Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods
Abstract
:1. Introduction
2. Benefits of Protected Cropping in Warm Climates
2.1. Economic Benefits
2.2. Environmental Benefits
2.3. Social Benefits
3. Climate-Control Requirements for Horticultural Crops in Warm Climates
3.1. Temperature
3.2. Humidity
3.3. Solar Radiation (PAR Irradiance)
3.4. Climate-Control Requirements for Crops in Warm Climatic Zones
3.5. Climate Control in Closed Greenhouses and Plant Factories
4. Cooling Technologies for Greenhouses and Plant Factories
4.1. Ventilation-Based Cooling
4.2. Evaporative-Cooling Approaches
4.2.1. Fogging Systems
4.2.2. Fan-Pad Evaporative Cooling
4.2.3. Roof Evaporative Cooling
4.3. Heat-Pump Cooling Systems
4.4. Geothermal Cooling Systems
4.5. Passive Cooling Technologies: Shading and Reflection
5. Humidity-Control Methods Suitable for Protected Cropping
5.1. Ventilation Based Humidity Control Methods
5.2. Humidity-Control Methods using Heat Pump Dehumidification
5.3. Humidity-Control Methods using Adsorption Methods
6. Concluding Remarks and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization. Database on arable land. 2016. Available online: https://data.worldbank.org/indicator/AG.LND.ARBL.HA.PC?view=chart (accessed on 12 February 2019).
- Fedoroff, N. Food in a future of 10 billion. Agri. Food Secur.r. 2016, 4, 1–10. [Google Scholar] [CrossRef]
- Benis, K.; Ferrao, P. Commercial farming within the urban environment—Taking stock of an evolving field in northern countries. Glob. Food Secur. 2018, 17, 30–37. [Google Scholar] [CrossRef]
- Baker, I.; de Zeeuw, H. Urban food policies and programmes: An overview. In Cities and Agriculture: Developing Resilient Urban Food Systems, 1st ed.; de Zeeuw, H., Drechsel, P., Eds.; Routledge: Abingdon, UK, 2015; pp. 26–55. [Google Scholar]
- Cuce, E.; Harjunowibowo, D.; Cuce, P.M. Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 64, 34–59. [Google Scholar] [CrossRef]
- Seginer, I.; Ioslovich, I. Optimal spacing and cultivation intensity for an industrialized crop production system. Agric. Syst. 1999, 62, 143–157. [Google Scholar] [CrossRef]
- Critten, D.L.; Bailey, B.J. A review of greenhouse engineering developments during the 1990s. Agric. For. Meteorol. 1990, 112, 1–22. [Google Scholar] [CrossRef]
- Kozai, T.; Ohyama, K.; Chun, C. Commercialized closed systems with artificial lighting for plant production. Acta Hortic. 2006, 711, 61–70. [Google Scholar] [CrossRef]
- Kozai, T. Sustainable plant factory: Closed plant production systems with artificial light for high resource use efficiencies and quality produce. Acta Hortic. 2013, 1004, 27–40. [Google Scholar] [CrossRef]
- Bennis, N.; Duplaix, J.; Enea, G.; Haloua, M.; Youlal, H. Greenhouse climate modelling and robust control. Comput. Electron. Agric. 2008, 61, 96–107. [Google Scholar] [CrossRef]
- Russo, G.; Anifantis, A.S.; Verdiani, G.; Mugnozza, G.S. Environmental analysis of geothermal heat pump and LPG greenhouse heating systems. Biosyst. Eng. 2014, 127, 11–23. [Google Scholar] [CrossRef]
- Hadley, D. Controlled Environment Horticulture Industry Potential in NSW. UNE Business School, University of New England, 2017. Available online: https://www.une.edu.au/__data/assets/pdf_file/0010/174565/controlled-environment-horticulture-industry-potential-hadley.pdf. (accessed on 12 February 2019).
- Barbosa, G.; Gadelha, F.; Kublik, N.; Proctor, A.; Reichelm, L.; Weissinger, E.; Wohlleb, G.; Halden, R. Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. Int. J. Environ. Res. Public Health 2015, 12, 6879–6891. [Google Scholar] [CrossRef] [PubMed]
- Graamans, L.; Baeza, E.; Dobbelstena, A.; Tsafaras, I.; Stanghellini, C. Plant factories versus greenhouses: Comparison of resource use efficiency. Agric. Syst. 2018, 160, 31–43. [Google Scholar] [CrossRef]
- Vadiee, A.; Martin, V. Energy management in horticultural applications through the closed greenhouse concept, state of the art. Renew. Sustain. Energy Rev. 2012, 16, 5087–5100. [Google Scholar] [CrossRef]
- Vadiee, A.; Martin, V. Energy management strategies for commercial greenhouses. Appl. Energy 2014, 114, 880–888. [Google Scholar] [CrossRef]
- Kozai, T. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 2013, 89, 447–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qoaider, L.; Steinbrecht, D. Photovoltaic systems: A cost competitive option to supply energy to off-grid agricultural communities in arid regions. Appl. Energy 2010, 87, 427–435. [Google Scholar] [CrossRef]
- Benli, H. Energetic performance analysis of a ground-source heat pump system with latent heat storage for a greenhouse heating. Energy Convers. Manag. 2011, 52, 581–589. [Google Scholar] [CrossRef]
- Van Beveren, P.J.M.; Bontsema, J.; Van Straten, G.; Van Henten, E.J. Minimal heating and cooling in a modern rose greenhouse. Appl. Energy 2015, 137, 97–109. [Google Scholar] [CrossRef]
- Joudi, K.A.; Farhan, A.A. Greenhouse heating by solar air heaters on the roof. Renew. Energy 2014, 72, 406–414. [Google Scholar] [CrossRef]
- Bouadila, S.; Lazaar, M.; Skouri, S.; Kooli, S.; Farhat, A. Assessment of the greenhouse climate with a new packed-bed solar air heater at night in Tunisia. Renew. Sustain. Energy Rev. 2014, 35, 31–41. [Google Scholar] [CrossRef]
- Sonneveld, P.J.; Swinkels, G.L.; Campen, A.M.; van Tujil, B.A.; Janssen, H.J.; Bot, G.P. Performance results of a solar greenhouse combining electrical and thermal energy production. Biosyst. Eng. 2010, 106, 48–57. [Google Scholar] [CrossRef]
- Mongkon, S.; Thepa, S.; Namprakai, P.; Pratinthong, N. Cooling performance assessment of horizontal earth tube system and effect on planting in tropical greenhouse. Energy Convers. Manag. 2014, 78, 225–236. [Google Scholar] [CrossRef]
- Connellan, G.J. Selection of greenhouse design and technology options for high temperature regions. Acta Hortic. 2002, 578, 113–117. [Google Scholar] [CrossRef]
- Soode, E.; Lampert, P.; Weber-Blaschke, G.; Richter, K. Carbon footprints of the horticultural products strawberries, asparagus, roses and orchids in Germany. J. Clean. Prod. 2015, 87, 168–179. [Google Scholar] [CrossRef]
- Razo, I.; Carrizales, L.; Castro, J.; Díaz-Barriga, F.; Monroy, M. Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut. 2004, 152, 129–152. [Google Scholar] [CrossRef]
- Shepherd, J.M. Evidence of urban-induced precipitation variability in arid climate Regimes. J. Arid Environ. 2006, 67, 607–628. [Google Scholar] [CrossRef]
- Kalantari, F.; Tahir, O.M.; Joni, R.A.; Fatemi, E. Opportunities and challenges in sustainability of vertical farming: A review. J. Landsc. Ecol. 2017, 2, 5–30. [Google Scholar] [CrossRef]
- Sarkar, A.; Majumder, M. Opportunities and challenges in sustainability of vertical eco-farming: A review. J. Adv. Agric. Technol. 2015, 2, 98–105. [Google Scholar] [CrossRef]
- Banerjee, C.; Adenaeuer, L. Up, up and away! The economics of vertical farming. J. Agric. Stud. 2014, 2, 40–60. [Google Scholar] [CrossRef]
- Touliatos, D.; Dodd, I.C.; McAinsh, M. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food Energy Secur. 2016, 5, 184–189. [Google Scholar] [CrossRef]
- Al-Kodmany, K. The vertical farm: A review of developments and implications for the vertical city. Buildings 2018, 8, 24. [Google Scholar] [CrossRef]
- Thomaier, S.; Specht, K.; Henckel, D.; Dierich, A.; Siebert, R.; Freisinger, U.B.; Sawicka, M. Farming in and on urban buildings: Present practice and specific novelties of zero-acreage farming (ZFarming). Renew. Agric. Food Syst. 2015, 30, 43–54. [Google Scholar] [CrossRef]
- Dubbeling, M. Integrating urban agriculture in the urban landscape. Urban Agric. Mag. 2011, 25, 43–46. [Google Scholar]
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities: A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z.M. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- De Bon, H.; Parrot, L.; Moustier, P. Sustainable urban agriculture in developing countries: A review. Agron. Sustain. Dev. 2010, 30, 21–32. [Google Scholar] [CrossRef]
- Orsini, F.; Kahane, R.; Nono-Womdim, R.; Gianquinto, G. Urban agriculture in the developing world: A review. Agron. Sustain. Dev. 2013, 33, 695–720. [Google Scholar] [CrossRef]
- Lovell, S.T. Multifunctional urban agriculture for sustainable land use planning in the United States. Sustainability 2010, 2, 2499–2522. [Google Scholar] [CrossRef]
- Galhena, D.H.; Freed, R.; Maredia, K.M. Home gardens: A promising approach to enhance household food security and wellbeing. Agric. Food Secur. 2013, 2, 1–24. [Google Scholar] [CrossRef]
- Mok, H.F.; Williamson, V.G.; Grove, J.R.; Burry, K.; Barker, S.F.; Hamilton, A.J. Strawberry fields forever? Urban agriculture in developed countries: A review. Agron. Sustain. Dev. 2014, 34, 21–43. [Google Scholar] [CrossRef]
- Bailey, B.J. Constraints, limitations and achievements in greenhouse natural ventilation. Acta Hortic. 2000, 534, 21–30. [Google Scholar] [CrossRef]
- Santosh, D.T.; Tiwari, K.N.; Singh, V.K.; Reddy, A.R. Microclimate control in greenhouses. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1730–1742. [Google Scholar]
- Dorais, M.; Papadopoulos, A.; Gosselin, A. Greenhouse tomato fruit quality. Hortic. Rev. 2001, 26, 239–319. [Google Scholar]
- Bruckner, A.; Schwarz, D.; Klaring, P. Environmental factors on carotenoid content in tomato (Lycopersicon esculentum (L.) Mill.). J. Appl. Bot. Food Qual. 2006, 80, 160–164. [Google Scholar]
- Dorais, M.; Demers, D.A.; Papadopoulos, A.P.; van Ieperen, W. Greenhouse tomato fruit cuticle cracking. Hortic. Rev. 2004, 30, 163–173. [Google Scholar]
- Gruda, N. impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit. Rev. Plant Sci. 2005, 24, 227–247. [Google Scholar] [CrossRef]
- Mortensen, L.M. The effect of photosynthetic active radiation and temperature on growth and flowering of ten flowering pot plant species. Am. J. Plant Sci. 2014, 5, 1907–1917. [Google Scholar] [CrossRef]
- Arve, L.E.; Terfa, M.T.; Gislerød, H.R.; Olsen, J.E.; Torre, S. High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves. Plant Cell Environ. 2013, 36, 382–392. [Google Scholar]
- Potters, G.; Pasternak, T.P.; Guisez, Y.; Palme, K.J.; Jansen, M.K. Stress-induced morphogenic response; growing out of trouble. Trends Plant Sci. 2007, 12, 98–105. [Google Scholar] [CrossRef]
- Koch, K.; Hartmann, K.D.; Schreiber, L.; Barthlott, W.; Neinhuis, C. Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environ. Exp. Bot. 2006, 56, 1–9. [Google Scholar] [CrossRef]
- Bakker, J.C. The effects of day and night humidity on growth and fruit production of sweet pepper (Capsicum annuum L.). J. Hortic. Sci. 1989, 64, 41–46. [Google Scholar] [CrossRef]
- Will, R.E.; Wilson, S.M.; Zou, C.B.; Hennessey, T.C. Increased vapour pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone. New Phytol. 2014, 200, 366–374. [Google Scholar] [CrossRef] [PubMed]
- McCree, K.J. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric. Meteorol. 1972, 10, 443–453. [Google Scholar] [CrossRef]
- Mottus, M.; Sulev, M.; Baret, F.; Lopez-lozano, L.; Reinart, A. Photosynthetically active radiation: Measurement and Modelling. In Encyclopedia of Sustainable Science and Technology; Springer: Berlin, Germany, 2015; pp. 7970–8000. [Google Scholar]
- Barber, J.; Anderson, B. Too much of a good thing: Light can be bad for photosynthesis. Trends Biochem. Sci. 1992, 17, 61–66. [Google Scholar] [CrossRef]
- Darko, E.; Heydarizadeh, P.; Schoefs, B.; Sabzalian, R.M. Photosynthesis under artificial light: The shift in primary and secondary metabolism. Philos. Trans. R. Soc. B 2014, 369, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Innes, S.H.; Arve, L.; Zimmermann, B.; Nybakken, L.; Melby, T.; Solhaug, K.; Olsena, J.E.; Torre, S. Elevated air humidity increases UV mediated leaf and DNA damage in pea (Pisum sativum) due to reduced flavonoid content and antioxidant power. Photochem. Photobiol. Sci. 2019, 18, 387–399. [Google Scholar] [CrossRef] [PubMed]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.P.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 2013, 3, 292–297. [Google Scholar] [CrossRef]
- Sommerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small-Scale Aquaponic Food Production: Integrated Fish and Plant Farming; FAO Fisheries and Aquaculture Technical Paper No. 589; Food and Agriculture Organization: Rome, Italy, 2014; pp. 1–262. [Google Scholar]
- Tazawa, S. Effects of various radiant sources on plant growth. Jpn. Agric. Res. Q. 1999, 33, 163–176. [Google Scholar]
- Ghosh, A.; Ganguly, A. Performance analysis of a partially closed solar regenerated desiccant assisted cooling system for greenhouse lettuce cultivation. Sol. Energy 2017, 158, 644–653. [Google Scholar] [CrossRef]
- Kang, J.H.; Kumar, S.K.; Atulba, S.L.; Jeong, B.R.; Hwang, S.J. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Hortic. Environ. Biotechnol. 2013, 54, 501–509. [Google Scholar] [CrossRef]
- Darrow, G.M. The Strawberry: History, Breeding and Physiology; Holt, Rhinehart and Winston: New York, NY, USA, 1966. [Google Scholar]
- Heuvelink, E.; Dorais, M. Crop growth and yield in tomatoes. In Crop Production Science in Horticulture Series; Heuvelink, E., Ed.; CABI Publishing: Wallingford, UK, 2005; pp. 85–144. [Google Scholar]
- McCartney, L.; Lefsrud, M.G. Protected agriculture in extreme environments: A review of controlled environment agriculture in tropical, arid, polar and urban locations. Am. Soc. Agric. Biol. Eng. 2018, 34, 455–473. [Google Scholar] [CrossRef]
- Ghani, S.; Bakochristou, F.; ElBialy, E.; Gamaledin, S.; Rashwan, M.; Abdelhalim, A.; Ismail, S. Design challenges of agricultural greenhouses in hot and arid environments: A review. Eng. Agric. Environ. Food 2019, 12, 48–70. [Google Scholar] [CrossRef]
- Harbick, K.; Albright, L.D. Comparison of energy consumption: Greenhouses and plant factories. In ISHS Acta Horticulturae 1134: VIII International Symposium on Light in on Horticulture 1134; International Society for Horticultural Science: Leuven, Belgium, 2016; pp. 285–292. [Google Scholar]
- Graamans, L.; van den Dobbelsteen, A.; Meinen, E.; Stanghellini, C. Plant factories; crop transpiration and energy balance. Agric. Syst. 2017, 153, 138–147. [Google Scholar] [CrossRef]
- Buchholz, M.; Buchholz, R.; Jochum, P.; Zaragoza, G.; Perez-Parra, J. Temperature and humidity control in the watergy greenhouse. In ISHS Acta Hortic 719: International Symposium on Greenhouse Cooling; International Society for Horticultural Science: Leuven, Belgium, 2006; pp. 401–408. [Google Scholar]
- Sethi, V.P.; Sharma, S.K. Survey of cooling technologies for worldwide agricultural greenhouse applications. Sol. Energy 2007, 81, 1447–1459. [Google Scholar] [CrossRef]
- Kumar, K.S.; Tiwari, K.N.; Jha, M.K. Design and technology for greenhouse cooling in tropical and subtropical regions: A review. Energy Build. 2009, 41, 1269–1275. [Google Scholar] [CrossRef]
- Teitel, M.; Tanny, J. Natural ventilation of greenhouses: Experiments and model. Agric. For. Meteorol. 1999, 96, 59–71. [Google Scholar] [CrossRef]
- Kittas, C.; Boulard, T.; Papadakis, G. Natural ventilation of a greenhouse with ridge and side openings: Sensitivity to temperature and wind effects. Trans. ASAE 1997, 40, 415–425. [Google Scholar] [CrossRef]
- Demrati, H.; Boulard, T.; Bekkaoui, A.; Bourden, L. Natural ventilation and micro-climatic performance of a large-scale banana greenhouse. J. Agric. Eng. Res. 2001, 80, 261–271. [Google Scholar] [CrossRef]
- Teitel, M.; Liran, O.; Tanny, J.; Barak, M. Wind driven ventilation of a mono-span greenhouse with a rose crop and continuous screened side vents and its effect on flow patterns and microclimate. Biosyst. Eng. 2008, 101, 111–122. [Google Scholar] [CrossRef]
- Dayan, J.E.; Dayan, E.; Strassberg, Y.; Presnov, E. Simulation and control of ventilation rates in greenhouses. Math. Comput. Simul. 2004, 65, 3–17. [Google Scholar] [CrossRef]
- Khaoua, S.A.; Bournet, P.E.; Migeon, C.; Boulardand, T.; Chasseriaux, G. Analysis of greenhouse ventilation efficiency based on computational fluid dynamics. Biosyst. Eng. 2006, 95, 83–98. [Google Scholar] [CrossRef]
- Impron, I.; Hemming, S.; Bot, G.P.A. Simple greenhouse climate model as a design tool for greenhouses in tropical lowland. Biosyst. Eng. 2007, 98, 79–89. [Google Scholar] [CrossRef]
- Ganguly, A.; Ghosh, S. Model development and experimental validation of a floriculture greenhouse under natural ventilation. Energy Build. 2009, 41, 521–527. [Google Scholar] [CrossRef]
- Benni, S.; Tassinari, P.; Bonora, F.; Barbaresi, A.; Torreggiani, D. Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a study case. Energy Build. 2016, 125, 276–286. [Google Scholar] [CrossRef]
- Espinoza, K.; Lopez, A.; Valera, D.L.; Molina-Aiz, F.D.; Torres, J.A.; Pena, A. Effects of ventilator configuration on the flow pattern of a naturally ventilated three-span Mediterranean greenhouse. Biosyst. Eng. 2017, 164, 13–30. [Google Scholar] [CrossRef]
- He, X.; Wang, J.; Guo, S.; Zhang, J.; Wei, B.; Sun, J.; Shu, S. Ventilation optimization of solar greenhouse with removable back walls based on CFD. Comput. Electron. Agric. 2018, 149, 16–25. [Google Scholar] [CrossRef]
- McCartney, L.; Lefsrud, M.G. Field trials of the Natural Ventilation Augmented Cooling (NVAC) greenhouse. Biosyst. Eng. 2018, 174, 159–172. [Google Scholar] [CrossRef]
- Ganguly, A.; Ghosh, S. Performance analysis of a floriculture greenhouse powered by integrated solar photovoltaic fuel cell system. J. Sol. Energy Eng. 2011, 133, 041001. [Google Scholar] [CrossRef]
- Goodhind, G.W. Air movement in glasshouses. Shinfield 1965, 7, 61–63. [Google Scholar]
- Carpenter, W.J.; Bark, L.D. Temperature pattern in greenhouse heating. Florists Rev. 1967, 309, 17–19. [Google Scholar]
- Walker, J.N.; Duncan, G.A. Effectiveness of recommended greenhouse air circulation systems. Trans. ASAE 1974, 17, 371–374. [Google Scholar] [CrossRef]
- Papadakis, G.M.; Mermier, M.; Meneses, J.F.; Boulard, T. Measurement and analysis of air exchange rates in a greenhouse with continuous roof and side openings. J. Agric. Eng. Res. 1996, 63, 219–228. [Google Scholar] [CrossRef]
- Wang, S.; Deltour, J. An experimental ventilation function for large greenhouses based on a dynamic energy balance model. J. Agric. Eng. 1996, 5, 103–112. [Google Scholar]
- Kittas, C.; Karamanis, M.; Katsoulas, N. Air temperature regime in a force ventilated greenhouse with rose crop. Energy Build. 2005, 37, 807–812. [Google Scholar] [CrossRef]
- Teitel, M.; Barak, M.; Zhao, Y. Temperature and humidity gradients in fan-ventilated greenhouse under two cooling methods. Acta Hortic. 2003, 614, 469–475. [Google Scholar] [CrossRef]
- Gazquez, J.C.; Lopez, J.C.; Baeza, E.; Saez, M.; Sanchez-Guerrero, M.C.; Medrano, E.; Lorenzo, P. Yield response of a sweet pepper crop to different methods of greenhouse cooling. Acta Hortic. ISHS. 2006, 719, 507–514. [Google Scholar] [CrossRef]
- Soni, P.; Salokhe, V.M.; Tantau, H.J. Effect of screen mesh size on vertical temperature distribution in naturally ventilated tropical greenhouses. Biosyst. Eng. 2005, 92, 469–482. [Google Scholar] [CrossRef]
- Fatnassi, H.; Boulard, T.; Poncet, C.; Chave, M. Optimization of greenhouse insect screening with computational fluid dynamics. Biosyst. Eng. 2006, 93, 301–312. [Google Scholar] [CrossRef]
- Harmanto, H.J.; Salokhe, V.M. Microclimate and air exchange rates in greenhouses covered with different nets in the humid tropics. Biosyst. Eng. 2006, 94, 239–253. [Google Scholar] [CrossRef]
- Kittas, C.; Bartzanas, T.; Jaffrin, A. Greenhouse evaporative cooling: Measurement and data analysis. Trans. ASAE 2001, 44, 683–689. [Google Scholar] [CrossRef]
- Jain, D.; Tiwari, G.N. Modelling and optimal design of evaporative cooling system in controlled environment greenhouse. Energy Convers. Manag. 2002, 43, 2235–2250. [Google Scholar] [CrossRef]
- Fuchs, M.; Dayan, E.; Presnov, E. Evaporative cooling of a ventilated greenhouse rose crop. Agric. For. Meteorol. 2006, 138, 203–215. [Google Scholar] [CrossRef]
- Chen, C.; Shen, T.; Weng, Y. Simple model to study the effects of temperature on the greenhouse with shading nets. Afr. J. Biotechnol. 2011, 10, 5001–5014. [Google Scholar]
- Xu, J.; Li, Y.; Wang, R.Z.; Liu, W.; Zhou, P. Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates. Appl. Energy 2015, 138, 291–301. [Google Scholar] [CrossRef]
- Ohyama, K.; Kozai, T.; Toida, H. Greenhouse cooling with continuous generation of upward moving fog for reducing wetting of plant foliage and air temperature fluctuations: A case study. Acta Hortic. 2008, 797, 321–326. [Google Scholar] [CrossRef]
- Arbel, A.; Barak, M.; Shklyar, A. Combination of forced ventilation and fogging systems for cooling greenhouses. Biosyst. Eng. 2003, 84, 45–55. [Google Scholar] [CrossRef]
- Ishii, M.; Sase, S.; Moriyama, H.; Okushima, L.; Ikeguchi, A.; Hayashi, M.; Kurata, K.; Kubota, C.; Kacira, M.; Giacomelli, G.A. Controlled environment agriculture for effective plant production systems in a semi-arid greenhouse. Jpn. Agric. Res. Q. 2016, 50, 101–113. [Google Scholar] [CrossRef]
- Montero, J.I.; Anton, A.; Beil, A.; Franquet, C. Cooling of greenhouse with compressed air fogging nozzles. Acta Hortic. 1994, 281, 199–209. [Google Scholar] [CrossRef]
- Katsoulas, N.; Baille, A.; Kittas, C. Effect of misting on transpiration and conductance of a green rose canopy. Agric. For. Meteorol. 2001, 106, 233–247. [Google Scholar] [CrossRef]
- Ozturk, H.H. Evaporative cooling efficiency of fogging system for greenhouses. Turk. J. Agric. For. 2003, 27, 49–57. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Kozai, T. Dynamic modelling of the environment in a naturally ventilated, fog cooled greenhouse. Renew. Energy 2006, 31, 1521–1539. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Kozai, T. On the determination of the overall heat transmission coefficient and soil heat flux for a fog-cooled, naturally ventilated greenhouse: Analysis of radiation and convection heat transfer. Energy Convers. Manag. 2006, 47, 2612–2628. [Google Scholar] [CrossRef]
- Toida, H.; Kozai, T.; Ohyama, K.; Handarto, H. Enhancing fog evaporation rate using an upward air stream to improve greenhouse cooling performing. Biosyst. Eng. 2006, 93, 205–211. [Google Scholar] [CrossRef]
- Perdigones, A.; Garcia, J.L.; Romero, A.; Rodriguez, A.; Luna, L.; Raposo, C.; de la Plaza, S. Cooling strategies for greenhouses in summer: Control of fogging by pulse width modulation. Biosyst. Eng. 2008, 99, 573–586. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xu, P.; Mao, J.; Tang, X.; Li, Z.; Shi, J. A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study. Appl. Energy 2015, 156, 213–222. [Google Scholar] [CrossRef]
- Abdel-wahab, S.K. Energy and water management in evaporative cooling systems in Saudi Arabia. Resour. Conserv. Recycl. 1994, 12, 135–146. [Google Scholar]
- Ganguly, A.; Ghosh, S. Modelling and analysis of a fan-pad ventilated floricultural greenhouse. Energy Build. 2007, 39, 1092–1097. [Google Scholar] [CrossRef]
- Banik, P.; Ganguly, A. Performance and economic analysis of a floricultural greenhouse with distributed fan-pad evaporative cooling coupled with solar desiccation. Sol. Energy 2017, 147, 439–447. [Google Scholar] [CrossRef]
- Willits, D.H.; Peet, M.M. Intermittent application of water to an externally mounted greenhouse shade cloth to modify cooling performance. Trans. ASAE 2000, 43, 1247–1252. [Google Scholar] [CrossRef]
- Sutar, R.F.; Tiwari, G.N. Analytical and numerical study of a controlled environment agricultural system for hot and dry climatic conditions. Energy Build. 1995, 23, 9–18. [Google Scholar] [CrossRef]
- Ghosal, M.K.; Tiwari, G.N.; Srivastava, N.S.L. Modelling and experimental validation of a greenhouse with evaporative cooling by moving water film over external shade cloth. Energy Build. 2003, 35, 843–850. [Google Scholar] [CrossRef]
- Giacomelli, G.A.; Giniger, M.S.; Krass, A.E.; Mears, D.R. Improved methods of greenhouse evaporating cooling. Acta Hortic. 1985, 174, 49–55. [Google Scholar] [CrossRef]
- Helmy, M.A.; Eltawil, M.; Ado-shieshaa, R.R.; El-Zan, N.M. Enhancing the evaporative cooling performance of fan-pad system using alternative pad materials and water film over the greenhouse roof. Agric. Eng. Int.: CIGR J. 2013, 15, 173–187. [Google Scholar]
- Al-Ismaili, A.M.; Jayasuriya, H. Seawater greenhouse in Oman: A sustainable technique for freshwater conservation and production. Renew. Sustain. Energy Rev. 2016, 54, 653–664. [Google Scholar] [CrossRef]
- Chou, S.K.; Chua, K.J.; Ho, J.C.; Ooi, C.L. On the study of an energy efficient greenhouse for heating, cooling and dehumidification applications. Appl. Energy 2004, 77, 355–373. [Google Scholar] [CrossRef]
- Ozgener, O.; Ozgener, L.; Goswami, D.Y. Performance of solar-assisted ground source heat pump system for greenhouse heating: An experimental study. Build. Environ. 2005, 40, 1040–1050. [Google Scholar] [CrossRef]
- Esen, H.; Inalli, M.; Esen, M. Technoeconomic appraisal of a ground source heat pump system for a heating season in eastern Turkey. Energy Convers. Manag. 2006, 47, 1281–1297. [Google Scholar] [CrossRef]
- Tong, Y.; Kozai, T.; Nishioka, N.; Ohyama, K. Reductions in energy consumption and CO2 emissions for greenhouse heated with heat pumps. Am. Soc. Agric. Biol. Eng. 2012, 3, 401–406. [Google Scholar] [CrossRef]
- Benli, H. A performance comparison between a horizontal source and a vertical source heat pump system for a greenhouse heating in the mild climate Elaziğ, Turkey. Appl. Therm. Eng. 2013, 50, 197–206. [Google Scholar] [CrossRef]
- Boughanmi, H.; Lazzar, M.; Bouadila, S.; Farbat, A. Thermal performance of a conic basket heat exchanger coupled to a geothermal heat pump for greenhouse cooling under Tunisian climate. Energy Build. 2015, 1, 87–96. [Google Scholar] [CrossRef]
- Valino, V.; Perdigones, A.; Garcia, J.L.; Luna, L. Experimental evaluation of a radiant heated floor coupled to an air to water heat pump for cooling of greenhouses. Span. J. Agric. Res. 2010, 3, 580–591. [Google Scholar] [CrossRef]
- Arunwattana, W. An evaluation of the potential of an air conditioning system using the earth-to-air heat exchanger duct. KMUTT Res. Dev. 2008, 31, 631–642. [Google Scholar]
- Ghosal, M.K.; Tiwari, G.N.; Das, D.K.; Pandey, K.P. Modeling and comparative thermal performance of ground air collector and earth air heat exchanger for heating of greenhouse. Energy Build. 2005, 37, 613–621. [Google Scholar] [CrossRef]
- Ghosal, M.K.; Tiwari, G.N. Modeling and parametric studies for thermal performance of an earth to air heat exchanger integrated with a greenhouse. Energy Convers. Manag. 2006, 47, 1779–1798. [Google Scholar] [CrossRef]
- Tiwari, G.N.; Akhtar, M.K.; Shukla, A.; Khan, M.E. Annual thermal performance of greenhouse with an earth-air heat exchanger: An experimental validation. Renew. Energy 2006, 31, 2432–2446. [Google Scholar] [CrossRef]
- Bansal, V.; Misra, R.; Agrawal, G.D.; Mathur, J. Performance analysis of earth-pipe air heat exchanger for summer cooling. Energy Build. 2010, 42, 645–658. [Google Scholar] [CrossRef]
- Bisoniya, T.S.; Kumar, A.; Baredar, P. Experimental and analytical studies of earth–air heat exchanger (EAHE) systems in India: A review. Renew. Sustain. Energy Rev. 2013, 19, 234–246. [Google Scholar] [CrossRef]
- Misra, R.; Bansal, V.; Agrawal, G.D.; Mathur, J.; Aseri, T. Transient analysis-based determination of derating factor for earth air tunnel heat exchanger in summer. Energy Build. 2013, 58, 103–110. [Google Scholar] [CrossRef]
- Santamouris, M.; Mihalakakou, G.; Balaras, C.A.; Argiriou, A.; Asimakopoulos, D.; Vallindras, M. Use of buried pipes for energy conservation in cooling of agricultural greenhouses. Sol. Energy 1995, 55, 111–124. [Google Scholar] [CrossRef]
- Pulat, E.; Coskun, S.; Unlu, K.; Yamankaradeniz, N. Experimental study of horizontal ground source heat pump performance for mild climate in Turkey. Energy 2009, 34, 1284–1295. [Google Scholar] [CrossRef]
- Ozgener, L.; Ozgener, O. An experimental study of the energetic performance of an underground air tunnel system for greenhouse cooling. Renew. Energy 2010, 35, 2804–2811. [Google Scholar] [CrossRef]
- Ozgener, O.; Ozgener, L.; Goswami, D.Y. Experimental prediction of total thermal resistance of a closed loop EAHE for greenhouse cooling system. Int. Commun. Heat Mass 2011, 38, 711–716. [Google Scholar] [CrossRef]
- Wu, M.C.; Hou, C.Y.; Jiang, C.M.; Wang, U.T.; Wang, C.U.; Chen, H.H.; Chang, H.M. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem. 2007, 101, 1753–1758. [Google Scholar] [CrossRef]
- Khedari, J.; Permchart, W.; Pratinthong, N.; Thepa, S.; Hirunlabh, J. Field study using the ground as a heat sink for the condensing unit of an air conditioner in Thailand. Energy 2001, 26, 797–810. [Google Scholar] [CrossRef]
- Al-Ajmi, F.; Loveday, D.L.; Hanby, V.I. The cooling potential of earth–air heat exchangers for domestic buildings in a desert climate. Build. Environ. 2006, 41, 235–244. [Google Scholar] [CrossRef]
- Sanaye, S.; Niroomand, B. Horizontal ground coupled heat pump: Thermal economic modeling and optimization. Energy Convers. Manag. 2010, 51, 2600–2612. [Google Scholar] [CrossRef]
- Khan, N.; Su, Y.; Riffat, S.B. A review on wind driven ventilation techniques. Energy Build. 2008, 40, 1586–1604. [Google Scholar] [CrossRef]
- Castellano, S. Photovoltaic greenhouses: Evaluation of shading effect and its influence on agricultural performances. J. Agric. Eng. 2014, 45, 168–174. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Al-Faraj, A.A.; Abdel-Ghany, A.M. Shading greenhouses to improve the microclimate, energy and water saving in hot regions: A review. Sci. Hort. 2016, 201, 36–45. [Google Scholar] [CrossRef]
- Garcia, M.L.; Medrano, E.; Guerrero, M.C.S.; Lorenzo, P. Climatic effects of two cooling systems in greenhouses in the Mediterranean area: External mobile shading and fog systems. Biosyst. Eng. 2011, 108, 133–143. [Google Scholar] [CrossRef]
- Yano, A.; Furue, A.; Kadowaki, M.; Tanaka, T.; Hiraki, E.; Miyamoto, M.; Ishizu, F.; Noda, S. Electrical energy generated by photovoltaic modules mounted inside the roof of a north-south oriented greenhouse. Biosyst. Eng. 2009, 2, 228–238. [Google Scholar] [CrossRef]
- Cossu, M.; Murgia, L.; Ledda, L.; Deligios, P.A.; Sirigu, A.; Chessa, F.; Pazzona, A. Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity. Appl. Energy 2014, 133, 89–100. [Google Scholar] [CrossRef]
- Fatnassi, H.; Poncet, C.; Bazzano, M.M.; Brun, R.; Bertin, N. A numerical simulation of the photovoltaic greenhouse microclimate. Sol. Energy 2015, 120, 575–584. [Google Scholar] [CrossRef]
- Cossu, M.; Ledda, L.; Urracci, G.; Sirigu, A.; Cossu, A.; Murgia, L.; Pazzona, A.; Yano, A. An algorithm for the calculation of the light distribution in photovoltaic greenhouses. Sol. Energy 2017, 141, 38–48. [Google Scholar] [CrossRef]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The potential of Agrivoltaic systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef]
- Marrou, H.; Guilioni, L.; Dufour, L.; Dupraza, C.; Wery, J. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agric. For. Meteorol. 2013, 177, 117–132. [Google Scholar] [CrossRef]
- Ganguly, A.; Misra, D.; Ghosh, S. Modelling and analysis of solar photovoltaic-electrolyzer fuel cell hybrid power system integrated with a floriculture greenhouse. Energy Build. 2010, 42, 2036–2043. [Google Scholar] [CrossRef]
- Carlini, M.; Villarini, M.; Esposto, S.; Bernardi, M. Performance analysis of greenhouses with integrated photovoltaic modules. Lect. Notes Comput. Sci. 2010, 6017, 206–214. [Google Scholar]
- Marucci, A.; Monarca, D.; Colantoni, A.; Campiglia, E.; Cappuccini, A. Analysis of the internal shading in a photovoltaic greenhouse tunnel. J. Agric. Eng. 2017, 48, 154–160. [Google Scholar] [CrossRef]
- Marucci, A.; Zambon, I.; Colantoni, A.; Monarca, D.A. Combination of agricultural and energy purposes: Evaluation of a prototype of photovoltaic greenhouse tunnel. Renew. Sustain. Energy Rev. 2018, 82, 1178–1186. [Google Scholar] [CrossRef]
- Klaring, H.P.; Krumbein, A. The effect of constraining the intensity of solar radiation on the photosynthesis, growth, yield and product quality of tomato. J. Agron. Crop Sci. 2013, 199, 351–359. [Google Scholar] [CrossRef]
- Kavga, A.; Trypanagnostopoulos, G.; Zervoudakis, G.; Tripanagnostopoulos, Y. Growth and physiological characteristics of lettuce (Lactuca sativa L.) and rocket (Eruca sativa Mill.) plants cultivated under photovoltaic panels. Not. Bot. Horti Agribot. Cluj-Napoca 2018, 46, 206–212. [Google Scholar] [CrossRef]
- Trypanagnostopoulos, G.; Kavga, A.; Souliotis, M.; Tripanagnostopoulos, Y. Greenhouse performance results for roof installed photovoltaics. Renew. Energy 2017, 111, 724–731. [Google Scholar] [CrossRef]
- Cossu, M.; Yano, A.; Li, Z.; Onoe, M.; Nakamura, H.; Matsumoto, T.; Nakata, J. Advances on the semitransparent modules based on micro solar cells: First integration in a greenhouse system. Appl. Energy 2016, 162, 1042–1051. [Google Scholar] [CrossRef]
- Kozai, T.; He, D.; Ohtsuka, H. Simulation of solar radiation transmission into a lean-to greenhouse with photovoltaic cells on the roof: Case study for a greenhouse with infinite longitudinal length. Environ. Control Biol. 1999, 37, 101–108. [Google Scholar] [CrossRef]
- Kempkes, F.; Zwart, F.H.; Munoz, P.; Montero, J.I.; Baptista, F.J.; Giuffrida, F.; Gilli, C.; Stepowska, A.; Stanghellini, C. Heating and dehumidification in production greenhouses at northern latitudes: Energy use. Acta Hortic. 2017, 1164, 445–452. [Google Scholar] [CrossRef]
- Rousse, D.R.; Martin, D.Y.; Theriault, R.; Leveillee, F.; Boily, R. Heat recovery in greenhouses: A practical solution. Appl. Therm. Eng. 2000, 20, 687–706. [Google Scholar] [CrossRef]
- Campen, J.B.; Bot, G.P.A.; de Zwart, H.F. Dehumidification of greenhouses at northern latitudes. Biosyst. Eng. 2003, 86, 487–493. [Google Scholar] [CrossRef]
- Han, J.; Gao, Z.; Brad, R.; Waterer, D. Comparison of greenhouse dehumidification strategies in cold regions. Appl. Eng. Agric. 2015, 31, 133–142. [Google Scholar]
- Piscia, D.; Munoz, P.; Panades, C.; Montero, J.I. A method of coupling CFD and energy balance simulations to study humidity control in unheated greenhouses. Comput. Electron. Agric. 2015, 115, 129–141. [Google Scholar] [CrossRef]
- Chantoiseau, E.; Migeon, C.; Chasseriaux, G.; Bournet, P.E. Heat pump dehumidifier as an efficient device to prevent condensation in horticultural greenhouses. Biosyst. Eng. 2016, 142, 27–41. [Google Scholar] [CrossRef]
- Boulard, T.; Baille, A.; Lagier, J.; Mermier, M.; Vanderschmitt, E. Water vapour transfer in a plastic house equipped with a dehumidification heat pump. J. Agric. Eng. Res. 1989, 44, 191–204. [Google Scholar] [CrossRef]
- Chassériaux, G. Heat pumps for reducing humidity in plastics greenhouses. Plasticulture 1987, 73, 29–40. [Google Scholar]
- Zapata, J.M.; Molina, J.A.; Rodriguez, F.; Lopez, J.C. Evaluation of a dehumidifier in a mild weather greenhouse. Appl. Therm. Eng. 2019, 146, 92–103. [Google Scholar] [CrossRef]
- Davies, P.A. A solar cooling system for greenhouse food production in hot climates. Sol. Energy 2005, 79, 661–668. [Google Scholar] [CrossRef]
- Lychnos, G.; Davies, P.A. Modelling and experimental verification of a solar-powered liquid desiccant cooling system for greenhouse food production in hot climates. Energy 2012, 40, 116–130. [Google Scholar] [CrossRef] [Green Version]
- Abu-Hamdeh, N.H.; Abu-Hamdeh, K.H. Solar liquid desiccant regeneration and nanofluids in evaporative cooling for greenhouse food production in Saudi Arabia. Sol. Energy 2016, 134, 202–210. [Google Scholar] [CrossRef]
- Ali, A.; Ishaque, K.; Lashin, A.; Arifi, N. Modelling of a liquid desiccant dehumidification system for close type greenhouse cultivation. Energy 2017, 118, 578–589. [Google Scholar] [CrossRef]
- Sultan, M.; Miyazaki, T.; Saha, B.B.; Koyama, S. Steady state investigation of water vapour adsorption for thermally driven adsorption-based greenhouse air conditioning system. Renew. Energy 2016, 86, 785–795. [Google Scholar] [CrossRef]
- Campen, J.B.; Bot, P.A. Design of a low energy dehumidifying system for greenhouses. J. Agric. Eng. Res. 2001, 78, 65–73. [Google Scholar] [CrossRef]
- Campen, J.B.; Kempkes, F.L.K.; Bot, G.P.A. Mechanically controlled moisture removal from greenhouses. Biosyst. Eng. 2009, 102, 424–432. [Google Scholar] [CrossRef]
Crop | Optimum Temperature (°C) | Optimum RH (%) | PPFD (µmol m−2·s−1) | References |
---|---|---|---|---|
Eggplant | 25–28 day 14–16 night | 65–75 | 504 | [63,64] |
Cucumber | 25–30 | 80–90 | 400 | [63] |
Tomato | 23–27 day 13–16 night | 50–60 | 400 | [38,63] |
Peppers | 22–30 day 14–16 night | 60–65 | 504 | [63,64] |
Lettuce | 24–28 day 13–16 night | 65–80 | 260–290 | [64,65,66] |
Strawberry | 20–26 day 13–16 night | 50–65 | 200–400 | [67] |
Beans | 22–26 day 16–18 night | 70–80 | 336–420 | [63] |
Peas | 25–30 day 16–18 night | 70–80 | 672 | [64,68] |
Geographical Location | Humidity-Control Approach, Details | Humidity & Temperature Control Range | Source |
---|---|---|---|
The Netherlands | Liquid desiccant: calcium chloride | Outside humidity of 70%–85% RH | [167] |
Canada | Ventilation with air-to-air heat exchanger for recovery of heat | Below 75% RH inside the greenhouse | [168] |
The Netherlands | Condensing water vapour onto finned pipes | Outside air at 80% RH | [169] |
France | Heat-pump dehumidification | Avoid condensation inside the greenhouse while maintaining temperature at 16 °C | [172] |
The Netherlands | Forced ventilation with heat exchange | Maintain RH at 80% | [181,182] |
Cold regions | Mechanical refrigeration dehumidification | Maintain RH at 75% | [170] |
The Netherlands | Liquid desiccant, calcium chloride | Maintain RH between 75% and 85% | [179] |
Spain | Heat pump dehumidifier | 80 to 85% RH @ ambient temperature above 15 °C | [175] |
Abu Dhabi | Liquid desiccant, lithium chloride, calcium chloride | Outside RH in the range of 40%–60% | [176] |
Coastal cities in hot climatic zones (e.g., Mumbai) | Liquid desiccant with magnesium chloride | Various outside humidity ranges. Humidity control used to improve effectiveness of sensible cooling | [177] |
Saudi Arabia | Liquid desiccant, calcium chloride | Temperature reduction by 6 °C in humid regions due to use of desiccants | [178] |
India (tropical, subtropical) | Solid desiccant, silica gel | Maintain temperature inside the greenhouse during monsoon conditions below 27 °C | [118] |
India (tropical, subtropical) | Liquid desiccant, lithium chloride | Maintain greenhouse conditions below 27 °C | [65] |
NA | Solid desiccants: silica gel, activated carbon powder (ACP), activated carbon fibre (ACF) | 60% RH (silica gel, ACP/ACF) 40% RH (silica gel/ACF) 20% RH (silica gel) | [180] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabbi, B.; Chen, Z.-H.; Sethuvenkatraman, S. Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods. Energies 2019, 12, 2737. https://doi.org/10.3390/en12142737
Rabbi B, Chen Z-H, Sethuvenkatraman S. Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods. Energies. 2019; 12(14):2737. https://doi.org/10.3390/en12142737
Chicago/Turabian StyleRabbi, Barkat, Zhong-Hua Chen, and Subbu Sethuvenkatraman. 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods" Energies 12, no. 14: 2737. https://doi.org/10.3390/en12142737
APA StyleRabbi, B., Chen, Z.-H., & Sethuvenkatraman, S. (2019). Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods. Energies, 12(14), 2737. https://doi.org/10.3390/en12142737