Multiscale Computational Fluid Dynamics
Abstract
:1. Introduction
2. Macroscale Simulation
2.1. Review of Equations and Challenges
2.2. Basic Methodologies
2.3. Turbulence Modelling
2.4. Sub-Grid Multiphysics Modelling
3. Multiscale Modelling
3.1. Motivation: Micro- and Nanotechnologies
3.2. Hybrid Molecular–Continuum Methods
3.3. Mesoscale
3.3.1. Lattice-Boltzmann Method
3.3.2. Dissipative Particle Dynamics
4. Conclusions
- We have good reason to believe that continuum fluid mechanics and the Navier–Stokes equations represent a good description of many systems of interest, particularly to those studying branches of engineering related to the topics covered in the journal Energies. With modern computational resources, CFD based on these principles can give accurate answers and represents a valuable tool in modern engineering practice.
- One of the main challenges to CFD though is how to deal with different physical processes operating across a range of scales. This can include scales which we are unable to adequately resolve for reasons of computational cost, such as turbulence, and also where the fundamental physics has changed nature, such as small scales where the continuum approximation is no longer valid.
- Turbulence is a key aspect of many if not most engineering flows and its modelling is still an important area of research in CFD. No universal turbulence model has been developed and it is unlikely to be found; instead, the choice of turbulence model used depends on the type of flow being studied, the cost and level of accuracy needed and so forth. RANS methods are largely mature and are valuable for a wide range of cases of engineering importance.
- Particularly for cases where the fluctuating component of the flow (irrespective of whether this is turbulent or deterministic) is important, LES and related methods are frequently used. Implicit Large Eddy Simulation has been established as promising approach to modelling and simulating turbulent flows, particularly compressible flows. There is significant progress in subgrid scale modelling in the framework of classical LES and in some applications, e.g., multispecies turbulent flows a combination of classical LES and iLES may offer an alternative path of future research.
- There are still challenges to be solved in LES (both classical and iLES), particularly in terms of the treatment of boundary conditions, where wall modelling and hybrid approaches such as DES are of interest.
- Microscale physical modelling can be included into CFD in the form of continuum mechanics models where appropriate, allowing us to model not only turbulence but also processes such as combustion and dispersed multiphase flow. The development of such models and their validation is a challenge and the resulting models often represent a tradeoff between cost and accuracy. Where the microscale physics is no longer a continuum mechanics process, alternative (usually kinetic-based) modelling must be integrated into the CFD.
- Coupling of continuum and molecular fluid dynamics methods remains a challenging problem due to the large variations of spatial and time scales. There is currently no accurate theoretical framework that can be used for exchanging information across scales, e.g., at the molecular–continuum interface.
- The multiscale modelling can provide significant predictive capability in energy problems, e.g., in problems involving particles, and at the fluid–material interfaces where heat transfer issues become important.
Author Contributions
Funding
Conflicts of Interest
References
- Spalart, P.R.; Venkatakrishnan, V. On the role and challenges of CFD in the aerospace industry. Aeronaut. J. 2016, 120, 209–232. [Google Scholar] [CrossRef] [Green Version]
- Rider, W.; Kamm, J.; Weirs, V. Verification, validation, and uncertainty quantification for coarse grained simulation. Coarse Grained Simul. Turbul. Mix. 2016, 168–189. [Google Scholar]
- Drikakis, D.; Kwak, D.; Kiris, C. Computational Aerodynamics: Advances and Challenges. Aeronaut. J. 2016, 120, 13–36. [Google Scholar] [CrossRef]
- Norton, T.; Sun, D.W. Computational fluid dynamics (CFD)—An effective and efficient design and analysis tool for the food industry: A review. Trends Food Sci. Technol. 2006, 17, 600–620. [Google Scholar] [CrossRef]
- Kobayashi, T.; Tsubokura, M. CFD Application in Automotive Industry. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design; Springer: Berlin/Heidelberg, Germany, 2009; Volume 100. [Google Scholar]
- Issa, R.I. Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting. J. Comp. Phys. 1985, 62, 40–65. [Google Scholar] [CrossRef]
- Uroic, T.; Jasak, H. Block-selective algebraic multigrid for implicitly coupled pressure-velocity system. Comput. Fluids 2018, 167, 100–110. [Google Scholar] [CrossRef]
- Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A Tensorial Approach to Computational Continuum Mechanics using Object Orientated Techniques. Comput. Phys. 1998, 12, 620–631. [Google Scholar] [CrossRef]
- Cantwell, C.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; De Grazia, A.; Yakovlev, S.; Lombard, J.E.; Ekelschot, D.; et al. Nektar++: An open-source spectral/hp element framework. Comput. Phys. Commun. 2015, 192, 205–219. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Durbin, P.A. Some Recent Developments in Turbulence Closure Modeling. Annu. Rev. Fluid Mech. 2018, 50, 77–103. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The Numerical Computation of Turbulent Flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Menter, F.R. Review of the shear-stress transport turbulence model experience from an industrial perspective. Int. J. Comput. Fluid Dyn. 2009, 23, 305–316. [Google Scholar] [CrossRef]
- Jiang, L.; Tabor, G.; Gao, G. A new turbulence model for separated flows. Int. J. Comp. Fluid Dyn. 2011, 25, 427–438. [Google Scholar] [CrossRef]
- Speziale, C.G. Analytical Methods for the Development of Reynolds-Stress Closures in Turbulence. Ann. Rev. Fluid Mech. 1991, 23, 107–157. [Google Scholar] [CrossRef]
- Wilcox, D.C. Simulating transition with a two-equation turbulence model. AIAA J. 1994, 32, 247–255. [Google Scholar] [CrossRef]
- Drikakis, D.; Hahn, M.; Mosedale, A.; Thornber, B. Large eddy simulation using high-resolution and high-order methods. Philos. Trans. R. Soc. A 2009, 367, 2985–2998. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.T.; Park, G.I. Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows. Annu. Rev. Fluid Mech. 2018, 50, 535–561. [Google Scholar] [CrossRef]
- Spalart, P.; Jou, W.; Strelets, M.; Allmaras, S. Comments of feasibility of LES for wings, and on a hybrid RANS/LES approach. In Proceedings of the International Conference on DNS/LES, Ruston, LA, USA, 4–8 August 1997. [Google Scholar]
- Spalart, P.R. Detached Eddy Simulation. Ann. Rev. Fluid Mech. 2009, 41, 181–202. [Google Scholar] [CrossRef]
- Boris, J.; Grinstein, F.; Oran, E.; Kolbe, R. New insights into large eddy simulation. Fluid Dyn. Res. 1992, 10, 199–228. [Google Scholar] [CrossRef]
- Hirt, C. Heuristic stability theory for finite-difference equations. J. Comput. Phys. 1968, 2, 339–355. [Google Scholar] [CrossRef]
- Domaradzki, J.A.; Radhakrishnan, S. Effective eddy viscosities in implicit modeling of decaying high Reynolds number turbulence with and without rotation. Fluid Dyn. Res. 2005, 36, 385–406. [Google Scholar] [CrossRef]
- Margolin, L.G.; Rider, W.J. A rationale for implicit turbulence modelling. Int. J. Numer. Methods Fluids 2002, 39, 821–841. [Google Scholar] [CrossRef]
- Rider, W.; Margolin, L. From numerical analysis to implicit subgrid turbulence modeling. In Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, USA, 23–26 June 2003. [Google Scholar] [CrossRef]
- Margolin, L.G.; Rider, W.J. The design and construction of implicit LES models. Int. J. Numer. Methods Fluids 2005, 47, 1173–1179. [Google Scholar] [CrossRef]
- Margolin, L.G.; Rider, W.J.; Grinstein, F.F. Modeling turbulent flow with implicit LES. J. Turbul. 2006, 7, 27. [Google Scholar] [CrossRef]
- Drikakis, D.; Rider, J. High-Resolution Methods for Incompressible and Low-Speed Flows; Springer: Berlin, Germany, 2004; Volume 1. [Google Scholar]
- Grinstein, F.F.; Margolin, L.G.; Rider, W.J. Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics; Cambridge University Press: Cambridg, UK, 2007. [Google Scholar]
- Harten, A. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 1983, 49, 357–393. [Google Scholar] [CrossRef] [Green Version]
- Toro, E. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction; Springer: Berlin, Germany, 1999. [Google Scholar]
- Drikakis, D. Advances in turbulent flow computations using high-resolution methods. Prog. Aerosp. Sci. 2003, 39, 405–424. [Google Scholar] [CrossRef]
- Mosedale, A.; Drikakis, D. Assessment of very high-order of accuracy in LES models. J. Fluids Eng. 2007, 129, 1497–1503. [Google Scholar] [CrossRef]
- Hahn, M.; Drikakis, D. Assessment of large-eddy simulation of internal separated flow. J. Fluids Eng. Trans. ASME 2009, 131, 0712011–07120115. [Google Scholar] [CrossRef]
- Balachandar, S.; Eaton, J.K. Turbulent Dispersed Multiphase Flow. Annu. Rev. Fluid Mech. 2010, 42, 111–133. [Google Scholar] [CrossRef]
- Fox, R.O. Large-Eddy-Simulation Tools for Multiphase Flows. Annu. Rev. Fluid Mech. 2012, 44, 47–76. [Google Scholar] [CrossRef]
- Yeoh, G.H.; Tu, J. Computational Techniques for Multiphase Flows, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Roekaerts, D.; Vervisch, L. (Eds.) Best Practice Guidelines for Computational Fluid Dynamics of Turbulent Combustion; BPG, ERCOFTAC: Brussels, Belgium, 2016. [Google Scholar]
- Sommerfeld, M.; van Wachem, B.; Oliemans, R. (Eds.) Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multi-Phase Flows; BPG, ERCOFTAC: Brussels, Belgium, 2008. [Google Scholar]
- Spalding, D.B. Mixing and Chemical Reaction in Steady Confined Turbulent Flames. In Proceedings of the Thirteenth Symposium (International) on Combustion, Salt Lake City, UT, USA, 23–29 August 1970; p. 649. [Google Scholar]
- Magnussen, B.F. On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow. In Proceedings of the 19th Aerospace Sciences Meeting, St. Louis, MO, USA, 12–15 January 1981; p. 42. [Google Scholar]
- Ertesvag, I.S.; Magnussen, B.F. The Eddy Dissipation Turbulence Energy Cascade Model. Combust. Sci. Technol. 2000, 159, 213–235. [Google Scholar] [CrossRef]
- Poinsot, T.; Veynante, D. Theoretical and Numerical Combustion, 2nd ed.; R.T. Edwards, Inc.: Philadelphia, PA, USA, 2005. [Google Scholar]
- Peters, B.; Baniasadi, M.; Baniasadi, M.; Besseron, X.; Donoso, A.E.; Mohseni, M.; Pozzetti, G. XDEM multi-physics and multi-scale simulation technology: Review of DEM–CFD coupling, methodology and engineering applications. Particuology 2019, 44, 176–193. [Google Scholar] [CrossRef]
- Drew, D.A. Mathematical Modelling of Two-Phase Flow. Ann. Rev. Fluid Mech. 1983, 15, 261–291. [Google Scholar] [CrossRef]
- Fox, R.O. On multiphase turbulence models for collisional fluid–particle flows. J. Fluid Mech. 2014, 742, 368–424. [Google Scholar] [CrossRef]
- Riella, M.; Kahraman, R.; Tabor, G. Reynolds-Averaged Two-Fluid Model prediction of moderately dilute fluid-particle flow over a backward-facing step. Int. J. Multiph. Flow 2018, 106, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Riella, M.; Kahraman, R.; Tabor, G. Inhomogeneity and anisotropy in Eulerian–Eulerian near-wall modelling. Int. J. Multiph. Flow 2019, 114, 9–18. [Google Scholar] [CrossRef]
- Wu, L.; Ho, M.T.; Germanou, L.; Gu, X.J.; Liu, C.; Xu, K.; Zhang, Y. On the apparent permeability of porous media in rarefied gas flows. J. Fluid Mech. 2017, 822, 398–417. [Google Scholar] [CrossRef] [Green Version]
- Germanou, L.; Ho, M.T.; Zhang, Y.; Wu, L. Intrinsic and apparent gas permeability of heterogeneous and anisotropic ultra-tight porous media. J. Nat. Gas Sci. Eng. 2018, 60, 271–283. [Google Scholar] [CrossRef]
- Boek, E.S.; Venturoli, M. Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math. Appl. 2010, 59, 2305–2314. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.; Wang, N.; Zhang, X.; Tai, Q.; Tsai, D.P.; Chan, H.L. Optofluidic planar reactors for photocatalytic water treatment using solar energy. Biomicrofluidics 2010, 4, 043004. [Google Scholar] [CrossRef] [Green Version]
- Adleman, J.R.; Boyd, D.A.; Goodwin, D.G.; Psaltis, D. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 2009, 9, 4417–4423. [Google Scholar] [CrossRef]
- Lee, M.T.; Werhahn, M.; Hwang, D.J.; Hotz, N.; Greif, R.; Poulikakos, D.; Grigoropoulos, C.P. Hydrogen production with a solar steam–Methanol reformer and colloid nanocatalyst. Int. J. Hydrog. Energy 2010, 35, 118–126. [Google Scholar] [CrossRef]
- Zimmerman, R.; Morrison, G.; Rosengarten, G. A microsolar collector for hydrogen production by methanol reforming. J. Sol. Energy Eng. 2010, 132, 011005. [Google Scholar] [CrossRef]
- Hendriks, B.; Kuiper, S.; As, M.V.; Renders, C.; Tukker, T. Electrowetting-based variable-focus lens for miniature systems. Opt. Rev. 2005, 12, 255–259. [Google Scholar] [CrossRef]
- Mantzalis, D.; Asproulis, N.; Drikakis, D. Filtering carbon dioxide through carbon nanotubes. Chem. Phys. Lett. 2011, 506, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Mantzalis, D.; Asproulis, N.; Drikakis, D. Enhanced carbon dioxide adsorption through carbon nanoscrolls. Phys. Rev. E 2011, 84, 066304. [Google Scholar] [CrossRef]
- Drikakis, D.; Asproulis, N.; Mantzalis, D. Carbon Dioxide Capture Using Multi-Walled Carbon Nanotubes. J. Comput. Theor. Nanosci. 2015, 12, 3981–3993. [Google Scholar] [CrossRef]
- Mantzalis, D.; Asproulis, N.; Drikakis, D. Carbon Dioxide Transport in Carbon Nanopores; Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2012; Volume 362, p. 012018. [Google Scholar]
- Kim, M.; Sell, A.; Sinton, D. Aquifer-on-a-Chip: Understanding pore-scale salt precipitation dynamics during CO2 sequestration. Lab Chip 2013, 13, 2508–2518. [Google Scholar] [CrossRef]
- Song, W.; Fadaei, H.; Sinton, D. Determination of dew point conditions for CO2 with impurities using microfluidics. Environ. Sci. Technol. 2014, 48, 3567–3574. [Google Scholar] [CrossRef]
- Papanikolaou, M.; Frank, M.; Drikakis, D. Nanoflow over a fractal surface. Phys. Fluids 2016, 28, 082001. [Google Scholar] [CrossRef] [Green Version]
- Sofos, F.; Karakasidis, T.; Liakopoulos, A. Transport properties of liquid argon in krypton nanochannels: anisotropy and non-homogeneity introduced by the solid walls. Int. J. Heat Mass Transf. 2009, 52, 735–743. [Google Scholar] [CrossRef]
- Giannakopoulos, A.; Sofos, F.; Karakasidis, T.; Liakopoulos, A. Unified description of size effects of transport properties of liquids flowing in nanochannels. Int. J. Heat Mass Transf. 2012, 55, 5087–5092. [Google Scholar] [CrossRef]
- Frank, M.; Drikakis, D. Solid-like heat transfer in confined liquids. Microfluid. Nanofluidics 2017, 21, 148. [Google Scholar] [CrossRef] [Green Version]
- Frank, M.; Drikakis, D. Thermodynamics at Solid–Liquid Interfaces. Entropy 2018, 20, 362. [Google Scholar] [CrossRef]
- Papanikolaou, M.; Frank, M.; Drikakis, D. Effects of surface roughness on shear viscosity. Phys. Rev. E 2017, 95, 033108. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Kalweit, M.; Drikakis, D. Multiscale methods for micro/nano flows and materials. J. Comput. Theor. Nanosci. 2008, 5, 1923–1938. [Google Scholar] [CrossRef]
- Kalweit, M.; Drikakis, D. Multiscale simulation strategies and mesoscale modelling of gas and liquid flows. IMA J. Appl. Math. 2011, 76, 661–671. [Google Scholar] [CrossRef]
- Drikakis, D.; Frank, M. Advances and challenges in computational research of micro-and nanoflows. Microfluid. Nanofluidics 2015, 19, 1019–1033. [Google Scholar] [CrossRef]
- Hadjiconstantinou, N.G.; Patera, A.T. Heterogeneous atomistic-continuum representations for dense fluid systems. Int. J. Mod. Phys. C 1997, 8, 967–976. [Google Scholar] [CrossRef]
- Hadjiconstantinou, N.G. Hybrid atomistic—Continuum formulations and the moving contact-line problem. J. Comput. Phys. 1999, 154, 245–265. [Google Scholar] [CrossRef]
- Werder, T.; Walther, J.H.; Koumoutsakos, P. Hybrid atomistic—Continuum method for the simulation of dense fluid flows. J. Comput. Phys. 2005, 205, 373–390. [Google Scholar] [CrossRef]
- Delgado-Buscalioni, R.; Coveney, P. Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow. Phys. Rev. E 2003, 67, 046704. [Google Scholar] [CrossRef] [Green Version]
- Barsky, S.; Delgado-Buscalioni, R.; Coveney, P.V. Comparison of molecular dynamics with hybrid continuum—Molecular dynamics for a single tethered polymer in a solvent. J. Chem. Phys. 2004, 121, 2403–2411. [Google Scholar] [CrossRef]
- De Fabritiis, G.; Serrano, M.; Delgado-Buscalioni, R.; Coveney, P. Fluctuating hydrodynamic modeling of fluids at the nanoscale. Phys. Rev. E 2007, 75, 026307. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Buscalioni, R.; Flekkøy, E.; Coveney, P. Fluctuations and continuity in particle-continuum hybrid simulations of unsteady flows based on flux-exchange. Europhys. Lett. 2005, 69, 959. [Google Scholar] [CrossRef]
- Wijesinghe, H.S.; Hadjiconstantinou, N.G. Discussion of hybrid atomistic-continuum methods for multiscale hydrodynamics. Int. J. Multiscale Comput. Eng. 2004, 2, 189–202. [Google Scholar] [CrossRef]
- Koumoutsakos, P. Multiscale flow simulations using particles. Annu. Rev. Fluid Mech. 2005, 37, 457–487. [Google Scholar] [CrossRef]
- Frisch, U.; Hasslacher, B.; Pomeau, Y. Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 1986, 56, 1505. [Google Scholar] [CrossRef]
- Wolfram, S. Cellular automaton fluids 1: Basic theory. J. Stat. Phys. 1986, 45, 471–526. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, P.L.; Gross, E.P.; Krook, M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 1954, 94, 511. [Google Scholar] [CrossRef]
- Qian, Y.H.; d’Humières, D.; Lallemand, P. Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 1992, 17, 479. [Google Scholar] [CrossRef]
- Ladd, A.J. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 1994, 271, 285–309. [Google Scholar] [CrossRef] [Green Version]
- Zou, Q.; He, X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 1997, 9, 1591–1598. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, S.; Martínez-Lera, P.; Fueyo, N. Analysis of open boundary effects in unsteady lattice Boltzmann simulations. Comput. Math. Appl. 2009, 58, 914–921. [Google Scholar] [CrossRef]
- Hyväluoma, J.; Harting, J. Slip flow over structured surfaces with entrapped microbubbles. Phys. Rev. Lett. 2008, 100, 246001. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, T. Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 2002, 66, 036304. [Google Scholar] [CrossRef]
- Pan, C.; Hilpert, M.; Miller, C. Lattice-Boltzmann simulation of two-phase flow in porous media. Water Resour. Res. 2004, 40, 160. [Google Scholar] [CrossRef]
- Pan, C.; Luo, L.S.; Miller, C.T. An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput. Fluids 2006, 35, 898–909. [Google Scholar] [CrossRef]
- Zhang, J. Lattice Boltzmann method for microfluidics: Models and applications. Microfluid. Nanofluidics 2011, 10, 1–28. [Google Scholar]
- Hoogerbrugge, P.; Koelman, J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 1992, 19, 155. [Google Scholar] [CrossRef]
- Li, Z.; Hu, G.H.; Wang, Z.L.; Ma, Y.B.; Zhou, Z.W. Three dimensional flow structures in a moving droplet on substrate: A dissipative particle dynamics study. Phys. Fluids 2013, 25, 072103. [Google Scholar] [CrossRef]
- Li, Z.; Tang, Y.H.; Lei, H.; Caswell, B.; Karniadakis, G.E. Energy-conserving dissipative particle dynamics with temperature-dependent properties. J. Comput. Phys. 2014, 265, 113–127. [Google Scholar] [CrossRef]
- Li, Z.; Tang, Y.H.; Li, X.; Karniadakis, G.E. Mesoscale modeling of phase transition dynamics of thermoresponsive polymers. Chem. Commun. 2015, 51, 11038–11040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pivkin, I.V.; Karniadakis, G.E. Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems. J. Chem. Phys. 2006, 124, 184101. [Google Scholar] [CrossRef] [PubMed]
- Groot, R.D.; Warren, P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997, 107, 4423–4435. [Google Scholar] [CrossRef]
- Alvarez, F.; Flores, E.; Castro, L.; Hernández, J.; López, A.; Vazquez, F. Dissipative particle dynamics (DPD) study of crude oil- water emulsions in the presence of a functionalized co-polymer. Energy Fuels 2010, 25, 562–567. [Google Scholar] [CrossRef]
- Deguillard, E.; Pannacci, N.; Creton, B.; Rousseau, B. Interfacial tension in oil–water–surfactant systems: On the role of intra-molecular forces on interfacial tension values using DPD simulations. J. Chem. Phys. 2013, 138, 144102. [Google Scholar] [CrossRef]
- Rezaei, H.; Amjad-Iranagh, S.; Modarress, H. Self-Accumulation of Uncharged Polyaromatic Surfactants at Crude Oil–Water Interface: A Mesoscopic DPD Study. Energy Fuels 2016, 30, 6626–6639. [Google Scholar] [CrossRef]
- Du, C.; Ji, Y.; Xue, J.; Hou, T.; Tang, J.; Lee, S.T.; Li, Y. Morphology and performance of polymer solar cell characterized by DPD simulation and graph theory. Sci. Rep. 2015, 5, 16854. [Google Scholar] [CrossRef]
- Rao, Z.; Wang, S.; Peng, F.; Zhang, W.; Zhang, Y. Dissipative particle dynamics investigation of microencapsulated thermal energy storage phase change materials. Energy 2012, 44, 805–812. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drikakis, D.; Frank, M.; Tabor, G. Multiscale Computational Fluid Dynamics. Energies 2019, 12, 3272. https://doi.org/10.3390/en12173272
Drikakis D, Frank M, Tabor G. Multiscale Computational Fluid Dynamics. Energies. 2019; 12(17):3272. https://doi.org/10.3390/en12173272
Chicago/Turabian StyleDrikakis, Dimitris, Michael Frank, and Gavin Tabor. 2019. "Multiscale Computational Fluid Dynamics" Energies 12, no. 17: 3272. https://doi.org/10.3390/en12173272
APA StyleDrikakis, D., Frank, M., & Tabor, G. (2019). Multiscale Computational Fluid Dynamics. Energies, 12(17), 3272. https://doi.org/10.3390/en12173272