydropower and conventional hydro energies about regional power grid. Energy 2016, 95, 433–446. [Google Scholar] [CrossRef]
- Cheng, C.T.; Cheng, X.; Shen, J.J. Short-term peak shaving operation for multiple power grids with pumped storage power plants. Int. J. Electr. Power Energy Syst. 2015, 67, 570–581. [Google Scholar] [CrossRef]
- Cobian, M.J. Optimal pumped storage operation with interconnected power systems. Power apparatus and systems. IEEE Summer Power Meet. EHV Conf. 1971, PAS-90, 1391–1399. [Google Scholar]
- Shen, J.J.; Cheng, C.T.; Wu, X.Y.; Li, W.D. Optimization of peak loads among multiple provincial power grids under a central dispatching authority. Energy 2014, 74, 494–505. [Google Scholar] [CrossRef]
- Feng, Z.K.; Niu, W.J.; Cheng, C.T.; Zhou, J.Z. Peak shaving operation of hydro-thermal-nuclear plants serving multiple power grids by linear programming. Energy 2017, 135, 210–219. [Google Scholar] [CrossRef]
- Lu, P.; Zhou, J.Z.; Mo, L.; Jiang, B.F.; Wang, C. Method of Peak Operation and Electric Power Inter-Provincial Coordinated Distribution for Cascade Hydropower Plants among Multiple Power Grids. Power Syst. Technol. 2016, 40, 2721–2728. [Google Scholar]
- Norouzi, M.R.; Ahmadi, A.; Nezhad, A.E.; Ghaedi, A. Mixed integer programming of multi-objective security-constrained hydro/thermal unit commitment. Renew. Sustain. Energy Rev. 2014, 29, 911–923. [Google Scholar] [CrossRef]
- Johannesen, A.; Gjelsvik, A.; Fosso, O.B.; Flatabo, N. Optimal short term hydro scheduling including security constraints. IEEE Trans. Power Syst. 1991, 6, 576–583. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, P.; Cheng, L.; Wang, H.; Ming, B.; Gong, W. Deriving operating rules for a large-scale hydro-photovoltaic power system using implicit stochastic optimization. J. Clean. Prod. 2018, 195, 562–572. [Google Scholar] [CrossRef]
- Jurasz, J.; Ciapala, B. Solar–hydro hybrid power station as a way to smooth power output and increase water retention. Sol. Energy 2018, 173, 675–690. [Google Scholar] [CrossRef]
- Kies, A.; Schyska, B.U.; Bremen, L.V. The Effect of Hydro Power on the Optimal Distribution of Wind and Solar Generation Facilities in a Simplified Highly Renewable European Power System. Energy Procedia 2016, 97, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.; Labadie, J.W.; Stitt, S. Dynamic optimal unit commitment and loading in hydropower systems. J. Water Resour. Plan. Manag. 2003, 129, 388–398. [Google Scholar] [CrossRef]
- Zambon, R.C.; Barros, M.T.L.; Lopes, J.E.G.; Barbosa, P.S.F.; Francato, A.L.; Yeh, W.W.-G. Optimization of Large-Scale Hydrothermal System Operation. J. Water Resour. Plan. Manag. 2012, 138, 135–143. [Google Scholar] [CrossRef]
- Catalao, J.P.S.; Pousinho, H.M.I.; Mendes, V.M.F. Hydro energy systems management~in Portugal: Profit-based evaluation of a mixed-integer nonlinear approach. Energy 2011, 36, 500–507. [Google Scholar] [CrossRef]
- Zhao, T.T.G.; Zhao, J.S.; Yang, D.W. Improved dynamic programming for hydropower reservoir operation. J. Water Resour. Plan. Manag. 2014, 140, 365–374. [Google Scholar] [CrossRef]
- Selseth, A.; Braaten, H. Efficient Parallelization of the Stochastic Dual Dynamic Programming Algorithm Applied to Hydropower Scheduling. Energies 2015, 8, 13287–14297. [Google Scholar] [CrossRef]
- Li, X.; Wei, J.H.; Li, T.J.; Wang, G.Q.; Yeh, W.W.G. A parallel dynamic programming algorithm for multi-reservoir system optimization. Adv. Water Resour. 2014, 67, 1–15. [Google Scholar] [CrossRef]
- Feng, Z.K.; Niu, W.J.; Zhou, J.Z.; Cheng, C.T.; Qin, H.; Jiang, Z.Q. Parallel Multi-Objective Genetic Algorithm for Short-Term Economic Environmental Hydrothermal Scheduling. Energies 2017, 10, 163. [Google Scholar] [CrossRef]
- Moeini, R.; Afshar, M.H. Extension of the constrained ant colony optimization algorithms for the optimal operation of multi-reservoir systems. J. Hydroinf. 2003, 15, 155–173. [Google Scholar] [CrossRef]
- Lu, P.; Zhou, J.Z.; Wang, C.; Qiao, Q.; Mo, L. Short-term hydro generation scheduling of Xiluodu and Xiangjiaba cascade hydropower stations using improved binary-real coded bee colony optimization algorithm. Energy Convers. Manag. 2015, 91, 19–31. [Google Scholar] [CrossRef]
- Cheng, C.T.; Wang, S.; Chau, K.W.; Wu, X.Y. Parallel discrete differential dynamic programming for multireservoir operation. Environ. Model. Softw. 2014, 57, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Yeh, W.W. Reservoir Management and Operations Models: A State-of-the-Art Review. Water Resour. Res. 1985, 21, 1797–1818. [Google Scholar] [CrossRef]
- Simonovic, S.P. Reservoir systems analysis; Closing gap between theory and practice. J. Water Resour. Plan. Manag. 1992, 118, 262–280. [Google Scholar] [CrossRef]
- Momoh, J.A.; Adapa, R.; El-Hawary, M.E. A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches. IEEE Trans. Power Syst. 1999, 14, 96–104. [Google Scholar] [CrossRef]
- Labadie, J.W. Optimal Operation of Multireservoir Systems: State-of-the-Art Review. J. Water Resour. Plan. Manag. 2004, 130, 93–111. [Google Scholar] [CrossRef]
- Barros, M.T.L.; Tsai, F.T.C.; Yang, S.L.; Lopes, J.E.G.; Yeh, W.W.G. Optimization of large-scale hydropower system operations. J. Water Resour. Plan. Manag. 2003, 129, 178–188. [Google Scholar] [CrossRef]
- Yeh, W.W.G.; Becker, L. Multiobjective analysis of multireservoir operations. Water Resour. Res. 1982, 18, 1326–1336. [Google Scholar] [CrossRef]
- Scola, L.A.; Takahashi, R.H.C.; Cerqueira, S.A.A.G. Multipurpose water reservoir management: An evolutionary multi-objective optimization approach. Math. Probl. Eng. 2014, 1–14. [Google Scholar] [CrossRef]
- Li, F.F.; Qiu, J. Multi-Objective Reservoir Optimization Balancing Energy Generation and Firm Power. Energies 2015, 8, 6962–6976. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.J.; Cheng, C.T. A hybrid method for multi-objective hydropower system operation. ICE-Water Manag. 2016, 169, 115–127. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attributes Decision Making Methods and Applications; Springer: Berlin, Germany, 1981. [Google Scholar]
- Shen, J.J. Short-Term Optimal Operation for Large-Scale Hydropower Plants; Dalian University of Technology: Dalian, China, 2011. [Google Scholar]
- Wu, X.Y.; Cheng, C.T.; Shen, J.J. A Multi-Objective Short Term Hydropower Scheduling Model for Peak Shaving. Int. J. Electr. Power Energy Syst. 2015, 68, 278–293. [Google Scholar] [CrossRef]
- Borghetti, A.; Ambrosio, C.D.; Lodi, A.; Martello, S. An MILP approach for short-term hydro scheduling and unit commitment with head-dependent reservoir. IEEE Trans. Power Syst. 2008, 23, 1115–1124. [Google Scholar] [CrossRef]
- Gau, C.Y.; Schrage, L.E. Implementation and testing of a branch-and-bound based method for deterministic global optimization: Operations research applications. Front. Glob. Optim. 2004, 145–164. [Google Scholar] [CrossRef]
Installed Capacity (MW) | Regulating Ability | Normal Level (m) | Dead Level (m) | Flood Control Level (m) | Flood Season (Main Flood Season) |
---|---|---|---|---|---|
13,860 | Quarterly | 600.00 | 540.00 | 560.00 | June to October (July to September) |
Hydropower Plant | Regulating Ability | Installed Capacity (MW) | Normal Level (m) | Dead Level (m) | Flood Season (Main Flood Season) |
---|---|---|---|---|---|
Shanxi | Multi-yearly | 200 | 142.00 | 117.00 | March to October (April to June) |
Tankeng | Yearly | 604 | 160.00 | 120.00 | |
Jinshuitan | Yearly | 305 | 184.00 | 164.00 | |
Shitang | Daily | 85.8 | 102.50 | 101.10 | |
Sanxikou | Daily | 99.9 | 18.00 | 17.75 | |
Hunanzhen | Yearly | 320 | 230.00 | 190.00 | |
Huangtankou | Daily | 88 | 115.00 | 114.00 | |
Fengshuba | Yearly | 180 | 166.00 | 128.00 | April to September (May to July) |
Xinfengjiang | Multi-yearly | 335 | 116.00 | 193.00 |
Flood Season (June to October) | Dry Season | ||
---|---|---|---|
ZJPG | GDPG | ZJPG | GDPG |
50% | 50% | 35% | 35% |
Month | The Present Model | Conventional Optimization Model | ||||
---|---|---|---|---|---|---|
Hydropower from XHP | Hydropower from Local Plants | Total Generation | Hydropower from XHP | Hydropower from Local Plants | Total Generation | |
1 | 580 | 1484 | 2064 | 1278 | 227 | 1505 |
2 | 1889 | 175 | 2064 | 1278 | 195 | 1473 |
3 | 1680 | 384 | 2064 | 1278 | 392 | 1670 |
4 | 1640 | 424 | 2064 | 1278 | 684 | 1962 |
5 | 1565 | 499 | 2064 | 1756 | 866 | 2622 |
6 | 4253 | 336 | 4589 | 4147 | 651 | 4798 |
7 | 5695 | 324 | 6019 | 6300 | 534 | 6834 |
8 | 6300 | 187 | 6487 | 6300 | 596 | 6896 |
9 | 6300 | 182 | 6482 | 6300 | 306 | 6606 |
10 | 5714 | 169 | 5883 | 6300 | 169 | 6469 |
11 | 1912 | 152 | 2064 | 2464 | 195 | 2659 |
12 | 1884 | 180 | 2064 | 1557 | 209 | 1766 |
Month | The Present Model | Conventional Optimization Model | ||||
---|---|---|---|---|---|---|
Hydropower from XHP | Hydropower from Local Plants | Total Generation | Hydropower from XHP | Hydropower from Local Plants | Total Generation | |
1 | 1496 | 372 | 1868 | 1278 | 150 | 1428 |
2 | 1452 | 415 | 1867 | 1278 | 177 | 1455 |
3 | 1518 | 350 | 1868 | 1278 | 273 | 1551 |
4 | 1353 | 515 | 1868 | 1278 | 506 | 1784 |
5 | 1653 | 215 | 1868 | 1756 | 515 | 2271 |
6 | 2815 | 442 | 3257 | 4147 | 515 | 4662 |
7 | 6300 | 120 | 6420 | 6300 | 280 | 6580 |
8 | 6300 | 50 | 6350 | 6300 | 140 | 6440 |
9 | 6300 | 120 | 6420 | 6300 | 171 | 6471 |
10 | 6300 | 50 | 6350 | 6300 | 101 | 6401 |
11 | 1805 | 63 | 1868 | 2464 | 57 | 2521 |
12 | 1818 | 50 | 1868 | 1557 | 53 | 1610 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; Zhang, X.; Wang, J.; Cao, R.; Wang, S.; Zhang, J. Optimal Operation of Interprovincial Hydropower System Including Xiluodu and Local Plants in Multiple Recipient Regions. Energies 2019, 12, 144. https://doi.org/10.3390/en12010144
Shen J, Zhang X, Wang J, Cao R, Wang S, Zhang J. Optimal Operation of Interprovincial Hydropower System Including Xiluodu and Local Plants in Multiple Recipient Regions. Energies. 2019; 12(1):144. https://doi.org/10.3390/en12010144
Chicago/Turabian StyleShen, Jianjian, Xiufei Zhang, Jian Wang, Rui Cao, Sen Wang, and Jun Zhang. 2019. "Optimal Operation of Interprovincial Hydropower System Including Xiluodu and Local Plants in Multiple Recipient Regions" Energies 12, no. 1: 144. https://doi.org/10.3390/en12010144
APA StyleShen, J., Zhang, X., Wang, J., Cao, R., Wang, S., & Zhang, J. (2019). Optimal Operation of Interprovincial Hydropower System Including Xiluodu and Local Plants in Multiple Recipient Regions. Energies, 12(1), 144. https://doi.org/10.3390/en12010144