Estimating Air Density Using Observations and Re-Analysis Outputs for Wind Energy Purposes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory
2.2. Data
2.3. Interpolation of Power Curves
2.4. Extrapolation of Power Curves
3. Results
3.1. The Effect of Humidity
3.2. The Effect of a Varying Lapse Rate
3.3. Using Re-Analysis Outputs
3.4. Example
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AEP | annual energy production |
CFSR | climate forecast system re-analysis |
DTU | Technical University of Denmark |
ECMWF | European Centre for Medium-Range Weather Forecasts |
ERA5 | fifth major re-analysis of the European Centre for Medium-Range Weather Forecasts |
IEC | International Electrotechnical Commission |
WAsP | Wind Atlas Analysis and Application Program |
References
- Global Wind Energy Council. Global Wind Energy Report: Annual Market Update 2017; Global Wind Energy Council: Bruxelles, Belgium, 2018. [Google Scholar]
- Petersen, E.L.; Mortensen, N.G.; Landberg, L.; Højstrup, J.; Frank, H.P. Wind Power Meteorology. Part I: Climate and Turbulence. Wind Energy 1998, 22, 2–22. [Google Scholar] [CrossRef]
- Petersen, E.L.; Mortensen, N.G.; Landberg, L.; Højstrup, J.; Frank, H.P. Wind Power Meteorology. Part II: Siting and Models. Wind Energy 1998, 1, 55–72. [Google Scholar] [CrossRef]
- Floors, R.; Enevoldsen, P.; Davis, N.; Arnqvist, J.; Dellwik, E. From lidar scans to roughness maps for wind resource modelling in forested areas. Wind Energy Sci. 2018, 3, 353–370. [Google Scholar] [CrossRef] [Green Version]
- Wind Turbines—Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines; IEC 61400-12-1, Edition 1; IEC–International Electrotechnical Commission: Geneva, Switzerland, 2005.
- Wind Turbines—Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines; IEC 61400-12-1, Edition 2; IEC–International Electrotechnical Commission: Geneva, Switzerland, 2017.
- Troen, I.; Petersen, E.L. European Wind Atlas; Risø National Laboratory: Roskilde, Denmark, 1989; 656p. [Google Scholar]
- windPRO 3.3 User Manual; EMD International: Aalborg, Denmark, 2019.
- Mortensen, N.G. Wind Resource Assessment Using the WAsP Software; Technical University of Denmark: Roskilde, Denmark, 2016; p. 44. [Google Scholar]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.Y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Hersbach, H.; Dee, D. ERA5 reanalysis is in production. ECMWF Newsl. 2016, 147, 1. [Google Scholar]
- Stull, R. Practical Meteorology: An Algebra-based Survey of Atmospheric Science; University of British Columbia: Vancouver, BC, Canada, 2017; 940p. [Google Scholar]
- Picard, A.; Davis, R.S.; Gläser, M.; Fujii, K. Revised formula for the density of moist air (CIPM-2007). Metrologia 2008, 45, 149–155. [Google Scholar] [CrossRef]
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology, 4th ed.; Elsevier Academic Press: Cambridge, MA, USA, 2004; p. 535. [Google Scholar]
- United States Committee on Extension to the Standard Atmosphere. U.S. Standard Atmosphere, 1976; National Oceanic and Amospheric [sic] Administration: For Sale by the Superintendent of Documents, U.S. Government Printing Office: Washington, DC, USA, 1976.
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.Y.; Iredell, M.; et al. NCEP Climate Forecast System Version 2 (CFSv2) Monthly Products; Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory: Boulder, CO, USA, 2012. [Google Scholar] [CrossRef]
- ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=doc (accessed on 28 May 2019).
- DWD Climate Data Center (CDC). Historical Daily Station Observations (Temperature, Pressure, Precipitation, Sunshine Duration, etc.) for Germany. Available online: ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/daily/kl/historical/DESCRIPTION_obsgermany_climate_daily_kl_historical_en.pdf (accessed on 28 May 2019).
- Freydank, E. 150 Jahre Staatliche Wetter-und Klimabeobachtungen in Sachsen: Ergänzungs-und Sondernetze, Messungen in der freien Atmosphäre; Institut für Hydrologie und Meteorologie. Available online: https://katalogbeta.slub-dresden.de/id/0-1496504860/ (accessed on 28 May 2019).
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained; Wiley Online Library: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Svenningsen, L. Proposal of an Improved Power Curve Correction. In Proceedings of the Poster Presented at European Wind Energy Conference, Warsaw, Poland, 20–23 April 2010. [Google Scholar]
- Hudson, S.R.; Brandt, R.E. A Look at the Surface-Based Temperature Inversion on the Antarctic Plateau. J. Clim. 2005, 18, 1673–1696. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
Method | Mean Abs. Error (%) | R |
---|---|---|
WAsP 11 | 0.203 | 0.9975 |
IEC 61400–12–1 | 0.185 | 0.9977 |
WAsP 12 | 0.186 | 0.9977 |
WAsP 12 CFSR | 0.241 | 0.9987 |
WAsP 12 ERA5 | 0.127 | 0.9993 |
WAsP 12 ERA5 L | 0.114 | 0.9994 |
Turbine | [m] | [kg/m3] | [m/s] | Interpol. | Reference Air Density | ||
---|---|---|---|---|---|---|---|
1.12 kg/m | 1.15 kg/m | 1.225 kg/m | |||||
T4 | 670 | 1.134 | 8.81 | 6716 | 6664 (−0.77%) | 6773 (+0.85%) | 7043 (+4.87%) |
T8 | 544 | 1.148 | 8.31 | 6416 | 6316 (−1.56%) | 6423 (+0.11%) | 6692 (+4.30%) |
All | 51,348 | 50,782 (−1.10%) | 51,638 (+0.56%) | 53,782 (+4.74%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Floors, R.; Nielsen, M. Estimating Air Density Using Observations and Re-Analysis Outputs for Wind Energy Purposes. Energies 2019, 12, 2038. https://doi.org/10.3390/en12112038
Floors R, Nielsen M. Estimating Air Density Using Observations and Re-Analysis Outputs for Wind Energy Purposes. Energies. 2019; 12(11):2038. https://doi.org/10.3390/en12112038
Chicago/Turabian StyleFloors, Rogier, and Morten Nielsen. 2019. "Estimating Air Density Using Observations and Re-Analysis Outputs for Wind Energy Purposes" Energies 12, no. 11: 2038. https://doi.org/10.3390/en12112038
APA StyleFloors, R., & Nielsen, M. (2019). Estimating Air Density Using Observations and Re-Analysis Outputs for Wind Energy Purposes. Energies, 12(11), 2038. https://doi.org/10.3390/en12112038