Capturing Flow Energy from Ocean and Wind
Abstract
:1. Introduction
2. Mechanisms of Energy Harvesting in Flow Environment
2.1. Electromagnetic Energy Harvesting
2.2. Triboelectric Nanogenerators
2.3. Piezoelectric Energy Harvesting
2.4. Other Energy Conversion Mechanisms
3. Wind Energy Harvester
3.1. Large-Scale Wind Energy Harvesters
3.2. Miniature Wind Energy Harvesters
4. Liquid Flow Energy Harvester
4.1. Large- and Medium-Scale Energy Harvesters of Liquid Flow
4.2. Miniature Energy Harvesters of Liquid Flow
4.3. Network-Based Large-Scale Blue Energy Harvesting
5. Summary of the Current Situation and Problems
- (a)
- Unstable energy harvesting efficiency;
- (b)
- Huge offshore equipment, expensive manufacturing, transportation, and maintenance;
- (c)
- Difficulty of integrating into the power grid.
6. Future Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Bose, B.K. Global warming: Energy, environmental pollution, and the impact of power electronics. IEEE Ind. Electron. Mag. 2010, 4, 6–17. [Google Scholar] [CrossRef]
- Lazarus, M.; Greber, L.; Hall, J.; Bartels, C.; Bernow, S.; Hansen, E.; Raskin, P.; Von Hippel, D. Towards a Fossil Free Energy Future. The Next Energy Transition; Greenpeace International: Amsterdam, The Netherlands, 1993. [Google Scholar]
- World Energy Outlook 2018—The Gold Standard of Energy Analysis; International Energy Agency, 2018. Available online: https://www.iea.org/weo2018/scenarios/ (accessed on 15 February 2019).
- Zinkle, S.J.; Was, G. Materials challenges in nuclear energy. J. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Chou, S.; Wang, R.; Fane, A.G. Robust and high performance hollow fiber membranes for energy harvesting from salinity gradients by pressure retarded osmosis. J. Membr. Sci. 2013, 448, 44–54. [Google Scholar] [CrossRef]
- Han, G.; Zhang, S.; Li, X.; Chung, T.-S. High performance thin film composite pressure retarded osmosis (pro) membranes for renewable salinity-gradient energy generation. J. Membr. Sci. 2013, 440, 108–121. [Google Scholar] [CrossRef]
- Polman, A.; Knight, M.; Garnett, E.C.; Ehrler, B.; Sinke, W.C. Photovoltaic materials: Present efficiencies and future challenges. J. Sci. 2016, 352, aad4424. [Google Scholar] [CrossRef] [PubMed]
- Walwyn, D.R.; Brent, A.C. Renewable energy gathers steam in south africa. J. Renew. Sustain. Energy Rev. 2015, 41, 390–401. [Google Scholar] [CrossRef]
- Soerensen, H.C.; Weinstein, A. Ocean energy: Position paper for IPCC. In Proceedings of the IPCC Scoping Conference on Renewable Energy, Lübeck, Germany, 20–25 January 2008. [Google Scholar]
- What Is Wind? Available online: https://web.archive.org/web/20110304181329/http://www.bwea.com/edu/wind.html (accessed on 15 February 2019).
- Hannon, M.J.; Griffiths, J.; Vantoch-Wood, A. World Energy Resources 2016; World Energy Counsil: London, UK, 2016; pp. 32–34. [Google Scholar]
- Wang, Q.; Ping, P.; Zhao, X. Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Nie, Y.; Niu, D. Pollution problems caused by waste battery and the countermeasure for waste battery management. Chin. J. Power Sources 2000, 24, 363–365. [Google Scholar]
- Marsic, V.; Zhu, M.; Williams, S. Design and implementation of a wireless sensor communication system with low power consumption for energy harvesting technology. In Proceedings of the 19th Telecommunications Forum (TELEFOR), Belgrade, Serbia, 22–24 November 2011; pp. 607–610. [Google Scholar]
- Boisseau, S.; Despesse, G.; Ahmed, B. Electrostatic Conversion for Vibration Energy Harvesting. Physics 2012, 6044, 456–472. [Google Scholar] [CrossRef]
- Gadonneix, P. Survey of Energy Resources—World Energy Council; Elsevier International: London, UK, 2009. [Google Scholar]
- Frigaard, P.B.; Kofoed, J.P.; Knapp, W. Wave Dragon wave power plant using low head turbines. In Proceedings of the Hidroenergia 04: International Conference and Exhibition on Small Hydropower, Falkenberg, Sweden, 17–19 June 2004. [Google Scholar]
- Weinstein, L.A.; Cacan, M.R.; So, P.; Wright, P. Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows. Smart Mater. Struct. 2012, 21, 045003. [Google Scholar] [CrossRef]
- Gao, X.; Shih, W.-H.; Shih, W.Y. Flow energy harvesting using piezoelectric cantilevers with cylindrical extension. IEEE Trans. Ind. Electron. 2013, 60, 1116–1118. [Google Scholar] [CrossRef]
- Spreemann, D.; Folkmer, B.; Manoli, Y. Comparative study of electromagnetic coupling architectures for vibration energy harvesting devices. In Proceedings of the PowerMEMS 2008+ microEMS2008, Sendai, Japan, 9–12 November 2008; pp. 257–260. [Google Scholar]
- Yang, W.; Chen, J.; Zhu, G.; Wen, X.; Bai, P.; Su, Y.; Lin, Y.; Wang, Z. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880–886. [Google Scholar] [CrossRef]
- Erber, T. High-energy electromagnetic conversion processes in intense magnetic fields. Rev. Mod. Phys. 1966, 38, 626. [Google Scholar] [CrossRef]
- Dwari, S.; Parsa, L. An efficient AC–DC step-up converter for low-voltage energy harvesting. IEEE Trans. Power Electron. 2010, 25, 2188–2199. [Google Scholar] [CrossRef]
- Matsusaka, S.; Maruyama, H.; Matsuyama, T.; Ghadiri, M. Triboelectric charging of powders: A review. Chem. Eng. Sci. 2010, 65, 5781–5807. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82. [Google Scholar] [CrossRef]
- Zi, Y.; Wang, Z.L. Nanogenerators: An emerging technology towards nanoenergy. APL Mater. 2017, 5, 074103. [Google Scholar] [CrossRef] [Green Version]
- Fan, F.-R.; Tian, Z.-Q.; Wang, Z.L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Curie, J.; Curie, P. Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bull. Minéral. 1880, 3, 90–93. [Google Scholar] [CrossRef]
- Curie, J.; Curie, P. Contractions and expansions produced by voltages in hemihedral crystals with inclined faces. C. R. 1881, 93, 1137–1140. [Google Scholar]
- Voigt, W. Lehrbuch der Kristallphysik; B. G. Teubner: Berlin, Germany, 1910. [Google Scholar]
- Jaffe, B. Piezoelectric Ceramics; Elsevier: Amsterdam, The Netherlands, 2012; Volume 3. [Google Scholar]
- Kim, H.S.; Kim, J.-H.; Kim, J. A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 2011, 12, 1129–1141. [Google Scholar] [CrossRef]
- Sodano, H.A.; Inman, D.J.; Park, G. A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 2004, 36, 197–206. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, S.; Zu, J.; Inman, D. High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule 2018, 2, 642–697. [Google Scholar] [CrossRef] [Green Version]
- Jbaily, A.; Yeung, R.W. Piezoelectric devices for ocean energy: A brief survey. J. Ocean Eng. Mar. Energy 2015, 1, 101–118. [Google Scholar] [CrossRef]
- Tichý, J.; Erhart, J.; Kittinger, E.; Prívratská, J. Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Nowakowska, H.; Lackowski, M.; Ochrymiuk, T.; Szwaba, R. Novel Electrostatic Wind Energy Converter: An Overview. Task Q. 2015, 19, 207–218. [Google Scholar]
- Yin, J.; Li, X.; Yu, J.; Zhang, Z.; Zhou, J.; Guo, W. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 2014, 9, 378. [Google Scholar] [CrossRef] [PubMed]
- Fthenakis, V.; Kim, H.C. Land use and electricity generation: A life-cycle analysis. Renew. Sustain. Energy Rev. 2009, 13, 1465–1474. [Google Scholar] [CrossRef] [Green Version]
- Gasch, R.; Twele, J. Windkraftanlagen: Grundlagen, Entwurf, Planung und Betrieb; Springer: Berlin, Germany, 2010. [Google Scholar]
- Esteban, M.D.; Diez, J.J.; López, J.S.; Negro, V. Why offshore wind energy? Renew. Energy 2011, 36, 444–450. [Google Scholar] [CrossRef] [Green Version]
- MARKET FORECASTS: Market Forecast for 2018-2022-840GW by 2022. Available online: https://gwec.net/global-figures/market-forecast-2012-2016/ (accessed on 13 February 2019).
- Global Wind Energy Outlook 2014; GWEC: Istanbul, Turkey, 2014.
- Weimer, M.A.; Paing, T.S.; Zane, R.A. Remote area wind energy harvesting for low-power autonomous sensors. In Proceedings of the 37th IEEE Power Electronics Specialists Conference, Jeju, Korea, 18–22 June 2006; pp. 1–5. [Google Scholar]
- Takahashi, T.; Suzuki, M.; Nishida, T.; Yoshikawa, Y.; Aoyagi, S. Milliwatt order vertical vibratory energy harvesting using electret and ferroelectric—Discharge does not occur with small gap and only one wiring is required. In Proceedings of the 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, 29 January–2 February 2012; pp. 1265–1268. [Google Scholar]
- Muljadi, E.; Butterfield, C.P. Pitch-controlled variable-speed wind turbine generation. IEEE Trans. Ind. Appl. 2001, 37, 240–246. [Google Scholar] [CrossRef]
- Jian, L.; Chau, K.; Jiang, J. A magnetic-geared outer-rotor permanent-magnet brushless machine for wind power generation. IEEE Trans. Ind. Appl. 2009, 45, 954–962. [Google Scholar] [CrossRef]
- Snyder, B.; Kaiser, M.J. Ecological and economic cost-benefit analysis of offshore wind energy. Renew. Energy 2009, 34, 1567–1578. [Google Scholar] [CrossRef]
- Heier, S. Grid Integration of Wind Energy: Onshore and Offshore Conversion Systems; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Chen, J.; Zhang, W.; Chen, B.; Ma, Y. Improved vector control of brushless doubly fed induction generator under unbalanced grid conditions for offshore wind power generation. IEEE Trans. Energy Convers. 2016, 31, 293–302. [Google Scholar] [CrossRef]
- Rasani, M.R.; Tu, J.Y.; Mohamed, N.A.N. Numerical Investigation of Flow-Induced Vibration of a Cantilever Beam for a Piezoelectric Energy Harvester. Appl. Mech. Mater. 2012, 225, 97–102. [Google Scholar] [CrossRef]
- Patel, R.; McWilliam, S.; Popov, A. Optimization of piezoelectric cantilever energy harvesters including non-linear effects. Smart Mater. Struct. 2014, 23, 085002. [Google Scholar] [CrossRef]
- Wang, S.; Mu, X.; Yang, Y.; Sun, C.; Gu, A.Y.; Wang, Z.L. Flow-Driven Triboelectric Generator for Directly Powering a Wireless Sensor Node. Adv. Mater. 2015, 27, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Mu, X.; Wang, X.; Gu, A.Y.; Wang, Z.L.; Yang, Y. Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano 2015, 9, 9554–9563. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, S.; Dardel, M.; Pashaei, M.H.; Alashti, R.A. Energy harvesting from limit cycle oscillation of a cantilever plate in low subsonic flow by ionic polymer metal composite. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2014, 229, 814–836. [Google Scholar] [CrossRef]
- Hobeck, J.; Inman, D. Energy Harvesting from Dual Cantilever Flutter. In Proceedings of the ISVCS10, 10th International Symposium on Vibrations of Continuous Systems, Estes Park, CO, USA, 11–15 August 1997. [Google Scholar]
- Wang, X.; Wang, S.; Yang, Y.; Wang, Z.L. Hybridized electromagnetic–triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors. ACS Nano 2015, 9, 4553–4562. [Google Scholar] [CrossRef]
- Song, J.; Hu, G.; Tse, K.T.; Li, S.W.; Kwok, K.C.S. Performance of a circular cylinder piezoelectric wind energy harvester fitted with a splitter plate. Appl. Phys. Lett. 2017, 111, 223903. [Google Scholar] [CrossRef]
- Onoue, K.; Song, A.; Strom, B.; Breuer, K.S. Large amplitude flow-induced oscillations and energy harvesting using a cyber-physical pitching plate. J. Fluids Struct. 2015, 55, 262–275. [Google Scholar] [CrossRef]
- Djairam, D.; Hubacz, A.; Morshuis, P.; Marijnisen, J.; Smit, J. The development of an electrostatic wind energy converter (EWICON). In Proceedings of the 2005 International Conference on Future Power Systems, Amsterdam, The Netherlands, 16–18 November 2005; p. 4. [Google Scholar]
- Oceans & Coasts-NOAA’s National Ocean Service Is Positioning America’s Coastal Communities for the Future. Available online: https://www.noaa.gov/oceans-coasts (accessed on 25 January 2019).
- Salter, S.H. Wave power. Nature 1974, 249, 720–724. [Google Scholar] [CrossRef]
- Xie, X.D.; Wang, Q.; Wu, N. Energy harvesting from transverse ocean waves by a piezoelectric plate. Int. J. Eng. Sci. 2014, 81, 41–48. [Google Scholar] [CrossRef]
- Wu, N.; Wang, Q.; Xie, X. Ocean wave energy harvesting with a piezoelectric coupled buoy structure. Appl. Ocean Res. 2015, 50, 110–118. [Google Scholar] [CrossRef]
- Viet, N.V.; Xie, X.D.; Liew, K.M.; Banthia, N.; Wang, Q. Energy harvesting from ocean waves by a floating energy harvester. Energy 2016, 112, 1219–1226. [Google Scholar] [CrossRef]
- Zhu, H.; Gao, Y. Vortex induced vibration response and energy harvesting of a marine riser attached by a free-to-rotate impeller. Energy 2017, 134, 532–544. [Google Scholar] [CrossRef]
- Orazov, B.; O’Reilly, O.M.; Savaş, Ö. On the dynamics of a novel ocean wave energy converter. J. Sound Vib. 2010, 329, 5058–5069. [Google Scholar] [CrossRef]
- Vasquez, R.E.; Crane, C.D.; Correa, J.C. Analysis of a Planar Tensegrity Mechanism for Ocean Wave Energy Harvesting. J. Mech. Robot. 2014, 6, 1942–4302. [Google Scholar] [CrossRef]
- Xie, X.D.; Wang, Q.; Wu, N. Potential of a piezoelectric energy harvester from sea waves. J. Sound Vib. 2014, 333, 1421–1429. [Google Scholar] [CrossRef]
- Gemme, D.A.; Bastien, S.P.; Raymond, B.; Sepe, J.; Montgomery, J.; Grilli, S.T.; Grilli, A. Experimental testing and model validation for ocean wave energy harvesting buoys. In Proceedings of the 2013 IEEE Energy Conversion Congress & Exposition (ECCE), Denver, CO, USA, 15–19 September 2013; pp. 337–343. [Google Scholar]
- Bastien, S.P.; Raymond, B.; Sepe, J.; Grilli, A.R.; Grilli, S.T.; Spaulding, M.L. Ocean wave energy harvesting buoy for sensors. In Proceedings of the Energy Conversion Congress & Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 3718–3725. [Google Scholar]
- Luan, H.; Onar, O.C.; Khaligh, A. Dynamic Modeling and Optimum Load Control of a PM Linear Generator for Ocean Wave Energy Harvesting Application. At. Energy 2009, 107, 418–423. [Google Scholar]
- Nabavi, S.F.; Farshidianfar, A.; Afsharfard, A. Novel piezoelectric-based ocean wave energy harvesting from offshore buoys. Appl. Ocean Res. 2018, 76, 174–183. [Google Scholar] [CrossRef]
- Akcabay, D.T.; Young, Y.L. Hydroelastic response and energy harvesting potential of flexible piezoelectric beams in viscous flow. Phys. Fluids 2012, 24, 054106. [Google Scholar] [CrossRef]
- Song, R.; Shan, X.; Lv, F.; Li, J.; Xie, T. A Novel Piezoelectric Energy Harvester Using the Macro Fiber Composite Cantilever with a Bicylinder in Water. Appl. Sci. 2015, 5, 2076–3417. [Google Scholar] [CrossRef]
- Friswell, M.I.; Ali, S.F.; Bilgen, O.; Adhikari, S.; Lees, A.W.; Litak, G. Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass. J. Intell. Mater. Syst. Struct. 2012, 23, 1505–1521. [Google Scholar] [CrossRef]
- Cellini, F.; Cha, Y.; Porfiri, M. Energy harvesting from fluid-induced buckling of ionic polymer metal composites. J. Intell. Mater. Syst. Struct. 2013, 25, 1496–1510. [Google Scholar] [CrossRef]
- Cheng, G.; Lin, Z.-H.; Du, Z.-l.; Wang, Z.L. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano 2014, 8, 1932–1939. [Google Scholar] [CrossRef]
- Tang, W.; Han, Y.; Han, C.B.; Gao, C.Z.; Cao, X.; Wang, Z.L. Self-Powered Water Splitting Using Flowing Kinetic Energy. Adv. Mater. 2015, 27, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Shan, X.; Lv, F.; Xie, T. A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension. Ceram. Int. 2015, 41, S768–S773. [Google Scholar] [CrossRef]
- Shan, X.; Song, R.; Fan, M.; Xie, T. Energy-Harvesting Performances of Two Tandem Piezoelectric Energy Harvesters with Cylinders in Water. Appl. Sci. 2016, 6, 230. [Google Scholar] [CrossRef]
- Shan, X.; Deng, J.; Song, R.; Xie, T. A Piezoelectric Energy Harvester with Bending–Torsion Vibration in Low-Speed Water. Appl. Sci. 2017, 7, 116. [Google Scholar] [CrossRef]
- Shan, X.; Song, R.; Liu, B.; Xie, T. Novel energy harvesting: A macro fiber composite piezoelectric energy harvester in the water vortex. Ceram. Int. 2015, 41, S763–S767. [Google Scholar] [CrossRef]
- Xu, Z.; Shan, X.; Yang, H.; Wang, W.; Xie, T. Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms. Micromachines 2017, 8, 189. [Google Scholar] [CrossRef]
- Ahsan, N.; Akhtar, I. Computational analysis of vortex-induced vibration and its potential in energy harvesting. In Proceedings of the 12th International Bhurban Conference on Applied Sciences & Technology, Islamabad, Pakistan, 13–17 January 2015; pp. 437–443. [Google Scholar]
- Kaplan, M.A. Apparatus for Harvesting Energy from Flow-Induced Oscillations and Method for the Same. U.S. Patent 8,258,644, 4 September 2012. [Google Scholar]
- Kaplan, M.A. Device and Method for Harvesting Energy from Flow-Induced Oscillations. U.S. Patent 8,519,554, 27 August 2013. [Google Scholar]
- Pabon, J.A.; Bettin, G. Energy Harvesting from Flow-Induced Vibrations. U.S. Patent 8,604,634, 10 December 2013. [Google Scholar]
- Liu, W.P.; Waters, R.L.; Jazo, H.F. Energy Harvesting System Using Flow-Induced Vibrations. U.S. Patent 8,648,480, 11 February 2014. [Google Scholar]
- Wang, Z.L. New wave power. Nature 2017, 542, 159–160. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, J.; Li, Z.; Fan, X.; Zi, Y.; Jing, Q.; Guo, H.; Wen, Z.; Pradel, K.C.; Niu, S. Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano 2015, 9, 3324–3331. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23. [Google Scholar] [CrossRef]
- Li, X.; Tao, J.; Wang, X.; Zhu, J.; Pan, C.; Wang, Z.L. Networks of High Performance Triboelectric Nanogenerators Based on Liquid–Solid Interface Contact Electrification for Harvesting Low-Frequency Blue Energy. Adv. Energy Mater. 2018, 8, 1800705. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, T.; Lin, P.; Shao, J.J.; He, C.; Zhong, W.; Chen, X.Y.; Wang, Z.L. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 2018, 12, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Jiang, T.; Liu, G.; Xiao, T.; Xu, L.; Li, W.; Xi, F.; Zhang, C.; Wang, Z.L. Triboelectric Nanogenerator Networks Integrated with Power Management Module for Water Wave Energy Harvesting. Adv. Funct. Mater. 2019, 1807241. [Google Scholar] [CrossRef]
- Tan, J.; Duan, J.; Zhao, Y.; He, B.; Tang, Q. Generators to harvest ocean wave energy through electrokinetic principle. Nano Energy 2018, 48, 128–133. [Google Scholar] [CrossRef]
- Priya, S.; Inman, D.J. Energy Harvesting Technologies; Springer: Berlin, Germany, 2009; Volume 21. [Google Scholar]
- Wang, J.; Zhou, S.; Zhang, Z.; Yurchenko, D. High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Convers. Manag. 2019, 181, 645–652. [Google Scholar] [CrossRef]
- Wang, J.; Tang, L.; Zhao, L.; Zhang, Z. Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies. Energy 2019, 172, 1066–1078. [Google Scholar] [CrossRef]
Piezoelectric | Author | Hobeck | Jamshidi | Gao | Weinstein | Song | Xie | Wu | Viet | Cellini | Song | Shan |
Year & Ref. | 2015 [56] | 2014 [55] | 2013 [19] | 2012 [18] | 2017 [58] | 2014 [63] | 2015 [64] | 2016 [65] | 2013 [77] | 2015 [80] | 2016 [81] | |
Size | 433.2 mm3 # | 48.26 mm3 # | 0.15 m | 115.2 cm2 | 17.2 m 8.6 m | 20 m | 0.5 m2 (block) | 1600 mm2 # | ||||
Proof mass (kg) | 1.126 g # | |||||||||||
Output power/voltage | 22.5 uW* | 1.75 mW | 0.5 V * | 3 mW | 12 V | 30 W | 24 W | 103 W | 10−12–10−9 W | 84.49 μW | 533 µW | |
Power density | 1.2 W/m2 | 60.35 mW/m2 | ||||||||||
Flow velocity (m/s) | 11 ^ | 60 ^ | 5.2 ^ | 5 ^ | 0–7 | 0.23–0.54 | 0.2–1 | 0.412 ^ | ||||
Environment | Air | Subsonic air | Air/fluid | Air | Air | Ocean | Ocean | Ocean | Fluid | Fluid | Fluid | |
Application target | Air conditioner | High speed | Deep sea current | wave | Deep ocean | Directional current | Directional current | Directional current | ||||
Electromagnetic | Author | Salter | Frigaard | Vasquez | Gemme | Onoue | Zhu | Luan | Orazov | Ahsan | Shan | Shan |
Year & Ref. | 1974 [62] | 2004 [17] | 2014 [68] | 2013 [70] | 2015 [59] | 2017 [66] | 2009 [72] | 2010 [67] | 2015 [85] | 2015 [83] | 2017 [82] | |
Size | Bigger than a person | 1.22 m | 2.5 m | |||||||||
Proof mass (kg) | 2.37 × 105 | |||||||||||
Output Power/Density | 18.2 kW | 1–10 W | 0.07–283.27 W/m | 2.5 W | 0.9849 W | 10−4–10−3 W | 0.3978 mW | |||||
Power density | 1.1 mW/m2 | |||||||||||
Flow velocity(m/s) | 10–25 | 0.1–1.6 | 0.2–1 | 0.2–1 | ||||||||
Environment | Ocean | Ocean | Ocean | Ocean | Air | Ocean | Ocean | Ocean | Fluid | Fluid | Fluid | |
Application target | Wave | Wave | Wave | Wave | Directional current | Conduit | Wave | Wave | Directional current | Directional current | Directional current |
Triboelectric | Author | Wang S. | Wang S. | Wang X. | Tang | Cheng | Li | Xu | Liang |
Year & Ref. | 2014 [53] | 2015 [54] | 2015 [57] | 2014 [79] | 2014 [78] | 2018 [93] | 2018 [94] | 2019 [95] | |
Size | 22 × 10 × 67 mm3 # | 125 × 10 × 1.6 mm3 # | 6.7 × 4.5 × 2 cm3 | 80 cm 2 | 4 × 4 array 22.5 × 22.5 cm 2 | 2 × 1 × 1 cm 3 # | |||
Proof mass | 42.3 g | ||||||||
Main materials | PTFE and Kapton Al (electrode) | PTFE and Kapton Copper (electrode) | PTFE and Kapton Copper (electrode) | Kapton, Copper and Gold | PMMA, PTFE, Copper and PET | Water, PTFE and Acrylic | Polystyrene, Silicone rubber, POM particle, UV treated silicone rubber, Silver-Copper | Kapton, Copper, Acrylic and Spring | |
Output | 400 V (open-circuit) 60 A (short-circuit) 3.7 mW | 3.5 mW + 1.8 mW (TENG+EMG, hybrid) | 3.8 mJ of energy can be used in 65 min 4.5 V | 72 V + 102 V (open-circuit) 12.9 μA + 3.8 μA (short-circuit) (water TENGs + disk TENGs) | 300 V (open-circuit) 290 μA (short-circuit), | 1780 V (open-circuit) 1.8 μA (short-circuit) | 253 V and 78μA 4.31 mW | ||
Resistance | 3 MΩ | 2.3 MΩ | 52.88 MΩ | 3.3 MΩ | |||||
Power density | 9 kW/m3 ^ | 8.8 mW/g + 0.3mW/g 14.6 kW/m3 + 0.4 kW/m3 | 0.71 W/m3 | 3.33 W/m3 | |||||
Velocity/Flux | 7.6 m/s | 18 m/s | 54 mL/s (flux) | ||||||
Environment | Air flow | Air flow | Air flow | Water flow | Tap water flow | Ocean | Ocean | Ocean | |
Application target | Wireless sensor nodes | Temperature sensor | break down water molecules | Ocean network | Ocean network | Ocean network |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.; Yang, Z.; Shan, X.; Sun, Y.; Xie, T.; Zi, Y. Capturing Flow Energy from Ocean and Wind. Energies 2019, 12, 2184. https://doi.org/10.3390/en12112184
Gong Y, Yang Z, Shan X, Sun Y, Xie T, Zi Y. Capturing Flow Energy from Ocean and Wind. Energies. 2019; 12(11):2184. https://doi.org/10.3390/en12112184
Chicago/Turabian StyleGong, Ying, Zhengbao Yang, Xiaobiao Shan, Yubiao Sun, Tao Xie, and Yunlong Zi. 2019. "Capturing Flow Energy from Ocean and Wind" Energies 12, no. 11: 2184. https://doi.org/10.3390/en12112184
APA StyleGong, Y., Yang, Z., Shan, X., Sun, Y., Xie, T., & Zi, Y. (2019). Capturing Flow Energy from Ocean and Wind. Energies, 12(11), 2184. https://doi.org/10.3390/en12112184