A Case Study on the Electricity Generation Using a Micro Gas Turbine Fuelled by Biogas from a Sewage Treatment Plant
Abstract
:1. Introduction
2. Experimental Methods
2.1. Brief Description of the Main Subsystems and Processes of Target Sewage Treatment Plant
2.2. Materials and Methods
2.3. Analyses of Emissions
2.4. Thermal Efficiency, Electricity Generation Efficiency and Thermal NOx
3. Results and Discussion
3.1. Characteristics of Biogas of Bali Sewage Treatment Plant
3.2. Performance Evaluation of Micro Gas Turbine Electricity Generator Using Biogas during Test Operation
3.2.1. Output Power Generated and Thermal Efficiency
3.2.2. AFR Ratios
3.2.3. Air Pollutant Emissions
3.2.4. Combustion Efficiency
3.3. Long-term Regular Operation of Micro Gas Turbine Electricity Generator Using Biogas and Its Energy Saving and Environmental Benefits
3.4. Comparison of Performances for Cases with Varied to Those with Constant Biogas Flow Rates and Methane Concentrations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
AFR | Air-fuel ratio, =ratio of input air to input feed fuel of biogas containing CH4, CO2, air, and other gases |
AFRM | Air-fuel ratio in mass/mass, =ratio of input air to input feed fuel of biogas containing CH4, CO2, air, and other gases in mass/mass, kg/kg |
AFRMA | Actual AFRM, =28.8z/(16 + 44x + 28.8y) (Equation (6)), kg/kg |
AFRMS | Make-up stoichiometric or theoretic AFRM in mass/mass, =(2 – y) × 28.8/(16 + 44x + 28.8y) (Equation (4)), kg/kg |
AFRV | Air-fuel ratio in volume/volume, =ratio of input air to input feed fuel of biogas containing CH4, CO2, air, and other gases in volume/volume, vol./vol. |
AFRVA | Actual AFRV, =z/(1 + x + y) (Equation (7)), vol./vol. |
AFRVS | Make-up stoichiometric or theoretic AFRV in volume/volume, =(2 − y)/(1 + x + y) (Equation (5)), vol./vol. |
CCH4 | Concentration of methane (CH4) in biogas, vol.% |
Cn | Cs adjusted with oxygen content in emission gas using Cn = ((21 − On)/(21 − Os))Cs according to regulation on gas turbine electricity generation facility, ppmv |
Cs | Gaseous pollutant concentration of emission gas measured according to the official method, ppmv |
CE | Combustion efficiency, % |
Ee,o | Actual output electric energy, kWhe |
Eth,i | Input thermal energy, kWhth |
FEE | Emission factor of greenhouse gas from electricity generation, kg CO2e/kWhe |
FM,NO2 | Mass flow rate of emitted thermal NO2, kg/h |
HL,CH4 | Low heating value of biogas in terms of CH4, 39.83 MJ/m3 |
On | Reference baseline value of oxygen content of emission gas for pollutant concentration adjustment using Cn = ((21 − On)/(21 − Os))Cs according to regulation on gas turbine electricity generation facility, 15 vol.% |
Os | Measured oxygen content in emission gas, vol.% |
PWA | Actual power generated, kW |
PWL | Rated power load, kW |
QBG | Flow rate of input biogas containing CH4, CO2, air, and other gases, m3/h or mole/h |
QCH4 | Flow rate of CH4 in input biogas, m3/h or mole/h |
QEA | Volume flow rate of excessive air, =(z − (2 − y)) × QCH4 =(z − (2 − y)) × CCH4 × QBG (Equation (9)), m3/h |
QNO2 | Maximal volume flow rate of thermal NO2, =0.21QEA (Equation (10)), m3/h |
VBG | Volume of input biogas, m3 |
VCH4/EA | Volume ratio of CH4 to excessive air, =1:(z − (2 − y)) (Equation (8)), vol./vol. |
x, y | Stoichiometric coefficients of reaction (R1) in combustion of biogas (containing relatively 1 mole CH4, x mole CO2, and y mole air) with externally introduced air ((2 − y) mole), CH4 + xCO2 + y(O2 + (79/21)N2) + (2 − y)(O2 + (79/21)N2) → (1 + x)CO2 + 2H2O + 2(79/21)N2 (reaction (R1)) |
z | Moles of the actual additive air substituting for (2 − y) in reaction (R1), while being associated with thermal NOx formation according to mechanism 0.5 × 0.21(z − (2 − y))N2 + 0.21(z − (2 − y)) O2 → 0.21(z − (2 − y)) NO2 (reaction (R2)) |
ηT | Thermal efficiency, =Ee,o/Eth,i = output electricity/input thermal energy, % kWhe/kWhth |
ηEB | Electricity generation efficiency from biogas, =Ee,o/VBG = output electricity/volume of biogas, kWhe/m3 biogas |
Abbreviation
AD | Anaerobic digestion |
BG | Biogas |
CTC | Capstone Turbine Co. |
CHP | Combined heat and power system |
HETC | Huimin Environmental Tech Co., Taipei, Taiwan |
IPCC | Intergovernmental Panel on Climate Change |
GHG | Greenhouse gas |
GWP | Global warming potential |
STP | Sewage treatment plant |
TEPA | Taiwan Environmental Protection Administration |
VOCs | Volatile organic compounds |
WWTP | Waste water treatment plant |
YTC | Yu-Tang Co., Taipei, Taiwan |
References
- Boulamanti, A.K.; Maglio, S.D.; Giuntoli, J.; Agostini, A. Influence of different practices on bio-gas sustainability. Biomass Bioenergy 2013, 53, 149–161. [Google Scholar] [CrossRef]
- Huopana, T.; Song, H.; Kolehmainen, M.; Niska, H. A regional model for sustainable bio-gas electricity production: A case study from a Finnish province. Appl. Energy 2013, 102, 676–686. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Xiong, S.S.; Shi, W.; He, W.H.; Zhang, T.; Lin, X.K.; Gu, Y.; Lv, Y.D.; Qian, X.J.; Ye, Z.Y.; et al. Research of bio-gas as fuel for internal combustion engine. In Proceedings of the Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 27–31 March 2009. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Feasibility study of biogas production and utilization as a source of renewable energy in Malaysia. Renew. Sustain. Energy Rev. 2013, 19, 454–462. [Google Scholar] [CrossRef]
- Chen, X.Y.; Vinh-Thang, H.; Remirez, A.A.; Rodrigue, D.; Kaliaguine, S. Membrane gas separation technologies for bio-gas upgrading. RSC Adv. 2015, 5, 24399–24448. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, J.; Meng, Y.; Yan, F.; Aihemaiti, A. A review of recent developments in hydrogen production via bio-gas dry reforming. Energy Convers. Manag. 2018, 171, 133–155. [Google Scholar] [CrossRef]
- Huertas, J.I.; Giraldo, N.; Izquierdo, S. Mass Transfer in Chemical Engineering Processes; Markŏs, J., Ed.; Intech: London, UK, 2011; pp. 133–135. [Google Scholar]
- Joppert, C.L.; Perecin, D.; Santos, M.M.; Coelho, S.T.; Camacho, J.L.P. A short-cut model for predicting biomethane availability after bio-gas upgrading. J. Clean. Prod. 2018, 200, 148–160. [Google Scholar] [CrossRef]
- Udaeta, M.E.M.; de SMedeiros, G.A.; da Silva, V.O.; Galvão, L.C.R. Basic and procedural requirements for energy potential from bio-gas of sewage treatment plants. J. Environ. Manag. 2019, 236, 380–387. [Google Scholar] [CrossRef] [PubMed]
- IPCC. AR5, IPCC Fifth Assessment Report: Climate Change; Intergovernmental Panel on Climate Change: Cambridge, UK, 2013. [Google Scholar]
- Hosseini, S.E.; Wahid, M.A. Development of biogas combustion in combined heat and power generation. Renew. Sustain. Energy Rev. 2014, 40, 868–875. [Google Scholar] [CrossRef]
- Pilavachi, P.A. Mini-and micro-gas turbines for combined heat and power. Appl. Therm. Eng. 2002, 22, 2003–2014. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Barzegaravval, H.; Wahid, M.A.; Ganjehkaviri, A.; Sies, M.M. Thermodynamic assessment of integrated biogas-based micro-power generation system. Energy Convers. Manag. 2016, 128, 104–119. [Google Scholar] [CrossRef]
- Kim, S.; Sung, T.; Kim, K.C. Thermodynamic performance analysis of a biogas-fuelled micro-gas turbine with a bottoming organic Rankine cycle for sewage sludge and food waste treatment plants. Energies 2017, 10, 275. [Google Scholar] [CrossRef]
- Somehsaraei, H.N.; Majoumerd, M.M.; Breuhaus, P.; Assadi, M. Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model. Appl. Therm. Eng. 2014, 66, 181–190. [Google Scholar] [CrossRef]
- Kang, J.Y.; Kang, D.W.; Kim, T.S.; Hur, K.B. Comparative economic analysis of gas turbine-based power generation and combined heat and power systems using biogas fuel. Energy 2014, 67, 309–318. [Google Scholar] [CrossRef]
- Bali STP (Bali Sewage Treatment Plant). Bulletin of Bali Sewage Treatment Plant; Bali STP: New Taipei City, Taiwan, 2019. [Google Scholar]
- YTC (Yu-Tang Co.). Operation Report of Bali Sewage Treatment Plant; YTC: New Taipei City, Taiwan, 2015. [Google Scholar]
- CTC (Capstone Turbine Co.). Capstone Model CR-30 Performance; CTC: Los Angeles, CA, USA, 2006. [Google Scholar]
- Patterson, M.G. What is energy efficiency? Concepts, indicators and methodological issues. Energy Policy 1996, 24, 377–390. [Google Scholar] [CrossRef]
- Kanoglu, M.; Dincer, I.; Rosen, M.A. Understanding energy and exergy efficiencies for improved energy management in power plants. Energy Policy 2007, 35, 3967–3978. [Google Scholar] [CrossRef]
- TEPA (Taiwan Environmental Protection Administration). Emission Standards of Stationary Sources (ESSS). 2013. Available online: http://ivy5.epa.gov.tw/docfile/040070.pdf (accessed on 24 June 2016).
- HETC (Huimin Environmental Tech Co.). Annual Report of Emission Concentrations of De-Sulfurised Bio-Gas of Bali Sewage Treatment Plant; HETC: Taipei, Taiwan, 2016. [Google Scholar]
- TEPA. Air Pollutant Emission Standards for Power Facilities. Amended on 1 December 2014. Available online: https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL015370 (accessed on 3 March 2019).
- TMOEA (Taiwan Ministry of Economic Affairs). CO2 Emission Inventory for Fuel Fired Power Generation Systems in Taiwan. 2018. Available online: https://www.moeaboe.gov.tw/ECW/populace/content/wHandMenuFile.ashx?file_id=5356 (accessed on 13 June 2019).
- Steen, M. Greenhouse Gas Emissions from Fossil Fuel Fired Power Generation Systems; European Commission Joint Research Centre: Brussels, Belgium, 2017. [Google Scholar]
CH4 (vol.%) | CO2 (vol.%) | H2 (vol.%) | H2S (ppmv) | Air (vol.%) | |
---|---|---|---|---|---|
Concentration reported a | 56.1 ± 8.0 | 25.5 ± 9.8 | 0.5 | 0.99 ± 0.07 | 18.4 |
Concentration measured in test operation b | 42.3 ± 1.2 | 28.9 ± 2.4 | - | - | 28.9 |
PWL (kW) | PWA (kW) | QBG (m3/min) | AFRV (vol./vol.) | CCH4 (vol.%) | ηT (% kWhe/kWhth) | ηEB (kWhe/m3) |
---|---|---|---|---|---|---|
10 | 9.9 | 0.178 | 86.1 | 42.3 | 19.8 | 0.93 |
15 | 14.9 | 0.238 | 84.7 | 22.3 | 1.04 | |
20 | 19.9 | 0.311 | 80.1 | 22.8 | 1.07 | |
25 | 24.1 | 0.371 | 78.0 | 23.1 | 1.08 | |
30 | 27.0 | 0.412 | 76.0 | 23.4 | 1.09 |
Load | Exhaust | CO a | NOx a | CO2 a | CO | NOx | CO2 |
---|---|---|---|---|---|---|---|
(kW) | (kg/s) | (ppmv) | (ppmv) | (vol.%) | (kg/h) | (kg/h) | (kg/h) |
10 | 0.31 b | 2014.90 ± 215.47 | 121.43 ± 52.68 | 3.41 ± 0.24 | 2.18 ± 0.23 | 0.28 ± 0.12 | 57.90 ± 4.08 |
15 | 1378.62 ± 231.91 | 107.97 ± 54.18 | 3.22 ± 0.04 | 1.49 ± 0.25 | 0.25 ± 0.12 | 54.55 ± 0.69 | |
20 | 516.76 ± 193.57 | 57.13 ± 34.58 | 3.28 ± 0.10 | 0.56 ± 0.21 | 0.13 ± 0.08 | 55.55 ± 1.75 | |
25 | 211.12 ± 167.77 | 50.49 ± 34.15 | 3.37 ± 0.13 | 0.23 ± 0.18 | 0.12 ± 0.08 | 57.22 ± 2.24 | |
30 | 85.68 ± 67.73 | 17.45 ± 15.54 | 3.22 ± 0.04 | 0.09 ± 0.07 | 0.04 ± 0.04 | 54.52 ± 0.76 | |
Emission standard c | 2000 | 150 d | - | - | - | - | |
Emission standard e | - | 10 f or 40 g | - | - | - | - |
Operation Data a | Long-Term Regular Operation 1 June 2016~31 December 2018 (Case A) | Short-Time Test Operation 31 May 2016~30 June 2016 (Case B) | HETC [23] 2 June 2015~31 May 2016 (Case C) |
---|---|---|---|
Operation time (h) | 17,853 | - | - |
Methane concentration | - | 42.3 | 56.14 |
Biogas consumption (m3) | 322,061 b | - | - |
Biogas consumption per hour or per day (m3/h or m3/d) | 18.04 or 433 | 24.72 or 593 | - or 433 f |
Net electricity generation (kWhe) | 350,548 | - | - |
Net electricity generation per hour or per day (kWhe/h or kWhe/d) | 19.64 or 471 | 27 or 647 | 26.2 g or 629 g |
Electricity generation efficiency from biogas, ηEB (kWhe/m3) | 1.09 c | 1.09 e | - |
Environmental benefits | |||
Greenhouse gas reduction (kg CO2e) d | 192,495 | - | - |
Greenhouse gas reduction per hour (kg CO2e/h) | 10.78 | - | - |
Greenhouse gas reduction per day (kg CO2e/d) | 258.77 | - | - |
Greenhouse gas reduction per year (kg CO2e/y) | 94,451 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-C.; Do, M.V.; Hsu, W.-L.; Liu, B.-L.; Chang, C.-Y.; Chen, Y.-H.; Yuan, M.-H.; Lin, C.-F.; Yu, C.-P.; Chen, Y.-H.; et al. A Case Study on the Electricity Generation Using a Micro Gas Turbine Fuelled by Biogas from a Sewage Treatment Plant. Energies 2019, 12, 2424. https://doi.org/10.3390/en12122424
Chang C-C, Do MV, Hsu W-L, Liu B-L, Chang C-Y, Chen Y-H, Yuan M-H, Lin C-F, Yu C-P, Chen Y-H, et al. A Case Study on the Electricity Generation Using a Micro Gas Turbine Fuelled by Biogas from a Sewage Treatment Plant. Energies. 2019; 12(12):2424. https://doi.org/10.3390/en12122424
Chicago/Turabian StyleChang, Chia-Chi, Manh Van Do, Wei-Li Hsu, Bo-Liang Liu, Ching-Yuan Chang, Yi-Hung Chen, Min-Hao Yuan, Cheng-Fang Lin, Chang-Ping Yu, Yen-Hau Chen, and et al. 2019. "A Case Study on the Electricity Generation Using a Micro Gas Turbine Fuelled by Biogas from a Sewage Treatment Plant" Energies 12, no. 12: 2424. https://doi.org/10.3390/en12122424
APA StyleChang, C. -C., Do, M. V., Hsu, W. -L., Liu, B. -L., Chang, C. -Y., Chen, Y. -H., Yuan, M. -H., Lin, C. -F., Yu, C. -P., Chen, Y. -H., Shie, J. -L., Wu, W. -Y., Lee, C. -H., & Tuyen, T. V. (2019). A Case Study on the Electricity Generation Using a Micro Gas Turbine Fuelled by Biogas from a Sewage Treatment Plant. Energies, 12(12), 2424. https://doi.org/10.3390/en12122424