A Review of Gas Injection in Shale Reservoirs: Enhanced Oil/Gas Recovery Approaches and Greenhouse Gas Control
Abstract
:1. Introduction
2. Shale Oil Reservoirs
2.1. Enhanced Oil Recovery Methods
2.1.1. Huff-N-Puff Gas Injection Performance Evaluation
Sensitivity Analysis
2.1.2. Gas Flooding Performance Evaluation
2.1.3. Gas Injection Mechanisms
2.1.4. Field Pilots
3. Shale Gas Reservoir
3.1. Enhanced Gas Recovery (EGR) Methods
3.1.1. Physio-Chemical Properties Measurements
3.1.2. Field-Scale Simulation Study
3.2. Gas Injection-Enhanced Recovery Mechanisms
3.3. CO2 Injection Field Pilots
4. Shale Condensate Reservoirs
4.1. Distribution and Reserves
4.2. Enhanced Recovery Methods
4.2.1. Gas Flooding
4.2.2. Huff-N-Puff Gas Injection
5. Greenhouse Gas Control
6. Conclusions and Final Remarks
Conflicts of Interest
Nomenclature
binary diffusion coefficient between component i and j [cm2/s] | |
diffusion coefficient of component i in phase k [cm2/s] | |
effective diffusion coefficient in a porous media [cm2/s] | |
dispersivity coefficient of component i in the phase k [cm2/s] | |
molecular weight of component i [g/mol] | |
the molecular weight of solvent [g/mol] | |
critical pressure of component i [atm] | |
universal gas constant [cm3·atm/(K·mol)] | |
saturation of phase k | |
temperature [K] | |
critical temperature of component i [K] | |
Darcy’s flow velocity [cm/s] | |
critical volume of component i [cm3/mol] | |
partial molar volume of component i at the boiling point [cm3/mol] | |
mole fraction of component i in phase k | |
dispersivity of phase k in the three directions [cm] | |
porosity | |
viscosity of phase k [cp] | |
molar density of phase k (k = oil, gas) [mol/cm3] | |
reduced density of phase k | |
collision diameter | |
tortuosity factor | |
acentric factor | |
collision integral of the Lennard-Jones potential |
References
- Energy Information Administration (EIA). Even as Renewables Increase, Fossil Fuels Continue to Dominate U.S. Energy Mix. 2017. Available online: https://www.eia.gov/todayinenergy/detail.php?id=31892 (accessed on 31 October 2018).
- Energy Information Administration (EIA). Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries outside the United States. 2013. Available online: https://www.eia.gov/analysis/studies/worldshalegas/pdf/overview.pdf (accessed on 31 October 2018).
- Energy Information Administration (EIA). Future U.S. Tight Oil and Shale Gas Production Depends on Resources, Technology, Markets. 2016. Available online: https://www.eia.gov/todayinenergy/detail.php?id=27612 (accessed on 31 October 2018).
- Hoffman, B.T.; Evans, J.G. Improved oil recovery IOR pilot projects in the Bakken formation. In Proceedings of the Paper SPE 180270 Presented at the SPE Low Perm Symposium, Denver, CO, USA, 5–6 May 2016. [Google Scholar]
- Chen, C.; Balhoff, M.; Mohanty, K.K. Effect of reservoir heterogeneity on primary recovery and CO2 huff ‘n’ puff recovery in shale-oil reservoirs. SPEREE 2014, 17, 404–413. [Google Scholar] [CrossRef]
- Meng, X.; Sheng, J.J.; Yu, Y. Experimental and numerical study of enhanced condensate recovery by gas injection in shale gas−condensate reservoirs. SPEREE 2017, 20, 471–477. [Google Scholar] [CrossRef]
- Gamadi, T.D.; Elldakli, T.F.; Sheng, J.J. Compositional simulation evaluation of EOR potential in shale oil reservoirs by cyclic natural gas injection. In Proceedings of the URTeC 1922690 Presented at the Unconventional Resources Technology Conference, Denvor, CO, USA, 25–27 August 2014. [Google Scholar]
- Hoffman, B.T. Comparison of various gases for enhanced recovery from shale oil reservoirs. In Proceedings of the Paper SPE 154329 Presented at the Eighteenth SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 14–18 April 2012. [Google Scholar]
- Yu, Y.; Li, L.; Sheng, J.J. A comparative experimental study of gas injection in shale plugs by flooding and huff-n-puff processes. J. Nat. Gas Sci. Eng. 2017, 38, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Hawthorne, S.; Sorensen, J.; Pekot, L.; Bosshart, N.; Gorecki, C.; Steadman, E.; Harju, J. Utilization of produced gas for improved oil recovery and reduced emissions from the Bakken formation. In Proceedings of the Paper SPE 184414 Presented at the SPE Health, Safety, Security, Environment, & Social Responsibility Conference, New Orleans, LA, USA, 18–20 April 2017. [Google Scholar]
- Jin, L.; Hawthorne, S.; Sorensen, J.; Pekot, L.; Kurz, B.; Smith, S.; Heebink, L.; Bosshart, N.; Torres, J.; Dalkhaa, C.; et al. Extraction of oil from the Bakken shales with supercritical CO2. In Proceedings of the Paper SPE 2671596 (URTEC 2671596) Presented at SPE/AAPG/SEG Unconventional Resources Technology Conference, Austin, TX, USA, 24–26 July 2017. [Google Scholar]
- Li, L.; Sheng, J.J. Upscale methodology for gas huff-n-puff process in shale oil reservoirs. J. Pet. Sci. Eng. 2017, 153, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Fathi, E.; Akkutlu, I.Y. Multi-component gas transport and adsorption effects during CO2 injection and enhanced shale gas recovery. Int. J. Coal. Geol. 2014, 123, 52–61. [Google Scholar] [CrossRef]
- Sanchez-Rivera, D.; Mohanty, K.; Balhoff, M. Reservoir simulation and optimization of huff-n-puff operations in the Bakken shale. Fuel 2015, 147, 82–94. [Google Scholar] [CrossRef]
- Sun, J.; Zou, A.; Sotelo, E.; Schechter, D. Numerical simulation of CO2 huff-n-puff in complex fracture networks of unconventional liquid reservoirs. J. Nat. Gas Sci. Eng. 2016, 31, 481–492. [Google Scholar] [CrossRef]
- Yu, W.; Lashgari, H.R.; Wu, K.; Sepehrnoori, K. CO2 injection for enhanced oil recovery in Bakken tight oil reservoirs. Fuel 2015, 159, 354–363. [Google Scholar] [CrossRef]
- Sheng, J.J.; Chen, K. Evaluation of the EOR potential of gas and water injection in shale oil reservoirs. J. Unconv. Oil Gas Resour. 2014, 5, 1–9. [Google Scholar] [CrossRef]
- Fathi, E.; Akkutlu, I.Y. Mass transport of adsorbed-phase in stochastic porous medium with fluctuating porosity field and nonlinear gas adsorption kinetics. Transp. Porous Med. 2012, 91, 5–33. [Google Scholar] [CrossRef]
- Sun, H.; Yao, J.; Gao, S.; Fan, D.; Wang, C.; Sun, Z. Numerical study of CO2 enhanced natural gas recovery and sequestration in shale gas reservoirs. Int. J. Greenh. Gas Con. 2013, 19, 406–419. [Google Scholar] [CrossRef]
- Kalantari-Dahaghi, A. Numerical simulation and modeling of enhanced gas recovery and CO2 sequestration in shale gas reservoirs: A feasibility study. In Proceedings of the Paper SPE 139701 Presented at the SPE International Conference on CO2, Capture, Storage, and Utilization, New Orleans, LA, USA, 10–12 November 2010. [Google Scholar]
- Environment Protection Agency (EPA). Assessing the Emissions from the Oil and Gas Development in the Bakken Formation and Their Impact on Air Quality in National Parks. 2013. Available online: https://www.eenews.net/assets/2013/11/06/document_gw_01.pdf (accessed on 31 October 2018).
- Prenni, A.J.; Day, D.E.; Evanoski-Cole, A.R.; Sive, B.C.; Hecobian, A.; Zhou, Y.; Gebhart, K.A.; Hand, J.L.; Sullivan, A.P.; Li, Y.; et al. Oil and gas impacts on air quality in federal lands in the Bakken region: An overview of the Bakken air quality study and first results. Atmos. Chem. Phys. 2016, 16, 1401–1416. [Google Scholar] [CrossRef]
- Ratner, M.; Tiemann, M. An Overview of Unconventional Oil and Natural Gas: Resources and Federal Actions. Congressional Research Service Report. 2015. Available online: https://fas.org/sgp/crs/misc/R43148.pdf (accessed on 20 November 2018).
- Energy Information Administration (EIA). Shale Oil and Shale Gas Resources Are Globally Abundant. 2013. Available online: https://www.eia.gov/todayinenergy/detail.php?id=11611 (accessed on 20 November 2018).
- Energy Information Administration (EIA). World Shale Resource Assessments. 2015. Available online: https://www.eia.gov/analysis/studies/worldshalegas/ (accessed on 20 November 2018).
- Energy Information Administration (EIA). Tight Oil Expected to Make Up Most of U.S. Oil Production Increase through 2040. 2017. Available online: https://www.eia.gov/todayinenergy/detail.php?id=29932 (accessed on 20 November 2018).
- Sheng, J.J. Enhanced oil recovery in shale reservoirs by gas injection. J. Nat. Gas Sci. Eng. 2015, 22, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Wan, T.; Yu, Y.; Sheng, J.J. Experimental and numerical study of the EOR potential in liquid-rich shales by cyclic gas injection. J. Unconv. Oil Gas Resour. 2015, 12, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Yang, D. Experimental and numerical evaluation of CO2 huff-n-puff processes in Bakken formation. Fuel 2017, 190, 145–162. [Google Scholar] [CrossRef]
- Yang, D.Y.; Song, C.; Zhang, J.; Zhang, G.; Ji, Y.; Gao, J. Performance evaluation of injectivity for water-alternating-CO2 processes in tight oil formations. Fuel 2015, 139, 292–300. [Google Scholar] [CrossRef]
- Gamadi, T.D.; Sheng, J.J.; Soliman, M.Y. An experimental study of cyclic gas injection to improve shale oil recovery. In Proceedings of the Paper SPE 166334 Presented at the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–2 October 2013. [Google Scholar]
- Gamadi, T.D.; Sheng, J.J.; Soliman, M.Y.; Menouar, H.; Watson, M.C.; Emadibaladehi, H. An experimental study of cyclic CO2 injection to improve shale oil recovery. In Proceedings of the Paper SPE 169142 Presented at the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 12–16 April 2014. [Google Scholar]
- Adel, I.A.; Tovar, F.D.; Zhang, F.; Schechter, D.S. The impact of MMP on recovery factor during CO2−EOR in Unconventional liquid reservoirs. In Proceedings of the Paper SPE 191752 Present at the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 24–26 September 2018. [Google Scholar]
- Yu, W.; Lashgari, H.R.; Sepehrnoori, K. Simulation study of CO2 huff-n-puff process in Bakken tight oil reservoirs. In Proceedings of the Paper SPE 169575 Presented at the SPE Western North American and Rocky Mountain Joint Meeting, Denver, CO, USA, 17–18 April 2014. [Google Scholar]
- Zhang, Y.; Yu, W.; Li, Z.; Sepehrnoori, K. Simulation study of factors affecting CO2 huff-n-puff process in tight oil reservoirs. J. Pet. Sci. Eng. 2018, 163, 264–269. [Google Scholar] [CrossRef]
- Atan, S.; Ajayi, A.; Honarpour, M.; Turek, E.; Dillenbeck, E.; Mock, C.; Ahmadi, M.; Pereira, C. The viability of gas injection EOR in Eagle Ford shale reservoirs. In Proceedings of the Paper SPE 191673 Present at the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 24–26 September 2018. [Google Scholar]
- Chen, C.; Balhoff, M.; Mohanty, K.K. Effect of reservoir heterogeneity on improved shale oil recovery by CO2 huff-n-puff. In Proceedings of the Paper SPE 164553 Presented at the Unconventional Resources Conference, The Woodland, TX, USA, 10–12 April 2013. [Google Scholar]
- Sigmund, P.M. Prediction of molecular diffusion at reservoir conditions. Part I—measurement and prediction of binary dense gas diffusion coefficients. J. Can. Pet. Technol. 1976, 15, 48–57. [Google Scholar] [CrossRef]
- Sigmund, P.M. Prediction of molecular diffusion at reservoir conditions. Part II—estimating the effects of molecular diffusion and convective mixing in multi-component systems. J. Can. Pet. Technol. 1976, 15, 53–62. [Google Scholar] [CrossRef]
- Wilke, C.R.; Chang, P. Correlation of diffusion coefficients in dilute solutions. AIChE J. 1955, 1, 264–270. [Google Scholar] [CrossRef]
- Du, F.; Nojabaei, B. Estimating diffusion coefficients of shale oil, gas, and condensate with nano-confinement effect. SPE 196589 Will Be Presented in 2019 Society of Petroleum Engineers Eastern Regional Meeting, Charleston, WV, USA, 15–17 October 2019. [Google Scholar]
- Leahy-Dios, A.; Firoozabadi, A. Unified model for nonideal multicomponent molecular diffusion coefficients. AIChE J. 2007, 53, 2932–2939. [Google Scholar] [CrossRef]
- Petersen, E.E. Diffusion in a pore of varying cross section. AIChE J. 1958, 4, 343–345. [Google Scholar] [CrossRef]
- Epstein, N. On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem. Eng. Sci. 1989, 44, 777–779. [Google Scholar] [CrossRef]
- Huang, J.; Xiao, F.; Dong, H.; Yin, X. Diffusion tortuosity in complex porous media from pore-scale numerical simulations. Comput. Fluids 2019, 185, 66–74. [Google Scholar] [CrossRef]
- Ullman, W.J.; Aller, R.C. Diffusion coefficients in near shore marine sediments. Limnol. Oceanogr. 1982, 27, 552–556. [Google Scholar] [CrossRef]
- Alavian, S.A. Modeling CO2 Injection in Fractured Reservoirs Using Single Matrix Block System. Ph.D. Dissertation, Norwegian University of Science and Technology, Trondheim, Norway, 2011. [Google Scholar]
- Atkins, E.R.; Smith, G.H. The significance of particle shape in formation resistivity factor porosity relationships. J. Pet. Technol. 1961, 13, 285–291. [Google Scholar] [CrossRef]
- Alfarge, D.; Wei, M.; Bai, B. Mechanistic study for the applicability of CO2-EOR in unconventional Liquids rich reservoirs. In Proceedings of the Paper SPE 190277 Presented at SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 14–18 April 2018. [Google Scholar]
- Teklu, T.W.; Alharthy, N.; Kazemi, H.; Yin, X.; Graves, R.M.; AlSumaiti, A.M. Phase behavior and minimum miscibility pressure in nanopores. SPEREE 2014, 17, 396–403. [Google Scholar] [CrossRef]
- Zhang, K.; Nojabaei, B.; Ahmadi, K.; Johns, R.T. Minimum miscibility pressure calculation for oil shale and tight reservoirs with large gas–oil capillary pressure. In Proceedings of the URTeC 2901892 Presented at the Unconventional Resources Technology Conference, Houston, TX, USA, 23–25 July 2018. [Google Scholar]
- Zhang, Y.; Di, Y.; Yu, W.; Sepehrnoori, K. A Comprehensive Model for Investigation of CO2-EOR with Nanopore Confinement in the Bakken Tight Oil Reservoir. In Proceedings of the Paper SPE 187211 Presented at SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 9–11 October 2017. [Google Scholar]
- Jessen, K.; Orr, F.M. On interfacial-tension measurements to estimate minimum miscibility pressures. SPEREE 2008, 11, 933–939. [Google Scholar] [CrossRef]
- Nojabaei, B.; Johns, R. T, Extrapolation of black- and volatile-oil fluid properties with application to immiscible/miscible gas injection. J. Nat. Gas Sci. Eng. 2016, 33, 367–377. [Google Scholar] [CrossRef]
- Wang, S.; Ma, M.; Chen, S. Application of PC-SAFT equation of state for CO2 minimum miscibility pressure prediction in nanopores. In Proceedings of the SPE Paper 179535 Presented at the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 11–13 April 2016. [Google Scholar]
- Huang, J.; Jin, T.; Chai, Z.; Barrufet, M.; Killough, J. Compositional simulation of fractured shale reservoir with distribution of nanopores using coupled multi-porosity and EDFM method. J. Pet. Sci. Eng. 2019, 179, 1078–1089. [Google Scholar] [CrossRef]
- Du, F.; Nojabaei, B.; Johns, R.T. A black-oil approach to model produced gas injection for enhanced recovery of conventional and unconventional reservoirs. In Proceedings of the Paper SPE 191454 Presented at the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 24–26 September 2018. [Google Scholar]
- Li, L.; Su, Y.; Sheng, J.J.; Hao, Y.; Wang, W.; Lv, Y.; Zhao, Q.; Wang, H. Experimental and numerical study on CO2 sweep volume during CO2 huff-n-puff enhanced oil recovery process in shale oil reservoirs. Energy Fuels 2019, 33, 4017–4032. [Google Scholar] [CrossRef]
- Zuloaga, P.; Yu, W.; Miao, J.; Sepehrnoori, K. Performance evaluation of CO2 huff-n-puff and continuous CO2 injection in tight oil reservoirs. Energy 2017, 134, 181–192. [Google Scholar] [CrossRef]
- Sun, R.; Yu, W.; Xu, F.; Pu, H.; Miao, J. Compositional simulation of CO2 huff-n-puff process in Middle Bakken tight oil reservoirs with hydraulic fractures. Fuel 2019, 236, 1446–1457. [Google Scholar] [CrossRef]
- Wang, L.; Yu, W. Mechanistic simulation study of gas puff and huff process for Bakken tight oil fractured reservoir. Fuel 2019, 239, 1179–1193. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, Y.; Varavei, A.; Sepehrnoori, K.; Zhang, T.; W, K.; Miao, J. Compositional simulation of CO2 huff-n-puff in Eagle Ford tight oil reservoirs with CO2 molecular diffusion, Nano pore confinement and complex natural fractures. In Proceedings of the Paper SPE 190325 Presented at the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 14–18 April 2018. [Google Scholar]
- Rassenfoss, S. Shale EOS Works, But Will It Make a Difference? JPT, 2017. Available online: https://www.spe.org/en/jpt/jpt-article-detail/?art=3391 (accessed on 20 November 2018).
- Hoffman, B.T. Huff-n-Puff gas injection pilots projects in the Eagle Ford. In Proceedings of the Paper SPE 189816 Presented at the SPE Canada Unconventional Resources Conference, Calgary, AB, Canada, 13–14 March 2018. [Google Scholar]
- Jenkins, C.D.; Boyer, C.M. Coalbed- and shale-gas reservoirs. J. Pet. Technol. 2008, 60, 92–99. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Energy Information Administration (EIA). Technology Drives Natural Gas Production Growth from Shale Gas Formations. 2011. Available online: https://www.eia.gov/todayinenergy/detail.php?id=2170 (accessed on 20 November 2018).
- Energy Information Administration (EIA). Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays. 2011. Available online: https://www.eia.gov/analysis/studies/usshalegas/pdf/usshaleplays.pdf (accessed on 20 November 2018).
- U.S. Geological Survey (USGS). USGS Estimates 304 Trillion Cubic Feet of Natural Gas in the Bossier and Haynesville Formations of the U.S. Gulf Coast. 2017. Available online: https://www.usgs.gov/news/usgs-estimates-304-trillion-cubic-feet-natural-gas-bossier-and-haynesville-formations-us-gulf (accessed on 20 November 2018).
- Fayetteville Shale Natural Gas (FSNG). Available online: http://lingo.cast.uark.edu/LINGOPUBLIC/about/ (accessed on 20 November 2018).
- Energy Information Administration (EIA). Coal Production and Prices Decline in 2015. 2016. Available online: https://www.eia.gov/todayinenergy/detail.php?id=24472 (accessed on 20 November 2018).
- Baihly, J.; Altman, R.; Malpani, R.; Luo, F. Shale gas production decline trend comparison over time and basins. In Proceedings of the Paper SPE 135555 Present at the SPE Annual Technical Conference and Exhibition, Florence, Italy, 19–22 September 2010. [Google Scholar]
- Busch, A.; Alles, S.; Gensterblum, Y.; Prinz, D.; Dewhurst, D.N.; Raven, M.D.; Stanjek, H.; Krooss, B.M. Carbon dioxide storage potential of shales. Int. J. Greenh. Gas Con. 2008, 2, 297–308. [Google Scholar] [CrossRef]
- Chen, T.Y.; Feng, X.; Pan, Z. Experimental study on kinetic swelling of organic-rich shale in CO2, CH4, and N2. J. Nat. Gas Sci. Eng. 2018, 55, 406–417. [Google Scholar] [CrossRef]
- Pan, Y.; Hui, D.; Luo, P.; Zhang, Y.; Sun, L.; Wang, K. Experimental investigation of the geochemical interactions between supercritical CO2 and shale: Implications for CO2 storage in gas-bearing shale formations. Energy Fuels 2018, 32, 1963–1978. [Google Scholar] [CrossRef]
- Yuan, W.; Pan, Z.; Li, X.; Yang, Y.; Zhao, C.; Connell, L.D.; Li, S.; He, J. Experimental study and modeling of methane adsorption and diffusion in shale. Fuel 2014, 117, 509–519. [Google Scholar] [CrossRef]
- Heller, R.; Zoback, M. Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. J. Unconv. Oil Gas Resour. 2014, 8, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Chareonsuppanimit, P.; Mohammad, S.A.; Robinson, R.L., Jr.; Gasem, K.A.M. High-pressure adsorption of gases on shales: Measurements and modeling. Int. J. Coal. Geol. 2012, 95, 34–46. [Google Scholar] [CrossRef]
- Chen, T.Y.; Feng, X.; Pan, Z. Experimental study of swelling of organic rich shale in methane. Int. J. Coal. Geol. 2015, 150, 64–73. [Google Scholar] [CrossRef]
- Lu, Y.; Ao, X.; Tang, J.; Jia, Y.; Zhang, X.; Chen, Y. Swelling of shale in supercritical carbon dioxide. J. Nat. Gas Sci. Eng. 2016, 30, 268–275. [Google Scholar] [CrossRef]
- Yang, B.; Kang, Y.; You, L.; Li, X.; Chen, Q. Measurement of the surface diffusion coefficient for adsorbed gas in the fine mesopores and micropores of shale organic matter. Fuel 2016, 181, 793–804. [Google Scholar] [CrossRef]
- Ao, X.; Lu, Y.; Tang, J.; Chen, Y.; Li, H. Investigation on the physics structure and chemical properties of the shale treated by supercritical CO2. J. CO2 Util. 2017, 20, 274–281. [Google Scholar] [CrossRef]
- Nuttal, B.C. Reassessment of CO2 sequestration capacity and enhanced gas recovery potential of Middle and Upper Devonian Black Shales in the Appalachian Basin. In Proceedings of the MRCSP Phase II Topical Report, 2005 October–2010 October, Kentucky Geological Survey, Lexington, Kentucky, 2010. Available online: https://irp-cdn.multiscreensite.com/5b322158/files/uploaded/topical_4_black_shale.pdf (accessed on 20 November 2018).
- Sondergeld, C.H.; Newsham, K.E.; Comisky, J.T.; Rice, M.C.; Rai, C.S. Petrophysical considerations in evaluating and producing shale gas resources. In Proceedings of the Paper SPE 131768 Presented at the SPE Unconventional Gas Conference, Pittsburgh, PA, USA, 23–25 February 2010. [Google Scholar]
- Wu, K.; Li, X.; Wang, C.; Yu, W.; Chen, Z. Model for surface diffusion of adsorbed gas in nanopores of shale gas reservoirs. Ind. Eng. Chem. Res. 2015, 54, 3225–3236. [Google Scholar] [CrossRef]
- Chio, J.G.; Do, D.D.; Do, H.D. Surface diffusion of adsorbed molecules in porous media: Monolayer, multilayer, and capillary condensation regimes. Ind. Eng. Chem. Res. 2001, 40, 4005–4031. [Google Scholar] [CrossRef]
- Kang, S.M.; Fathi, E.; Ambrose, R.J.; Akkutlu, I.Y.; Sigal, R.F. Carbon dioxide storage capacity of organic-rich shales. SPE J. 2011, 16, 842–855. [Google Scholar] [CrossRef]
- Godec, M.; Koperna, G.; Petrusak, R.; Oudinot, A. Potential for enhanced gas recovery and CO2 storage in the Marcellus shale in the Eastern United States. Int. J. Coal Geol. 2013, 118, 95–104. [Google Scholar] [CrossRef]
- Yu, W.; Al-Shalabi, E.W.; Sepehrnoori, K. A sensitivity study of potential CO2 injection for enhanced gas recovery in Barnett shale reservoirs. In Proceedings of the Paper SPE 169012 Presented at the SPE Unconventional Resources Conference, The Woodlands, TX, USA, 1–3 April 2014. [Google Scholar]
- Kim, T.H.; Park, S.S.; Lee, K.S. Modeling of CO2 injection considering multi-component transport and geotechnical effect in shale gas reservoirs. In Proceedings of the Paper SPE 176174 Presented at the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition held in Nusa Dua, Bali, Indonesia, 20–22 October 2015. [Google Scholar]
- Eshkalak, M.O.; Al-Shalabi, E.W.; Sanaei, A.; Aybar, U.; Sepehrnoori, K. Enhanced gas recovery by CO2 sequestration versus re-fracturing treatment in unconventional shale gas reservoirs. In Proceedings of the Paper SPE 172083 Presented at the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, 10–13 November 2014. [Google Scholar]
- Abba, M.K.; Al-Othaibi, A.; Abbas, A.J.; Nasr, G.G.; Mukhtar, A. Experimental investigation on the impact of connate water salinity on dispersion coefficient in consolidated rocks cores during enhanced gas recovery by CO2 injection. J. Nat. Gas Sci. Eng. 2018, 60, 190–201. [Google Scholar] [CrossRef]
- Fathi, E.; Akkutlu, I.Y. Matrix heterogeneity effects on gas transport and adsorption in coalbed and shale gas reservoirs. Transp. Porous Med. 2009, 80, 281–304. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.B.; Barati, R. Role of molecular diffusion in heterogeneous, naturally fractured shale reservoirs during CO2 huff-n-puff. J. Nat. Gas Sci. Eng. 2018, 164, 31–42. [Google Scholar] [CrossRef]
- Honari, A.; Bijeljic, B.; Johns, M.L.; May, E.F. Enhanced gas recovery with CO2 sequestration: The effect of medium heterogeneity on the dispersion of supercritical CO2–CH4. Int. J. Greenh. Gas Con. 2015, 39, 39–50. [Google Scholar] [CrossRef]
- Tao, Z.; Clarens, A. Estimating the carbon sequestration capacity of shale formations using methane production rates. Environ. Sci. Technol. 2013, 47, 11318–11325. [Google Scholar] [CrossRef]
- Edwards, R.W.; Celia, M.A.; Bandilla, K.W.; Doster, F.; Kanno, C.M. A model to estimate carbon dioxide injectivity and storage capacity for geological sequestration in shale gas well. Environ. Sci. Technol. 2015, 49, 9222–9229. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, B.C.; Eble, C.F.; Drahovzal, J.A.; Bustin, R.M. Analysis of Devonian Black Shales in Kentucky for potential carbon dioxide sequestration and enhanced natural gas production. In Greenhouse Gas Control Technologies 7; Report Kentucky Geological Survey/University of Kentucky (DE-FC26-02NT41442); Elsevier Science Ltd.: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Louk, K.; Ripepi, N.; Luxbacher, K.; Gilliland, E.; Tang, X.; Keles, C.; Schlosser, C.; Diminick, E.; Keim, S.; Amante, J.; et al. Monitoring CO2 storage and enhanced gas recovery in unconventional shale reservoirs: Results from the Morgan County, Tennessee injection test. J. Nat. Gas Sci. Eng. 2017, 45, 11–25. [Google Scholar] [CrossRef]
- Fuel Fix. Midstream Firms Build to Meet Eagle Ford Condensate Production. 2014. Available online: http://fuelfix.com/blog/2014/09/03/midstream-firms-build-to-meet-eagle-ford-condensate-production/ (accessed on 20 November 2018).
- Sigmund, P.M.; Dranchuk, P.M.; Morrow, N.R.; Purvis, P.A. Retrograde condensation in porous media. SPE J. 1973, 13, 93–104. [Google Scholar] [CrossRef]
- Al-Anazi, H.A.; Aramco, S.; Pope, G.A.; Sharma, M.M.; Metcalfe, R.S. Laboratory measurements of condensate blocking and treatment for both low and high permeability rocks. In Proceedings of the Paper SPE 77546 Present at the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 29 September–2 October 2002. [Google Scholar]
- Meng, X.; Sheng, J.J. Experimental study on revaporization mechanism of huff-n-puff gas injection to enhance condensate recovery in shale gas condensate reservoirs. In Proceedings of the Paper SPE 179537 Presented at the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 11–13 April 2016. [Google Scholar]
- Meng, X.; Sheng, J.J. Optimization of huff-n-puff gas injection in a shale gas condensate reservoir. J. Unconv. Oil Gas Resour. 2016, 16, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Sheng, J.J.; Mody, F.; Griffith, P.J.; Barnes, W.N. Potential to increase condensate oil production by huff-n-puff gas injection in a shale condensate reservoir. J. Nat. Gas Sci. Eng. 2016, 28, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Younis, R.M. Compositional modeling of enhanced hydrocarbons recovery for fractured shale gas-condensate reservoirs with the effects of capillary pressure and multicomponent mechanisms. J. Nat. Gas Sci. Eng. 2016, 34, 1262–1275. [Google Scholar] [CrossRef]
- Sheng, J.J. Increase liquid oil production by huff-n-puff of produced gas in shale gas condensate reservoirs. J. Unconv. Oil Gas Resour. 2015, 11, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Sheng, J.J. A comparative study of huff-n-puff gas and solvent injection in a shale gas condensate core. J. Nat. Gas Sci. Eng. 2017, 38, 549–565. [Google Scholar] [CrossRef] [Green Version]
- Nojabaei, B.; Johns, R.T.; Chu, L. Effect of Capillary Pressure on Phase Behavior in Tight Rocks and Shales. SPEREE 2013, 16, 281–289. [Google Scholar] [CrossRef]
- Raupach, M.R.; Marland, G.; Ciais, P.; Quere, C.L.; Canadell, J.G.; Klepper, G.; Field, C.B. Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA 2007, 104, 10288–10293. [Google Scholar] [CrossRef] [PubMed]
- Barrufet, M.A.; Bacquet, A.; Falcone, G. Analysis of the storage capacity for CO2 sequestration of a depleted gas condensate reservoir and a saline aquifer. J. Can. Pet. Technol. 2010, 49, 23–31. [Google Scholar] [CrossRef]
- Howarth, R.W.; Santoro, R.; Ingraffea, A. Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim. Chang. 2011, 106, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Energy Information Administration (EIA). North Dakota Natural Gas Flaring Targets Challenged by Rapid Production Growth. 2015. Available online: https://www.eia.gov/todayinenergy/detail.php?id=23752 (accessed on 20 November 2018).
- Ghaderi, S.M.; Clarkson, C.R.; Ghanizadeh, A.; Barry, K.; Fiorentino, R. Improved oil recovery in tight oil formations: Results of water injection operations and gas injection sensitivities in the Bakken formation of Southeast Saskatchewan. Paper Presented at the SPE Unconventional Resources Conference, Calgary, AB, Canada, 15–16 February 2017. [Google Scholar]
- Energy Information Administration (EIA). Natural Gas Vented and Flared (Summary). 2019. Available online: https://www.eia.gov/dnav/ng/NG_SUM_LSUM_A_EPG0_VGV_MMCF_A.htm (accessed on 30 April 2019).
- Hughes, L. Biological consequences of global warming: Is the signal already apparent? Trends Ecol. Evol. 2000, 15, 56–61. [Google Scholar] [CrossRef]
- Pu, H.; Wang, Y.; Li, Y. How CO2-storage mechanisms are different in organic shale: Characterization and simulation studies. SPE J. 2017, 23, 661–671. [Google Scholar] [CrossRef]
- Middleton, R.; Viswanathan, H.; Currier, R.; Gupta, R. CO2 as a fracturing fluid: Potential for commercial-scale shale gas production and CO2 sequestration. Energy Proced. 2014, 63, 7780–7784. [Google Scholar] [CrossRef]
- Harris, P.C.; Haynes, R.J.; Egger, J.P. The use of CO2-based fracturing fluids in the Red Fork formation in the Anadarko basin, Oklahoma. J. Pet. Technol. 1984, 36, 1–003. [Google Scholar] [CrossRef]
- Gandossi, L. An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production. In Joint Research Centre of the European Commission; Scientific and Policy Report; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
Experimental Study | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Oil Sample | Rock Sample | K (µd) | Porosity (%) | Injection Gas | Method | Pinj (psi) | T (°F) | Production | Oil RF (%) | Reference |
Dead oil from Wolfcamp shale | Eagle Ford | 0.085 | 4.4 | N2 | flooding | 1000 | 72 | 48 h | 17.94 | [9] |
huff-n-puff | 22.52 | |||||||||
0.4 | 13.1 | flooding | 19.88 | |||||||
huff-n-puff | 24.13 | |||||||||
Mineral oil (Soltrol-130) | Eagle Ford | 0.5 | 5 | N2 | cyclic gas injection | 1000 | 95 | - | 14.23–45.45 | [28] |
11.41–39.66 | ||||||||||
C10-C13 Isoalkanes | Eagle Ford | - | 7.7 | CO2 | cyclic gas injection | 850–3500 | 95 | - | 20-71 | [7] |
Mancos | - | 5 | 850–500 | 10–31 | ||||||
3500 | 43–63 | |||||||||
Bakken oil | Middle Bakken | 8.1–103.5 | 4.4–5.4 | C1 | oil extraction | 5000 | 230 | 24 h | >90 | [10] |
C2 | nearly 100 | |||||||||
C1/C2 (85/15) | >90 | |||||||||
CO2 | >90 | |||||||||
N2 | [26] | |||||||||
Lower Bakken | 5.25 | 3.8 | C1 | ≈18 | ||||||
C1/C2 (85/15) | ≈27 | |||||||||
CO2 | ≈32 | |||||||||
N2 | <10 | |||||||||
Bakken oil | Upper Bakken | - | - | SC CO2 | oil extraction | 5000 | 230 | 7 h | ≈10–43 | [11] |
Lower Bakken | - | - | ≈8–48 | |||||||
Mineral oil (Soltrol-130) | Barnett | - | - | N2 | cyclic gas injection | 1000 | 95 | 1 d (soaking) | 6.5 | [31] |
2000 | 11.23 | |||||||||
3000 | 14.91 | |||||||||
3500 | 17.79 | |||||||||
Marcos | - | - | 3000 | 1 d (soaking) | 13.5 | |||||
2 d (soaking) | 16.96 | |||||||||
3 d (soaking) | 19.59 | |||||||||
Bakken oil | Bakken | 270–830 | 18.6–23.1 | CO2 | near-miscible huff-n-puff | 1349 | 140 | 40 h | 63 | [29] |
miscible huff-n-puff | 2031 | 60 h | [61] | |||||||
waterflodding | 1668 | - | 51.5 | |||||||
immiscible huff-n-puff | 1015 | 60 h | 42.8 | |||||||
Bakken oil | Bakken | 290–440 | 18.9–23.6 | water+CO2 | water-alternating-CO2 | - | 145.4 | - | 80.1–88.1 | [30] |
Wolfcamp | Eagle Ford | 0.24 | 7.28 | CO2 | huff-n-puff | 1600 | 72 | 7 h (soaking) | 56.8 (7 circles) | [58] |
Simulation Study | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Formation | K (µD) | ϕ (%) | Injection | Method | Natural Fracture | Model | Diffusion | Confiment Effect | Production | Increased Oil RF (%) | Reference |
Field-scale | 0.1 | 6 | CO2 | huff-n-puff | 30 mD | DFN | Yes | Yes | 5000 d | 10 (0.1 uD) | [15] |
131.8 (1 uD) | |||||||||||
11.5 (inject for 60 d) | |||||||||||
13.3 (inject for 200 d) | |||||||||||
Bakken | 1 | 7 | CO2 | huff-n-puff | NA | Single porosity | Yes | No | 30 y | 2.35 | [16] |
10 | 1.4 | ||||||||||
100 | −0.7 | ||||||||||
Bakken | 10, 0.001 | 8 | CO2 | huff-n-puff | NA | Single porosity | No | No | 60 d | ≈−0.6–0.01 | [37] |
Bakken | 10 (homo01) | 8 | CO2 | huff-n-puff | NA | Single porosity | No | No | 700 d | −0.13 (10 d soaking) | [5] |
−0.23 (20 d soaking) | |||||||||||
10 (hete04) | −0.24 (10 d soaking) | ||||||||||
−0.33 (20 d soaking) | |||||||||||
Bakken | 10 | 8 | CO2 | huff-n-puff | NA | Single porosity | Yes | No | 5500 d | 10.9 (Ppro = 1000 psia, 3 circles) | [14] |
22.8 (Ppro = 2900 psia, 3 circles) | |||||||||||
16.5 (Ppro = 3500 psia, 3 circles) | |||||||||||
≈0 (inject after 30 d, 1 circle) | |||||||||||
0.6 (inject after 200 d, 1 circle) | |||||||||||
0.9 (inject after 500 d, 1 circle) | |||||||||||
Eagle Ford | 0.1 | 6 | CO2 | gas flooding | NA | Single porosity | No | No | 70 y | 15.12 | [17] |
cyclic gas injection | 14.42 | ||||||||||
waterflooding | 11.9 | ||||||||||
cyclic waterflooding | 11.03 | ||||||||||
Middle Bakken | 50 | 10 | produced gas | huff-n-puff | NA | Single porosity | No | Yes | 800 d | 15.4 (Pinj = 1000 psi) | [57] |
Middle Bakken | 1 | 7 | CO2 | huff-n-puff | EDFM | Yes | No | 18 y | 2.56 | [59] | |
gas flooding | Conductivity | −1.79 | |||||||||
100 | huff-n-puff | 30 mD-ft | 14.34 | ||||||||
gas flooding | 30.06 | ||||||||||
Middle Bakken | 20 | 5.6 | CO2 | huff-n-puff | NA | EDFM | Yes | No | 7000 d | 5.9 (3 cycles) | [60] |
Bakken | 1 | 8 | CO2 | huff-n-puff | 1.2 mD | Dual permeability | Yes | No | >7000 d | 55.1 | [61] |
4 mD | 49.8 | ||||||||||
Eagle Ford | 0.9 | 12 | CO2 | huff-n-puff | EDFM | Yes | Yes | 7300 d | 9.1 (D = 0.01 cm2/s) | [62] | |
Conductivity | 3.8 (D = 0.001 cm2/s) | ||||||||||
10 mD-ft | −5.1 (D = 0.0001 cm2/s) | ||||||||||
−6.9 (D = 0.00001 cm2/s) |
Properties | Coalbed Methane Reservoir | Shale Gas Reservoir |
---|---|---|
Organic matter (wt%) | >50 | <50 |
Type of organic matter | Vitrinite/inertinite macerals | Liptinite |
Methane existing status | Sorbed gas (98%) | Sorbed gas, free gas |
Sorbed gas content (m3/ton) | 1–25 | <10 |
Matrix permeability (md) | 1–50 | 10−5–1 |
Thickness (ft) | 4–110 | 30–300 |
Young’s modulus (psi) | (0.1–1) × 106 | (3–8) × 106 |
Simulation Study | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Injection Gas | Formation | K (nd) | ϕ | Natural Fracture | Hydraulic Fracture | Method | Model | Adsorption Isotherm | Diffusion | Increased Gas RF (%) | Sequestrated CO2 (%) | Reference |
CO2 | 40 | 0.05 | 0.4 µD | conductivity 60 mD-ft | huff-n-puff | Dual porosity dual permeability | Extended Langmuir | Yes | ≈147 | 100 | [20] | |
CO2 | Marcellus Shale | 100–1000 (average 520) | 0.05–0.1 (average 0.7) | 2.5 µD | - | flooding | Triple porosity dual permeability | Langmuir | Yes | 11.4–0 (well distance ranges 15 m–229 m) | 34.5–100 (well distance ranges 15 m–229 m) | [88] |
CO2 | - | 100 | 0.05 | spacing 0.05 m | NA | flooding | Dual porosity | Langmuir | Yes | 35.2 (Pinj = 6MPa) | 51.57 | [19] |
width 5 µm | 51.4 (Pinj = 7MPa) | 60.3 | ||||||||||
CO2 | - | 100 | 0.00532 (organic) 0.00798(in-organic) 0.0133 (fracture) | NA | - | huff-n-puff | Triple porosity single permeability | Extended Langmuir | Yes | 35 | 90 | [13] |
CO2 | Barnett Shale | 0.58 | 0.029 | 7.12 µD | - | flooding | Dual porosity dual permeability | Extended Langmuir | Yes | 12 | 50 | [90] |
CO2 | Barnett Shale | 500 | 0.06 | - | constant finite conductivity | flooding | Dual permeability | Extended Langmuir | No | 2.95, 2.87 | 99 | [89] |
huff-n-puff | −4.7, −4.1 | [4] | ||||||||||
CO2 | - | 100 | 0.05 | - | conductivity 10 mD-ft | huff-n-puff | Dual porosity dual permeability | BET/Langmuir | No | < 4 | 4 | [91] |
flooding | No | ≈9 | - | |||||||||
flooding | BET/Langmuir | ≈31 | ||||||||||
re-fracturing | - | ≈185 |
Experimental Study | ||||||||||
Condensate sample | Injection | Rock sample | K (µd) | Porosity(%) | Method | Pinj (psi) | T (°F) | Production time | Condensate RF (%) | Reference |
synthetic gas-condensate mixture: 85% C1 +15% n-C4 | C1 | Eagle Ford outcrop | 0.1 | 6.8 | huff-n-puff | 1900 | 68 | 30 min | 25 | [6] |
gasflooding | [19] | |||||||||
synthetic gas-condensate mixture: 85% C1 +15% n-C4 | C1 | Eagle Ford outcrop | 0.1 | 6.8 | huff-n-puff | 2200 | 68 | - | 10.7 1st, 8.7 2nd, 5.53 3rd, 5.4 4th, 5.185 5th | [103] |
Simulation Study | ||||||||||
Condensate sample | Injection | Formation | K (uD) | Porosity(%) | Method | Pinj (psi) | T (°F) | Production time | Increased Condensate RF (%) | Reference |
Eagle Ford Condensate | C1 | Eagle Ford | 0.1 | 6 | huff-n-puff | 4000 | 200 | 200 d | ≈0.3% (10d inj), 1.5%(50d inj), 2.1%(100d inj) | [104] |
Eagle Ford Condensate | C1 | Eagle Ford | 0.1 | 6 | gas flooding | 9500 | 310 | 100 d | 5.23 | [107] |
huff-n-puff | 13.93 | |||||||||
85% C1 + 15% C2 | gas flooding | 4.377 | ||||||||
huff-n-puff | 16.18 | |||||||||
CO2 | gas flooding | −1.467 | ||||||||
huff-n-puff | 11.092 | |||||||||
Eagle Ford Condensate | C1 | Eagle Ford | 0.3 | 5.6 | huff-n-puff | 9985 | 270 | 300 d | 13.935 | [105] |
CO2 | huff-n-puff | 14.068 | ||||||||
N2 | huff-n-puff | 0.875 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, F.; Nojabaei, B. A Review of Gas Injection in Shale Reservoirs: Enhanced Oil/Gas Recovery Approaches and Greenhouse Gas Control. Energies 2019, 12, 2355. https://doi.org/10.3390/en12122355
Du F, Nojabaei B. A Review of Gas Injection in Shale Reservoirs: Enhanced Oil/Gas Recovery Approaches and Greenhouse Gas Control. Energies. 2019; 12(12):2355. https://doi.org/10.3390/en12122355
Chicago/Turabian StyleDu, Fengshuang, and Bahareh Nojabaei. 2019. "A Review of Gas Injection in Shale Reservoirs: Enhanced Oil/Gas Recovery Approaches and Greenhouse Gas Control" Energies 12, no. 12: 2355. https://doi.org/10.3390/en12122355
APA StyleDu, F., & Nojabaei, B. (2019). A Review of Gas Injection in Shale Reservoirs: Enhanced Oil/Gas Recovery Approaches and Greenhouse Gas Control. Energies, 12(12), 2355. https://doi.org/10.3390/en12122355