The Band Structures of Zn1−xMgxO(In) and the Simulation of CdTe Solar Cells with a Zn1−xMgxO(In) Window Layer by SCAPS
Abstract
:1. Introduction
2. Theoretical Model and Computational Methods
2.1. ZMO:In Model and Computational Method
2.2. CdTe Solar Cell Model and Simulation
3. Results and discussion
3.1. The Band Structure of ZMO:In
3.2. The Photovoltaic Applications of ZMO:In
3.2.1. The Performance of CdTe Solar Cells with ZMO:In Window Layers
3.2.2. The Energy Band Alignment of the ZMO:In/CdTe Interface
3.2.3. Effect of ZMO:In (x = 0.0625) Thickness on CdTe Solar Cells Performances
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cruz, L.R.; Pinheiro, W.A.; Medeiro, R.A.; Ferreira, C.L.; Dhere, R.G.; Duenow, J.N. Influence of heat treatment and back contact processing on the performance of CdS/CdTe thin film solar cells produced in a CSS in-line system. Vacuum 2013, 87, 45–49. [Google Scholar] [CrossRef]
- Kephart, J.M.; Geisthardt, R.M.; Sampath, W.S. Optimization of CdTe thin-film solar cell efficiency using a sputtered, oxygenated CdS window layer. Prog. Photovolt. Res. Appl. 2015, 23, 1484–1492. [Google Scholar] [CrossRef]
- Marjani, S.; Khosroabadi, S.; Sabaghi, M.A. High Efficiency Ultrathin CdTe Solar Cell for Nano-Area Applications. Opt. Photonics J. 2016, 6, 15–23. [Google Scholar] [CrossRef]
- Paudel, N.R.; Yan, Y. Enhancing the photo-currents of CdTe thin-film solar cells in both short and long wavelength regions. Appl. Phys. Lett. 2014, 105, 606–3911. [Google Scholar] [CrossRef]
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Yoshita, M.; Ho-Baillie, A.W. Solar cell efficiency tables (Version 53). Prog. Photovolt. Res. Appl. 2018, 27, 3–12. [Google Scholar] [CrossRef]
- Korevaar, B.A.; Cournoyer, J.R.; Sulima, O.; Yakimov, A.; Johnson, J.N. Role of oxygen during CdTe growth for CdTe photovoltaic devices. Prog. Photovolt. Res. Appl. 2015, 22, 1040–1049. [Google Scholar] [CrossRef]
- Colegrove, E.; Blissett, C.; Buurma, C.; Ellsworth, J.; Morley, M. High-Efficiency Polycrystalline CdS/CdTe Solar Cells on Buffered Commercial TCO-Coated Glass. J. Electron. Mater. 2012, 41, 2833–2837. [Google Scholar] [CrossRef]
- Martin, A.; Emery, K. Solar cell efficiency tables (version 42). Prog. Photovolt. Res. Appl. 2013, 21, 827–837. [Google Scholar] [Green Version]
- Peelaers, H.; Kioupakis, E.; Van de Walle, C.G. Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO2. Appl. Phys. Lett. 2012, 100, 011914. [Google Scholar] [CrossRef]
- Yi, K.; Lany, S.; Berry, J.J.; Perkins, J.D.; Parilla, P.A. Enhanced Electron Mobility Due to Dopant-Defect Pairing in Conductive ZnMgO. Adv. Funct. Mater. 2014, 24, 2875–2882. [Google Scholar]
- Kephart, J.M.; McCamy, J.W.; Ma, Z.; Ganjoo, A.; Alamgir, F.M.; Sampath, W.S. Band alignment of front contact layers for high-efficiency CdTe solar cells. Sol. Energy Mater. Sol. Cells 2016, 157, 266–275. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Song, Y.H.; Wu, L.L.; Li, C.X.; Zhang, J.Q.; Feng, L.H. Simulation of high-efficiency CdTe solar cells with Zn1−xMgxO window layer by SCAPS software. Mater. Res. Express 2018, 5, 065907. [Google Scholar] [CrossRef]
- Minemoto, T.; Hashimoto, Y.; Satoh, T.; Negami, T.; Takakura, H.; Hamakawa, Y. Cu(In,Ga)Se2 solar cells with controlled conduction band offset of window/Cu(In,Ga)Se2 layers. J. Appl. Phys. 2001, 89, 8327–8330. [Google Scholar] [CrossRef]
- Pettersson, J.; Platzer, B.; Rkman, C.; Zimmermann, U. Baseline model of graded-absorber Cu(In,Ga)Se2 solar cells applied to cells with Zn1−xMgxO buffer layers. Thin Solid Films 2011, 519, 7476–7480. [Google Scholar] [CrossRef]
- Minemoto, T.; Matsui, T.; Takakura, H.; Hamakawa, Y.; Negami, T.; Hashimoto, Y.; Uenoyama, T.; Kitagawa, M. Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation. Sol. Energy Mater. Sol. Cells 2001, 67, 83–88. [Google Scholar] [CrossRef]
- Patel, M.; Ray, A. Enhancement of output performance of Cu2ZnSnS4 thin film solar cells—A numerical simulation approach and comparison to experiments. Phys. B Condens. Matter 2012, 407, 4391–4397. [Google Scholar] [CrossRef]
- Olopade, M.A.; Oyebola, O.O.; Adeleke, B.S. Investigation of some materials as buffer layer in copper zinc tin sulphide (Cu2ZnSnS4) solar cells by SCAPS-1D. Adv. Appl. Sci. Res. 2012, 3, 3396–3400. [Google Scholar]
- Clayton, A.J.; Carlo, V.D.; Irvine, S.J.C. Investigation into ultrathin CdTe solar cell Voc using SCAPS modelling. Mater. Res. Innov. 2014, 18, 505–508. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.H.; Chuang, W.J. Dependence of performance parameters of CdTe solar cells on semiconductor properties studied by using SCAPS-1D. Vacuum 2015, 118, 32–37. [Google Scholar] [CrossRef]
- He, X.; Ren, S.Q.; Li, C.X.; Wu, L.L.; Zhang, J.Q.; Du, Z. Zn1−xMgxO: Band Structure and Simulation as Window Layer for CdTe Solar Cell by SCAPS Software. J. Inorg. Mater. 2018, 33, 635–640. [Google Scholar]
- Wang, T.; Ren, S.; Li, C.; Li, W.; Liu, C.; Zhang, J.; Wu, L.; Li, B.; Zeng, G. Exploring window buffer layer technology to enhance CdTe solar cell performance. Sol. Energy 2018, 164, 180–186. [Google Scholar] [CrossRef]
- Ke, Y.; Berry, J.; Parilla, P.; Zakutayev, A.; O’Hayre, R.; Ginley, D. The origin of electrical property deterioration with increasing Mg concentration in ZnMgO:Ga. Thin Solid Films 2012, 520, 3697–3702. [Google Scholar] [CrossRef]
- Matsubara, K.; Tampo, H.; Shibata, H.; Yamada, A.; Fons, P.; Iwata, K.; Niki, S. Band-gap modified Al-doped Zn1−xMgxO transparent conducting films deposited by pulsed laser deposition. Appl. Phys. Lett. 2004, 85, 1374–1376. [Google Scholar] [CrossRef]
- Senthil, T.S.; Muthukumarasamy, N.; Kang, M. Improved performance of ZnO thin film solar cells by doping magnesium ions. J. Mater. Sci. Mater. Electron. 2013, 24, 3963–3969. [Google Scholar] [CrossRef]
- Zhu, Y.Z.; Chen, G.D.; Ye, H. Electronic Structure and Phase Stability of MgO, ZnO, CdO, and Related Ternary Alloys. Phys. Rev. B 2008, 77, 245209. [Google Scholar] [CrossRef]
- Tampo, H.; Yamada, A.; Fons, P. Degenerate layers in epitaxial ZnO films grown on sapphire substrates. Appl. Phys. Lett. 2004, 84, 4412–4414. [Google Scholar] [CrossRef]
- Si, X.; Liu, Y.; Lei, W. First-principles investigation on the optoelectronic performance of Mg doped and Mg–Al co-doped ZnO. Mater. Des. 2016, 93, 128–132. [Google Scholar] [CrossRef]
- Sheetz, R.M.; Ponomareva, I.; Richter, E.; Andriotis, A.N.; Menon, M. Defect-induced optical absorption in the visible range in ZnO nanowires. Phys. Rev. B Condens. Matter 2009, 80, 195314. [Google Scholar] [CrossRef]
- Zhang, J.Q. Study on CdTe and Related Compound Polycrystalline Thin Films as well as CdTe Solar Cell. Ph.D. Thesis, Sichuan University, Chengdu, China, 2002. [Google Scholar]
- Paul, B.; Singh, B.; Ghosh, S.; Roy, A. A comparative study on electrical and optical properties of group III (Al, Ga, In) doped ZnO. Thin Solid Film 2016, 603, 21–28. [Google Scholar] [CrossRef]
- Han, J.F.; Spanheimer, C.; Haindl, G.; Fu, G.H.; Krishnakumar, V. Optimized chemical bath deposited CdS layers for the improvement of CdTe solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 816–820. [Google Scholar] [CrossRef]
- Ichikawa, M.; Suto, E.; Jeon, H.G. Sensitization of organic photovoltaic cells based on interlayer excitation energy transfer. Org. Electron. 2010, 11, 700–704. [Google Scholar] [CrossRef] [Green Version]
- Niles, D.W.; Hartmut, H. Band offsets and interfacial properties of cubic CdS grown by molecular-beam epitaxy on CdTe(110). Phys. Rev. B Condens. Matter 1990, 41, 12710–12719. [Google Scholar] [CrossRef] [PubMed]
Layer Parameters | FTO [19] | CdS [14,19,29] | Zn1−xMgxO(In) [20,29] | CdTe [29] | ZnTe:Cu [29] | ||||
---|---|---|---|---|---|---|---|---|---|
x = 0 | x = 0.0625 | x = 0.125 | x = 0.1875 | x = 0.25 | |||||
Eg/eV | 3.6 | 2.4 | 2.98 | 3.12 | 3.32 | 3.48 | 3.61 | 1.45 | 2.26 |
ε/ε0 | 8.9 | 9 | 10 | 10 | 10 | 10 | 10 | 10 | 10.1 |
Nc/cm−3 | 5.2 × 1018 | 2.2 × 1018 | 5 × 1018 | 9 × 1017 | 1 × 1017 | 9 × 1016 | 1 × 1016 | 9.2 × 1017 | 1.5 × 1018 |
Nv/cm−3 | 1.0 × 1019 | 1.8 × 1019 | 9 × 1018 | 9 × 1018 | 1 × 1018 | 9 × 1017 | 1 × 1017 | 5.2 × 1018 | 1.16 × 1019 |
Ve/cm.s−1 | 1.0 × 107 | 3.1 × 107 | 2.4 × 107 | 2 × 107 | 2 × 107 | 2 × 107 | 2 × 107 | 1 × 107 | 1 × 107 |
Vp/cm.s−1 | 1.0 × 107 | 1.6 × 107 | 1.3 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
μn/cm2.v−1.s−1 | 100 | 340 | 100 | 100 | 100 | 100 | 100 | 400 | 400 |
μp/cm2.v−1.s−1 | 25 | 50 | 50 | 50 | 50 | 50 | 50 | 60 | 50 |
Carrier density/cm−3 | n = 1 × 1020 | n = 1 × 1017 | n = 5 × 1017 | n = 9 × 1016 | n = 1 × 1016 | n = 9 × 1015 | n = 1 × 1015 | p = 1.5 × 1014 | p = 1.5 × 1020 |
Thickness/nm | 350 | 70 | 70 | 70 | 70 | 70 | 70 | 5000 | 70 |
Parameters | CdS | Zn1−xMgxO:In (x Represents Mg Concentration) | ||||
---|---|---|---|---|---|---|
x = 0 | x = 0.0625 | x = 0.125 | x = 0.1875 | x = 0.25 | ||
Voc (mV) | 821 | 866 | 853 | 839 | 837 | 858 |
Jsc (mA·cm−2) | 24.34 | 27.89 | 28.16 | 28.29 | 28.27 | 27.39 |
FF (%) | 75.18 | 76.22 | 81.70 | 78.84 | 73.17 | 32.81 |
H (%) | 15.06 | 18.43 | 19.63 | 18.72 | 17.33 | 7.72 |
Rs (Ω·cm2) | 4.6 | 5.2 | 6.8 | 7.9 | 9.6 | 25.8 |
Rsh (Ω·cm2) | 812 | 1019 | 1253 | 1156 | 971 | 236 |
x | 0 | 0.0625 | 0.125 | 0.1875 | 0.25 |
---|---|---|---|---|---|
Eg (eV) | 2.98 | 3.12 | 3.32 | 3.48 | 3.61 |
Ef (eV) | 2.48 | 2.51 | 2.76 | 2.89 | 2.97 |
χ (eV) | 4.77 | 4.73 | 4.53 | 4.37 | 4.24 |
Φ (eV) | 5.37 | 5.34 | 5.09 | 4.96 | 4.88 |
Thickness (nm) | 70 | 100 | 120 | 150 | 200 |
Voc (mV) | 853 | 853 | 853 | 852 | 852 |
Jsc (mA·cm−2) | 28.16 | 28.03 | 27.96 | 27.88 | 27.78 |
FF (%) | 81.71 | 81.71 | 81.71 | 81.71 | 81.70 |
η (%) | 19.63 | 19.54 | 19.49 | 19.43 | 19.35 |
Rs (Ω·cm2) | 6.8 | 6.9 | 6.9 | 7.1 | 7.3 |
Rsh (Ω·cm2) | 1253 | 1208 | 1179 | 1093 | 1025 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Wu, L.; Hao, X.; Zhang, J.; Li, C.; Wang, W.; Feng, L.; Du, Z. The Band Structures of Zn1−xMgxO(In) and the Simulation of CdTe Solar Cells with a Zn1−xMgxO(In) Window Layer by SCAPS. Energies 2019, 12, 291. https://doi.org/10.3390/en12020291
He X, Wu L, Hao X, Zhang J, Li C, Wang W, Feng L, Du Z. The Band Structures of Zn1−xMgxO(In) and the Simulation of CdTe Solar Cells with a Zn1−xMgxO(In) Window Layer by SCAPS. Energies. 2019; 12(2):291. https://doi.org/10.3390/en12020291
Chicago/Turabian StyleHe, Xu, Lili Wu, Xia Hao, Jingquan Zhang, Chunxiu Li, Wenwu Wang, Lianghuan Feng, and Zheng Du. 2019. "The Band Structures of Zn1−xMgxO(In) and the Simulation of CdTe Solar Cells with a Zn1−xMgxO(In) Window Layer by SCAPS" Energies 12, no. 2: 291. https://doi.org/10.3390/en12020291
APA StyleHe, X., Wu, L., Hao, X., Zhang, J., Li, C., Wang, W., Feng, L., & Du, Z. (2019). The Band Structures of Zn1−xMgxO(In) and the Simulation of CdTe Solar Cells with a Zn1−xMgxO(In) Window Layer by SCAPS. Energies, 12(2), 291. https://doi.org/10.3390/en12020291