A Multisensory, Green, and Energy Efficient Housing Neuromarketing Method
Abstract
:1. Introduction
2. A Multisensory, Green, and Energy Efficient Housing Neuromarketing Method
- ▪
- Criteria defining green and energy efficient dwelling projects (see Section 4.1.1);
- ▪
- Criteria defining local pollutants, including CO, NO2, PM10, volatile organic compounds, and noise (see Section 4.1.2, Table 1);
- ▪
- Criteria defining the depersonalized emotional–physiological states of passers-by at six sites, including happiness, sadness and, anger, as well as valence and heart rate (see Section 4.1.3).
- ▪
- High-speed Internet access with a 600 MB/s minimum is required. The access to the Internet may be by cable or by two wireless 300 MB/s networks. There is a 50 GB/s upload speed required. An unlimited amount of data is also required each month for the equipment subsystem. Meanwhile, the signal strength quality should not be <4/5. Furthermore, there must be a static external IP address.
- ▪
- A grid connection must be included.
- ▪
- An identification of all optimal sites under analysis is required. The depersonalized, emotional–physiological states of anonymous passers-by at six sites must be taken from a distance of 20 m.
- Step 1. Calculating the weighted, normalized decision matrix (D);
- Step 2. Calculating the sums of beneficial attributes (S+j) and non-beneficial attributes (S−j);
- Step 3. Determining the relative significances or priorities of alternatives based on positive and negative aspects of the alternative characteristics;
- Step 4. Determining the rank of an alternative;
- Step 5. Calculating the utility degree of each alternative;
- Step 6. Determining if the integrated value x1j (cycle e) of the alternative aj can be accomplished by means of e approximations;
- Step 7. Optimizing the xij that is possible for any criterion over e approximations;
- Step 8. Presenting indicator xij of quantitative recommendation iij showing the percentage of a possible improvement in the value of indicator xij for it to become equal to the best value xi max of criterion Xi among the potential alternatives;
- Step 9. Calculating indicator xij of the quantitative recommendation rij showing the percentage of the possible improvement of utility Uj of the alternative aj upon presenting xij = xi max;
- Step 10. Calculating the approximation e cycles needed for the value of xij (cycle e) to make alternative aj become the best of all potential alternatives;
3. Assessing the Accuracy of the Physiological and Demographic Markers
4. Case Studies
4.1. Compilation of a Neuro Decision-Making Matrix
- ▪
- Criteria defining green and energy efficient dwelling projects (see Section 4.1.1);
- ▪
- Criteria defining local pollutants including CO, NO2, PM10, volatile organic compounds, and noise (see Section 4.1.2);
- ▪
- Criteria defining the depersonalized emotional–physiological states by passers-by of six sites including happiness, sadness, and anger, as well as valence and heart rate (see Section 4.1.3).
4.1.1. Green and Energy Efficient Dwelling Projects under Analysis
4.1.2. Intersections under Analysis with Their Levels of Air and Noise Pollution
4.1.3. Criteria Describing the Depersonalized Emotional–Physiological States of Local Passersby
4.2. Case Study 1: Multiple Neuro Criteria Analysis of Four Green and Energy Efficient Residential Projects
4.3. Case Study 2: Comparison of the Criteria Describing the Emotional–Physiological States of Passersby at the Sites under Deliberation with Worldwide Practice and Its Validation
5. Heart Rate and a Correlational Analysis of Dependent Variables with IBM SPSS Software Assistance
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Santamouris, M. Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change. Sol. Energy 2016, 128, 61–94. [Google Scholar] [CrossRef]
- Energy Efficiency: Buildings. The Global Exchange for Energy Efficiency Policies, Data and Analysis. 2018. Available online: https://www.iea.org/topics/energyefficiency/buildings/ (accessed on 10 June 2019).
- Corrado, V.; Ballarini, I. Refurbishment trends of the residential building stock: Analysis of a regional pilot case in Italy. Energy Build. 2016, 132, 91–106. [Google Scholar] [CrossRef]
- Schaffner, D.; Ohnmacht, T.; Weibel, C.; Mahrer, M. Moving into energy-efficient homes: A dynamic approach to understanding residents’ decision-making. Build. Environ. 2017, 123, 211–222. [Google Scholar] [CrossRef]
- Klockner, C.A.; Nayum, A. Psychological and structural facilitators and barriers to energy upgrades of the privately owned building stock. Energy 2017, 140, 1005–1017. [Google Scholar] [CrossRef]
- Wilson, C.; Crane, L.; Chryssochoidis, G. Why Do People Decide To Renovate Their Homes To Improve Energy Efficiency? Tyndall Centre for Climate Change Research: Norwich, UK, 2014; Available online: https://tyndall.ac.uk/sites/default/files/publications/twp160.pdf (accessed on 10 June 2019).
- Kamari, A.; Jensen, S.; Corrao, R.; Kirkegaard, P. A holistic multi-methodology for sustainable renovation. Int. J. Strateg. Prop. Manag. 2019, 23, 50–64. [Google Scholar] [CrossRef]
- Lai, J.; Man, C. Developing a performance evaluation scheme for engineering facilities in commercial buildings: State-of-the-art review. Int. J. Strateg. Prop. Manag. 2017, 21, 41–57. [Google Scholar] [CrossRef]
- Reimann, M.; Zaichkowsky, J.; Neuhaus, C.; Bender, T.; Weber, B. Aesthetic package design: A behavioral, neural, and psychological investigation. J. Consum. Psychol. 2010, 20, 431–441. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Rute, J.; Zavadskas, E.K.; Daniunas, A.; Pruskus, V.; Bivainis, J.; Gudauskas, R.; Plakys, V. Passive House model for quantitative and qualitative analyses and its intelligent system. Energy Build. 2012, 50, 7–18. [Google Scholar] [CrossRef]
- Picon, L.; Yannou, B.; Zaraket, T.; Minel, S.; Bertoluci, G.; Cluzel, F.; Farel, R. Use-phase memory: A tool for the sustainable construction and renovation of residential buildings. Autom. Constr. 2013, 36, 53–70. [Google Scholar] [CrossRef] [Green Version]
- Baginski, J.P.; Weber, C. A Consumer Decision-Making Process? Unfolding Energy Efficiency Decisions of German Owner-Occupiers; HEMF Working Paper No. 08/2017; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Organ, S.; Proverbs, D.; Squires, G. Motivations for energy efficiency refurbishment in owner-occupied housing. Struct. Surv. 2013, 31, 101–120. [Google Scholar] [CrossRef]
- Tupėnaitė, L.; Kaklauskas, A.; Voitov, I.; Trinkūnas, V.; Siniak, N.; Gudauskas, R.; Naimavičienė, J.; Kanapeckienė, L. Multiple criteria assessment of apartment building performance for refurbishment purposes. Int. J. Strateg. Prop. Manag. 2018, 22, 236–251. [Google Scholar] [CrossRef]
- Aune, M. Energy comes home. Energy Policy 2007, 35, 5457–5465. [Google Scholar] [CrossRef] [Green Version]
- Damasio, A.R. Descartes’ Error: Emotion, Reason, and the Human Brain; Grosset/Putnam: New York, NY, USA, 1994. [Google Scholar]
- Potter, R.F.; Bolls, P. Psychophysiological Measurement and Meaning: Cognitive and Emotional Processing of Media; Routledge: London, UK, 2012. [Google Scholar]
- Lennox, R.; Dennis, M.L.; Scott, C.K.; Funk, R. Combining psychometric and biometric measures of substance use. Drug Alcohol Depend. 2006, 83, 95–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A.K.; Dass, S.C.; Nandakumar, K. Soft biometric traits for personal recognition systems. In Biometric Authentication, Proceedings of the ICBA 2004, Hong Kong, China, 15–17 July 2004; Zhang, D., Jain, A.K., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3072. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, M.; Wang, Y. A survey of advances in biometric gait recognition. In Biometric Recognition, Proceedings of the CCBR 2011, Beijing, China, 3–4 December 2011; Sun, Z., Lai, J., Chen, X., Tan, T., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7098. [Google Scholar] [CrossRef]
- Idrus, S.Z.S.; Cherrier, E.; Rosenberger, C.; Bours, P. Soft biometrics database: A benchmark for keystroke dynamics biometric systems. In Proceedings of the 2013 International Conference of the BIOSIG Special Interest Group (BIOSIG), Darmstadt, Germany, 5–6 September 2013; pp. 1–8. [Google Scholar]
- Jamal, A.; Sharifuddin, J. Perceived value and perceived usefulness of halal labeling: The role of religion and culture. J. Bus. Res. 2015, 68, 933–941. [Google Scholar] [CrossRef]
- Dangelico, R.M.; Vocalelli, D. “Green Marketing”: An analysis of definitions, strategy steps, and tools through a systematic review of the literature. J. Clean. Prod. 2017, 165, 1263–1279. [Google Scholar] [CrossRef]
- Luchs, M.G.; Naylor, R.W.; Irwin, J.R.; Raghunathan, R. The sustainability liability: Potential negative effects of ethicality on product preference. J. Mark. 2010, 74, 18–31. [Google Scholar] [CrossRef]
- Sánchez-Fernández, R.; Iniesta-Bonillo, M.Á. Consumer perception of value: Literature review and a new conceptual framework. J. Consum. Satisf. Dissatisfaction Complain. Behav. 2006, 19, 40. [Google Scholar]
- Zainuddin, N. Value creation in social marketing for the continued use of wellness services. In Proceedings of the Australian and New Zealand Marketing Academy Conference 2011, Perth, Australia, 28–30 November 2011; pp. 1–8. [Google Scholar]
- Mehmood, K.; Hanaysha, J. The strategic role of hedonic value and utilitarian value in building brand loyalty: Mediating effect of customer satisfaction. Pak. J. Soc. Sci. 2015, 35, 1025–1036. [Google Scholar]
- Jones, M.A.; Reynolds, K.E.; Arnold, M.J. Hedonic and utilitarian shopping value: Investigating differential effects on retail outcomes. J. Bus. Res. 2006, 59, 974–981. [Google Scholar] [CrossRef]
- Klein, K.; Melnyk, V. Speaking to the mind or the heart: Effects of matching hedonic versus utilitarian arguments and products. Mark. Lett. 2016, 27, 131–142. [Google Scholar] [CrossRef]
- Geng, Y.; Ji, W.; Wang, X.; Lin, B.; Zhu, Y. A review of operating performance in green buildings: Energy use, indoor environmental quality and occupant satisfaction. Energy Build. 2019, 183, 500–514. [Google Scholar] [CrossRef]
- Zhan, D.; Kwan, M.P.; Zhang, W.; Fan, J.; Dang, Y. Assessment and determinants of satisfaction with urban livability in China. Cities 2018, 79, 92–101. [Google Scholar] [CrossRef]
- Kaklauskas, A. Biometric and Intelligent Decision Making Support; Springer: Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Jokubauskas, D.; Čerkauskas, J.; Dzemyda, G.; Ubartė, I.; Skirmantas, D.; Podviezko, A.; Šimkutė, I. Affective analytics of demonstration sites. Eng. Appl. Artif. Intell. 2019, 81, 346–372. [Google Scholar] [CrossRef]
- FaceReader. Reference Manual Version 7. Tool for Automatic Analysis of Facial Expressions, Noldus Information Technology. Available online: http://sslab.nwpu.edu.cn/uploads/1500604789-5971697563f64.pdf (accessed on 28 July 2019).
- Novelda, A.S. X4M200 Datasheet. Available online: https://www.codico.com/shop/media/datasheets/Novelda_X4M200_respiration_sensor_rev_c_preliminary.pdf (accessed on 28 July 2019).
- Viola, P.; Jones, M.J. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Cootes, T.F.; Taylor, C.J. Statistical Models of Appearance for Computer Vision; Technical Report; Wolfson Image Analysis Unit, Imaging Science and Biomedical Engineering, University of Manchester: Manchester, UK, 2004; Available online: http://www.face-rec.org/algorithms/AAM/app_models.pdf (accessed on 28 July 2019).
- Van Kuilenburg, H.; Wiering, M.; Den Uyl, M. A model based method for automatic facial expression recognition. In Machine Learning: ECML 2005, Proceedings of the 16th European Conference on Machine Learning, Porto, Portugal, 3–7 October 2005; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3720, pp. 194–205. [Google Scholar] [CrossRef]
- Friesen, E.; Ekman, P. Facial Action Coding System: A Technique for The Measurement of Facial Movement; Consulting Psychologists Press: Palo Alto, CA, USA, 1978. [Google Scholar]
- Kaklauskas, A. Degree of project utility and investment value assessments. Int. J. Comput. Commun. Control 2016, 11, 666–683. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Zavadskas, E.K.; Radzeviciene, A.; Ubarte, I.; Podviezko, A.; Podvezko, V.; Kuzminske, A.; Banaitis, A.; Binkyte, A.; Bucinskas, V. Quality of city life multiple criteria analysis. Cities 2018, 72, 82–93. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Herrera-Viedma, E.; Echenique, V.; Zavadskas, E.K.; Ubarte, I.; Mostert, A.; Podvezko, V.; Binkyte, A.; Podviezko, A. Multiple criteria analysis of environmental sustainability and quality of life in post-Soviet states. Ecol. Indic. 2018, 89, 781–807. [Google Scholar] [CrossRef]
- Loijens, L.; Krips, O. Facereader Methodology; Noldus Information Technology: Wageningen, The Netherlands, 2013. [Google Scholar]
- Zaman, B.; Shrimpton-Smith, T. The Facereader: Measuring instant fun of use. In Proceedings of the 4th Nordic Conference on Human-Computer Interaction: Changing Roles, Oslo, Norway, 14–18 October 2006; pp. 457–460. [Google Scholar] [CrossRef]
- Lewinski, P.; den Uyl, T.M.; Butler, C. Automated facial coding: Validation of basic emotions and FACS AUs in FaceReader. J. Neurosci. Psychol. Econ. 2014, 7, 227–236. [Google Scholar] [CrossRef]
- Gudi, A.; Ivan, P. Validation Action Unit Module. Noldus Information Technology: Wageningen, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Tasli, H.E.; Gudi, A.; den Uyl, M. Remote PPG based vital sign measurement using adaptive facial regions. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 1410–1414. [Google Scholar] [CrossRef]
- Tasli, H.E.; Gudi, A.; den Uyl, M. A Method for Stabilizing Vital Sign Measurements Using Parametric Facial Appearance Models via Remote Sensors. Patent EP2960862B1, 22 March 2017. [Google Scholar]
- Terzis, V.; Moridis, C.N.; Economides, A.A. Measuring instant emotions based on facial expressions during computer-based assessment. Pers. Ubiquitous Comput. 2013, 17, 43–52. [Google Scholar] [CrossRef]
- Lewinski, P. Automated facial coding software outperforms people in recognizing neutral faces as neutral from standardized datasets. Front. Psychol. 2015, 6, 1386. [Google Scholar] [CrossRef]
- Sandberg, L.; Rönnblom, M. Planning the new city-emotional reaction and positions. Emot. Space Soc. 2016, 21, 50–57. [Google Scholar] [CrossRef]
- Mouratidis, K. Built environment and social well-being: How does urban form affect social life and personal relationships? Cities 2018, 74, 7–20. [Google Scholar] [CrossRef]
- Schertz, K.E.; Sachdeva, S.; Kardan, O.; Kotabe, H.P.; Berman, M.G. A thought in the park: The influence of naturalness and low-level visual features on expressed thoughts. Cognition 2018, 174, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Lithuania’s Hygiene Norm HN 35:2007. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.297779?positionInSearchResults=2andsearchModelUUID=3aa0ebb5-9be9-4c21-a9b2-962586548c5d (accessed on 10 June 2019).
- Environmental Protection Agency 2018. Available online: http://oras.gamta.lt/cms/index?rubricId=260ccbe8-5401-4f3b-adb1-b4ab1b9aa2b5 (accessed on 10 June 2019).
- Lithuanian Hygiene Standards HN 33:2011. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.402074/RyjlQsiUhe (accessed on 10 June 2019).
- Morrison, P.S.; Beer, B. Consumption and environmental awareness: Demographics of the European Experience. In Socioeconomic Environmental Policies and Evaluations in Regional Science; Shibusawa, H. Sakurai, Mizunoya, T., Uchida, S., Eds.; New Frontiers in Regional Science: Asian Perspectives; Springer: Singapore, 2017; Volume 24. [Google Scholar] [CrossRef]
- Buckle, C. Trends 19. The Trends to Know for 2019. Available online: https://www.globalwebindex.com/hubfs/Downloads/Trends-19-report.pdf (accessed on 10 June 2019).
- Grow. Like Peas and Carrots: Millennials and Sustainability. 2016. Available online: https://medium.com/grow-investing/like-peas-and-carrots-millennials-and-sustainability-f04d28185a1c (accessed on 10 June 2019).
- Kreibig, S.D. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 2010, 84, 394–421. [Google Scholar] [CrossRef] [PubMed]
- Khalfa, S.; Roy, M.; Rainville, P.; Dalla Bella, S.; Peretz, I. Role of tempo entrainment in psychophysiological differentiation of happy and sad music? Int. J. Psychophysiol. 2008, 68, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yang, L.; Shi, H.; Liu, C. Differences in photoplethysmography morphological features and feature time series between two opposite emotions: Happiness and sadness. Artery Res. 2017, 18, 7–13. [Google Scholar] [CrossRef]
- Yang, Z.; Jia, W.; Liu, G.; Sun, M. Quantifying mental arousal levels in daily living using additional heart rate. Biomed. Signal Process. Control 2017, 33, 368–378. [Google Scholar] [CrossRef]
- Chen, C.; Liu, C.; Chen, R.; Wang, W.; Li, W.; Kan, H.; Fu, C. Ambient air pollution and daily hospital admissions for mental disorders in Shanghai, China. Sci. Total Environ. 2018, 613, 324–330. [Google Scholar] [CrossRef]
- An, S.; Han, X.; Wu, B.; Shi, Z.; Marks, M.; Wang, S.; Wu, X.; Han, S. Neural activation in response to the two sides of emotion. Neurosci. Lett. 2018, 684, 140–144. [Google Scholar] [CrossRef]
- Kamila, S.; Hasanuzzaman, M.; Ekbal, A.; Bhattacharyya, P. Resolution of grammatical tense into actual time, and its application in Time Perspective study in the tweet space. PLoS ONE 2019, 14, e0211872. [Google Scholar] [CrossRef]
- Buchanan, T.W.; Bibas, D.; Adolphs, R. Associations between feeling and judging the emotions of happiness and fear: Findings from a large-scale field experiment. PLoS ONE 2010, 5, e10640. [Google Scholar] [CrossRef] [PubMed]
- Newport, F.; Pelham, B. Don’t Worry, Be 80: Worry and Stress Decline With Age Worry, Stress Lowest for Those in Their 80s, 90s. Available online: https://news.gallup.com/poll/124655/dont-worry-be-80-worry-stress-decline-age.aspx (accessed on 10 June 2019).
- Gerdtham, U.G.; Johannesson, M. The relationship between happiness, health and socio-economic factors: Results based on Swedish micro data. J. Socio-Econ. 2001, 30, 553–557. [Google Scholar] [CrossRef]
- Clark, A. Unemployment as a social norm: Psychological evidence from panel data. J. Labor Econ. 2003, 21, 324–351. [Google Scholar] [CrossRef]
- Ferrer-i-Carbonell, A.; Gowdy, J.M. Environmental degradation and happiness. Ecol. Econ. 2007, 60, 509–516. [Google Scholar] [CrossRef]
- Blanchflower, D.G.; Oswald, A. Is well-being U-shaped over the life cycle? Soc. Sci. Med. 2008, 66, 1733–1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steptoe, A.; Deaton, A.; Stone, A.A. Subjective wellbeing, health, and ageing. Lancet 2015, 385, 640–648. [Google Scholar] [CrossRef]
- Ingraham, C. This Chart Predicts the Age at Which You’ll be Happiest. Available online: https://www.weforum.org/agenda/2017/08/youll-probably-have-a-midlife-happiness-crisis-heres-why. (accessed on 10 June 2019).
- Lebowitz, S.; Kiersz, A. Your Happiness Might Keep Dropping All the Way into Your 50s—Before A Midlife Crisis Turns It Around. Available online: https://www.businessinsider.com/midlife-crisis-controversial-study-2017-9 (accessed on 10 June 2019).
- Larson, E.B. Who’s Happier—People in Their 40s or 80s? Available online: https://wa-health.kaiserpermanente.org/whos-happier-people-in-their-40s-or-80s/ (accessed on 10 June 2019).
- Stone, A.A.; Schneider, S.; Krueger, A.; Schwartz, J.E.; Deaton, A. Experiential wellbeing data from the American time use survey: Comparisons with other methods and analytic illustrations with age and income. Soc. Indic. Res. 2018, 136, 359–378. [Google Scholar] [CrossRef]
- Blanchflower, D.G. The well-being of the young. Br. J. Ind. Relat. 2010. Available online: https://www.dartmouth.edu/~blnchflr/papers/bjir%20youth%20attitudes%20draft.pdf (accessed on 10 June 2019).
- Gana, K.; Bailly, N.; Saada, Y.; Joulain, M.; Alaphilippe, D. Does life satisfaction change in old age: Results from an 8-year longitudinal study. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2013, 68, 540–552. [Google Scholar] [CrossRef]
- Stone, A.A.; Schwartz, J.E.; Broderick, J.E.; Deaton, A. A snapshot of the age distribution of psychological well-being in the United States. Proc. Natl. Acad. Sci. USA 2010, 107, 9985–9990. [Google Scholar] [CrossRef] [Green Version]
- Graham, C.; Pozuelo, J.R. Happiness, stress, and age: How the U curve varies across people and places. J. Popul. Econ. 2017, 30, 225–264. [Google Scholar] [CrossRef]
- Grühn, D.; Kotter-Grühn, D.; Röcke, C. Discrete affects across the adult lifespan: Evidence for multidimensionality and multidirectionality of affective experiences in young, middle-aged and older adults. J. Res. Personal. 2010, 44, 492–500. [Google Scholar] [CrossRef]
- Vijayakumar, N.; Pfeifer, J.H.; Flournoy, J.C.; Hernandez, L.M.; Dapretto, M. Affective reactivity during adolescence: Associations with age, puberty and testosterone. bioRxiv 2019, 524033. [Google Scholar] [CrossRef] [PubMed]
- Blanchflower, D.G. International evidence on well-being. In Measuring the Subjective Well-Being of Nations: National Accounts of Time Use and Well-Being; University of Chicago Press: Chicago, IL, USA, 2009; pp. 155–226. [Google Scholar]
- Palmer, G.J.; Ziegler, M.G.; Lake, C.R. Response of norepinephrine and blood pressure to stress increases with age. J. Gerontol. 1978, 33, 482–487. [Google Scholar] [CrossRef]
- Yeragani, V.K.; Pohl, R.; Berger, R.; Balon, R.; Srinivasan, K. Relationship between age and heart rate variability in supine and standing postures: A study of spectral analysis of heart rate. Pediatri. Cardiol. 1994, 15, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Lakatta, E.G. Age-associated cardiovascular changes in health: Impact on cardiovascular disease in older persons. Heart Fail. Rev. 2002, 7, 29–49. [Google Scholar] [CrossRef]
- Hartaigh, B.Ó.; Gill, T.M.; Shah, I.; Hughes, A.D.; Deanfield, J.E.; Kuh, D.; Hardy, R. Association between resting heart rate across the life course and all-cause mortality: Longitudinal findings from the Medical Research Council (MRC) National Survey of Health and Development (NSHD). J. Epidemiol. Community Health 2014, 68, 883–889. [Google Scholar] [CrossRef]
- Polar. Your Resting Heart Rate is Telling You Something—So Listen. Available online: https://www.polar.com/blog/resting-heart-rate/ (accessed on 10 June 2019).
- Stoffels, M.; Nijs, M.; Spinhoven, P.; Mesbah, R.; Hagenaars, M.A. Emotion avoidance and fear bradycardia in patients with borderline personality disorder and healthy controls. J. Behav. Ther. Exp. Psychiatry 2017, 57, 6–13. [Google Scholar] [CrossRef]
- Ribeiro, F.S.; Santos, F.H.; Albuquerque, P.B.; Oliveira-Silva, P. Emotional induction through music: Measuring cardiac and electrodermal responses of emotional states and their persistence. Front. Psychol. 2019, 10, 451. [Google Scholar] [CrossRef]
- Frey, B.S.; Stutzer, A. What can economists learn from happiness research? J. Econ. Lit. 2002, 40, 402–435. [Google Scholar] [CrossRef]
- Hirschman, E.C.; Holbrook, M.B. Hedonic consumption: Emerging concepts, methods and propositions. J. Mark. 1982, 46, 92–101. [Google Scholar] [CrossRef]
- Holbrook, M.B.; Hirschman, E.C. The experiential aspects of consumption: Consumer fantasies, feelings and fun. J. Consum. Res. 1982, 9, 132–140. [Google Scholar] [CrossRef]
- Holbrook, M.B. The consumption experience—Something new, something old, something borrowed, something sold: Part 1. J. Macromark. 2006, 26, 259–266. [Google Scholar] [CrossRef]
- Holbrook, M.B. The consumption experience—Something new, something old, something borrowed, something sold: Part 2. J. Macromark. 2006, 27, 86–96. [Google Scholar] [CrossRef]
- Ballas, D. What makes a ‘happy city’? Cities 2013, 32, s39–s50. [Google Scholar] [CrossRef]
- Ansaloni, F.; Tedeschi, M. Understanding space ethically through affect and emotion: From uneasiness to fear and rage in the city. Emot. Space Soc. 2016, 21, 15–22. [Google Scholar] [CrossRef]
- Benita, F.; Bansal, G.; Tunçer, B. Public spaces and happiness: Evidence from a large-scale field experiment. Health Place 2019, 56, 9–18. [Google Scholar] [CrossRef]
- Rossetti, T.; Lobel, H.; Rocco, V.; Hurtubia, R. Explaining subjective perceptions of public spaces as a function of the built environment: A massive data approach. Landsc. Urban Plan. 2019, 181, 169–178. [Google Scholar] [CrossRef]
- Brook, R.D. Cardiovascular effects of air pollution. Clin Sci. 2008, 115, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Mills, N.L.; Donaldson, K.; Hadoke, P.W.; Boon, N.A.; MacNee, W.; Cassee, F.R.; Sandström, T.; Blomberg, A.; Newby, D.E. Adverse cardiovascular effects of air pollution. Nat. Clin. Pract. Cardiovasc. Med. 2009, 6, 36–44. [Google Scholar] [CrossRef]
- Simkhovich, B.Z.; Kleinman, M.T.; Kloner, R.A. Air pollution and cardiovascular injury epidemiology, toxicology, and mechanisms. J. Am. Coll. Cardiol. 2008, 52, 719–726. [Google Scholar] [CrossRef]
- Gold, D.R.; Litonjua, A.; Schwartz, J.; Lovett, E.; Larson, A.; Nearing, B.; Allen, G.; Verrier, M.; Cherry, R.; Verrier, R. Ambient pollution and heart rate variability. Circulation 2000, 101, 1267–1273. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, J.; Blais, B.; Barabe, B.; Cote, J. Effects of temperature and wind on facial temperature, heart rate, and sensation. J. Appl. Physiol. 2017, 40, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Delyukov, A.A.; Didyk, L. The effects of extra-low-frequency atmospheric pressure oscillations on human mental activity. Int. J. Biometeorol. 1999, 43, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Randler, C.; Desch, I.H.; im Kampe, V.O.; Wüst-Ackermann, P.; Wilde, M.; Prokop, P. Anxiety, disgust and negative emotions influence food intake in humans. Int. J. Gastron. Food Sci. 2017, 7, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, P.T.; Vrinceanu, T.; Béland, S.; Bacon, S.L.; Ditto, B. Disgust stimuli reduce heart rate but do not contribute to vasovagal symptoms. J. Behav. Ther. Exp. Psychiatry 2016, 51, 116–122. [Google Scholar] [CrossRef] [PubMed]
Site of the Measurements and Its Number | CO, mg/m3 | Noise, dB | Particulate Matter, mg/m3 | Volatile Organic Compounds, mg/m3 | NO2, mg/m3 |
---|---|---|---|---|---|
Allowable Values | |||||
10 3 | 65 4 | 0.050 1 | 5 5 | 0.200 2 | |
1. Kareivių, Kalvarijų, and Ozo Sts. intersection | 7.02 | 93.2 | 0.076 | 5.23 | 0.071 |
2. Žygimantų and T. Vrublevskio Sts. intersection | 5.88 | 90.8 | 0.075 | 5.21 | 0.072 |
3. Santariškių and Baublio Sts. intersection | 5.38 | 88.3 | 0.065 | 4.83 | 0.062 |
4. Šventaragio and Pilies Sts. intersection | 6.28 | 91.6 | 0.075 | 5.18 | 0.070 |
5. Šventaragio St. and Gedimino Pr. intersection | 6.32 | 92.0 | 0.071 | 5.27 | 0.069 |
6. Pamėnkalnio, Jogailos, Islandijos, and Pylimo Sts. intersection | 5.92 | 89.5 | 0.072 | 4.99 | 0.07 |
Number of the Site of Measurements x | Sex | Age Groups under Analysis | ||||
---|---|---|---|---|---|---|
10–20 | 21–30 | 31–40 | 41–50 | 51–60 | ||
Size of Research Group | ||||||
Female | 16060 | 194586 | 121044 | 17521 | 1720 | |
Male | 5131 | 73926 | 109843 | 33137 | 6905 | |
Happy | ||||||
1 | Female | 0.15 | 0.13 | 0.11 | 0.13 | 0.16 |
Male | 0.07 | 0.26 | 0.12 | 0.13 | 0.22 | |
2 | Female | 0.14 | 0.14 | 0.14 | 0.06 | 0.08 |
Male | 0.09 | 0.25 | 0.16 | 0.10 | 0.07 | |
3 | Female | 0.14 | 0.15 | 0.11 | 0.25 | 0.11 |
Male | 0.06 | 0.16 | 0.15 | 0.22 | 0.15 | |
4 | Female | 0.13 | 0.13 | 0.12 | 0.10 | 0.12 |
Male | 0.14 | 0.14 | 0.12 | 0.10 | 0.09 | |
5 | Female | 0.13 | 0.12 | 0.12 | 0.08 | 0.09 |
Male | 0.10 | 0.13 | 0.11 | 0.08 | 0.06 | |
6 | Female | 0.14 | 0.12 | 0.11 | 0.08 | 0.07 |
Male | 0.16 | 0.15 | 0.10 | 0.09 | 0.07 | |
Heart rate | ||||||
1 | Female | 76.83 | 81.29 | 82.83 | 83.00 | 83.16 |
Male | 65.40 | 83.33 | 81.03 | 76.00 | 90.00 | |
2 | Female | 80.43 | 80.23 | 79.25 | 83.60 | 83.73 |
Male | 66.27 | 80.86 | 85.96 | 77.78 | 77.57 | |
3 | Female | 75.71 | 78.00 | 78.98 | 83.80 | 89.96 |
Male | 59.83 | 85.83 | 78.45 | 78.38 | 83.96 | |
4 | Female | 79.07 | 78.78 | 75.92 | 77.15 | 69.54 |
Male | 76.54 | 76.93 | 80.39 | 74.87 | 70.82 | |
5 | Female | 81.79 | 75.00 | 80.67 | 87.74 | 97.93 |
Male | 56.00 | 83.91 | 72.11 | 78.14 | 84.31 | |
6 | Female | 69.63 | 72.35 | 76.23 | 86.52 | 82.00 |
Male | 63.67 | 70.95 | 72.76 | 82.11 | 83.60 |
Criteria Describing the Alternatives | Weight | Formation of Neuromarketing Alternatives (A1–A4) Can Be Conducted by Considering the Gender (Male or Female) and Family Criteria of Two Age Groups (Aged 21–30 and 31–40 Years) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | Family | ||||||||||||||||||||||||
A1 | A2 | A3 | A6 | A1 | A2 | A3 | A6 | A1 | A2 | A3 | A6 | |||||||||||||||
21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | |||
Alternatives | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 | a13 | a14 | a15 | a16 | a17 | a18 | a19 | a20 | a21 | a22 | a23 | a24 | ||
Criteria defining green and energy efficient dwelling projects (see Section 4.1.1) | ||||||||||||||||||||||||||
Price, eur/m2 | 1 | − | 1635 | 1635 | 3120 | 3120 | 1990 | 1990 | 2950 | 2950 | 1635 | 1635 | 3120 | 3120 | 1990 | 1990 | 2950 | 2950 | 1635 | 1635 | 3120 | 3120 | 1990 | 1990 | 2950 | 2950 |
Energy Class | 0.1082 | + | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 |
Thermal wall features, m2K/W | 0.1082 | − | 0.12 | 0.12 | 0.11 | 0.11 | 0.11 | 0.11 | 0.12 | 0.12 | 0.12 | 0.12 | 0.11 | 0.11 | 0.11 | 0.11 | 0.12 | 0.12 | 0.12 | 0.12 | 0.11 | 0.11 | 0.11 | 0.11 | 0.12 | 0.12 |
Thermal roof features, m2K/W | 0.1082 | − | 0.1 | 0.1 | 0.09 | 0.09 | 0.09 | 0.09 | 0.1 | 0.1 | 0.1 | 0.1 | 0.09 | 0.09 | 0.09 | 0.09 | 0.1 | 0.1 | 0.1 | 0.1 | 0.09 | 0.09 | 0.09 | 0.09 | 0.1 | 0.1 |
Window type | 0.1082 | + | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 |
Thermal window features, m2K/W | 0.1082 | − | 1 | 1 | 0.85 | 0.85 | 0.85 | 0.85 | 1 | 1 | 1 | 1 | 0.85 | 0.85 | 0.85 | 0.85 | 1 | 1 | 1 | 1 | 0.85 | 0.85 | 0.85 | 0.85 | 1 | 1 |
Thermal wall material | 0.1082 | + | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Recuperator ventilation system | 0.03 | + | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Recuperator type | 0.03 | + | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
Recuperator effectiveness, % | 0.03 | + | 65 | 65 | 80 | 80 | 80 | 80 | 65 | 65 | 65 | 65 | 80 | 80 | 80 | 80 | 65 | 65 | 65 | 65 | 80 | 80 | 80 | 80 | 65 | 65 |
Geothermal heating | 0.1 | + | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 |
Smart heating control | 0.15 | + | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 |
Green environment | 0.25 | + | 2 | 2 | 1 | 1 | 4 | 4 | 1 | 1 | 2 | 2 | 1 | 1 | 4 | 4 | 1 | 1 | 2 | 2 | 1 | 1 | 4 | 4 | 1 | 1 |
Aesthetic view | 0.25 | + | 3 | 3 | 5 | 5 | 4 | 4 | 5 | 5 | 3 | 3 | 5 | 5 | 4 | 4 | 5 | 5 | 3 | 3 | 5 | 5 | 4 | 4 | 5 | 5 |
The data on pollution of the four locations under deliberation (see Section 4.1.2) | ||||||||||||||||||||||||||
CO, mg/m3 | 0.1 | − | 7.02 | 7.02 | 5.88 | 5.88 | 5.38 | 5.38 | 5.92 | 5.92 | 7.02 | 7.02 | 5.88 | 5.88 | 5.38 | 5.38 | 5.92 | 5.92 | 7.02 | 7.02 | 5.88 | 5.88 | 5.38 | 5.38 | 5.92 | 5.92 |
Noise, dB | 0.1 | − | 93.2 | 93.2 | 90.8 | 90.8 | 88.3 | 88.3 | 89.5 | 89.5 | 93.2 | 93.2 | 90.8 | 90.8 | 88.3 | 88.3 | 89.5 | 89.5 | 93.2 | 93.2 | 90.8 | 90.8 | 88.3 | 88.3 | 89.5 | 89.5 |
Particulate matter, mg/m3 | 0.1 | − | 0.08 | 0.08 | 0.08 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 | 0.08 | 0.08 | 0.08 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 | 0.08 | 0.08 | 0.08 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 |
Volatile organic compounds, mg/m3 | 0.1 | − | 5.23 | 5.23 | 5.21 | 5.21 | 4.83 | 4.83 | 4.99 | 4.99 | 5.23 | 5.23 | 5.21 | 5.21 | 4.83 | 4.83 | 4.99 | 4.99 | 5.23 | 5.23 | 5.21 | 5.21 | 4.83 | 4.83 | 4.99 | 4.99 |
NO2, mg/m3 | 0.1 | − | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 0.07 | 0.07 |
The emotional–physiological indicators of two age groups of the four locations under deliberation | ||||||||||||||||||||||||||
Happy | 0.2 | + | 0.26 | 0.12 | 0.25 | 0.16 | 0.16 | 0.15 | 0.15 | 0.10 | 0.13 | 0.11 | 0.14 | 0.14 | 0.15 | 0.11 | 0.12 | 0.11 | 0.19 | 0.12 | 0.20 | 0.15 | 0.16 | 0.13 | 0.14 | 0.11 |
Sad | 0.2 | − | 0.10 | 0.17 | 0.09 | 0.15 | 0.17 | 0.15 | 0.17 | 0.13 | 0.22 | 0.18 | 0.22 | 0.22 | 0.19 | 0.18 | 0.21 | 0.15 | 0.16 | 0.18 | 0.16 | 0.19 | 0.18 | 0.16 | 0.19 | 0.14 |
Angry | 0.2 | − | 0.07 | 0.16 | 0.08 | 0.15 | 0.20 | 0.18 | 0.13 | 0.11 | 0.13 | 0.13 | 0.13 | 0.14 | 0.14 | 0.19 | 0.10 | 0.09 | 0.10 | 0.15 | 0.11 | 0.14 | 0.17 | 0.19 | 0.12 | 0.10 |
Valence | 0.2 | + | 0.12 | −0.15 | 0.12 | 0.08 | −0.15 | −0.15 | −0.09 | −0.10 | −0.16 | −0.14 | −0.15 | −0.16 | −0.13 | −0.18 | −0.14 | −0.09 | −0.02 | −0.14 | −0.02 | −0.12 | −0.14 | −0.17 | −0.11 | −0.10 |
Heart Rate | 0.2 | − | 83.33 | 81.03 | 80.86 | 85.96 | 85.83 | 79.50 | 70.95 | 72.76 | 81.29 | 82.83 | 80.23 | 79.25 | 78.00 | 79.00 | 72.35 | 76.23 | 82.31 | 81.93 | 80.54 | 82.60 | 81.91 | 79.25 | 71.65 | 74.49 |
Sex | Male | Female | Family | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dwelling Projects | A1 | A2 | A3 | A6 | A1 | A2 | A3 | A6 | A1 | A2 | A3 | A6 | ||||||||||||
Age group | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 | 21–30 | 31–40 |
Alternatives | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 | a13 | a14 | a15 | a16 | a17 | a18 | a19 | a20 | a21 | a22 | a23 | a24 |
Significance of the alternative | 0.1852 | 0.1412 | 0.1628 | 0.1369 | 0.2413 | 0.208 | 0.1357 | 0.1337 | 0.1669 | 0.167 | 0.15 | 0.1505 | 0.2336 | 0.1431 | 0.1296 | 0.135 | 0.1681 | 0.1671 | 0.1488 | 0.1495 | 0.2319 | 0.2324 | 0.1324 | 0.1343 |
Priority of the alternative | 6 | 17 | 11 | 18 | 1 | 5 | 19 | 22 | 10 | 9 | 13 | 12 | 2 | 16 | 24 | 20 | 7 | 8 | 15 | 14 | 4 | 3 | 23 | 21 |
Utility degree of the alternative (%) | 76.77% | 58.53% | 67.47% | 56.73% | 100% | 86.19% | 56.23% | 55.41% | 69.17% | 69.23% | 62.15% | 62.36% | 96.83% | 59.3% | 53.7% | 55.94% | 69.66% | 69.27% | 61.68% | 61.95% | 96.13% | 96.32% | 54.87% | 55.67% |
Approximation Cycle | x24 cycle e | a24 | a18 | a20 | a22 | (U24e + U18e + U20e + U22e): 4 | * |
---|---|---|---|---|---|---|---|
0 | 2950 | 55.67 | 69.27 | 61.95 | 96.32 | 70.8 | |−15.13%| > 3.26% |
… | … | … | … | … | … | … | … |
1050 | 1900 | 62.75 | 69.28 | 61.85 | 96.41 | 72.57 | |−9.82%| > 3.26% |
… | … | … | … | … | … | … | … |
1650 | 1300 | 68.24 | 69.29 | 61.81 | 96.47 | 73.95 | |−5.71%| > 3.26% |
… | … | … | … | … | … | … | … |
1850 | 1100 | 70.38 | 69.27 | 61.78 | 96.49 | 74.48 | |−4.10%| > 3.26% |
… | … | … | … | … | … | … | … |
1950 | 1000 | 71.51 | 69.27 | 61.79 | 96.5 | 74.77 | |−3.26%| = 3.26% |
Criteria Describing the Alternatives | * | Measuring Units | Weight | Compared Alternatives Possible Improvement of the Analysed Criterion by % Possible Market Value Growth of Alternatives by % as First Impacted by Criterion Value Growth | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 Kareivių, Kalvarijų & Ozo Sts. Intersection. Male. Age group: 21–30 | 1 Kareivių, Kalvarijų & Ozo Sts. Intersection. Male. Age group: 31–40 | 2 Žygimantų & T. Vrublevskio Sts. intersection. Male. Age group: 21–30 | 2 Žygimantų & T. Vrublevskio Sts. intersection. Male. Age group: 31–40 | 3 Santariškių & Baublio Sts. Intersection. Male. Age group: 21–30 | 3 Santariškių & Baublio Sts. Intersection. Male. Age group: 31–40 | 6 Pamėnkalnio, Jogailos, Islandijos & Pylimo Sts. Intersection. Male. Age group: 21–30 | ||||
Thermal window features | - | Points | 0.1082 | 1 (15%) (0.4068%) | 1 (15%) (0.4068%) | 0.85 (0%) (0%) | 0.85 (0%) (0%) | 0.85 (0%) (0%) | 0.85 (0%) (0%) | 1 (15%) (0.4068%) |
Thermal wall material | + | Points | 0.1082 | 2 (0%) (0%) | 2 (0%) (0%) | 2 (0%) (0%) | 2 (0%) (0%) | 2 (0%) (0%) | 2 (0%) (0%) | 2 (0%) (0%) |
Recuperator ventilation system | + | Points | 0.03 | 2 (0%) (0%) | 2 (0%) (0%) | 2 (0%) (0%) | 2 (0%) (0%) | 2 (0%) (0%) | 2 (0%) (0%) | 2 (0%) (0%) |
Recuperator type | + | Points | 0.03 | 1 (100%) (0.752%) | 1 (100%) (0.752%) | 2 (0%) (0%) | 2 (0%) (0%) | 2 (0%) (0%) | 2 (0%) (0%) | 2 (0%) (0%) |
Recuperator effectiveness | + | Points | 0.03 | 65 (23.08%) (0.1735%) | 65 (23.08%) (0.1735%) | 80 (0%) (0%) | 80 (0%) (0%) | 80 (0%) (0%) | 80 (0%) (0%) | 65 (23.08%) (0.1735%) |
Approximation cycle | Score X12 11 cycle e | Utility Degree | ||
---|---|---|---|---|
The Žygimantų and T. Vrublevskio Sts. Intersection. Females. Age Group: 21–30-Years | The Žygimantų and T. Vrublevskio Sts. Intersection. Males. Age Group: 21–30-Years | Inequality | ||
0 | 0 | 62.15% | 67.47% | |−5.32| > 0.18% |
… | … | … | … | … |
50 | 0.5 | 65.47 | 67.87 | |−2.4| > 0.18% |
… | … | … | … | … |
90 | 0.9 | 67.97 | 68.15 | |−0.18%| = 0.18% |
… | … | … | … | … |
100 | 1 | 68.56 | 68.24 | |−0.32%| > 0.18% |
Approximation Cycle | Geothermal Heating Score | The Kareivių, Kalvarijų, and Ozo Sts. Intersection. Females. Age Group: 21–30 Years | Rating |
---|---|---|---|
0 | 0 | 69.17% | 10 |
… | … | … | … |
90 | 0.09 | 69.6 | 8 |
… | … | … | … |
100 | 0.1 | 69.64 | 8 |
… | … | … | … |
130 | 0.13 | 69.8 | 7 |
Correlations | Data by These Authors | Data by Other Scholars | ||||
---|---|---|---|---|---|---|
Happiness level among males and females measured at Intersection 1 | Heart rate among females measured at Intersection 6 | Heart rate among males measured at Intersection 6 | Happiness levels among males and females by Buchanan et al. [67] | Worry level among females by Newport and Pelham [68] | Worry level among males by Newport and Pelham [68] | |
Happiness level among males and females measured at Intersection 1 | — | 0.03 | 0.19 | 0.84 | −0.48 | −0.55 |
Heart rate among females measured at Intersection 6 | — | 0.94 | −0.10 | 0.73 | 0.72 | |
Heart rate among males measured at Intersection 6 | — | −0.07 | 0.72 | 0.69 | ||
Happiness levels among males and females by Buchanan et al. [67] | — | −0.74 | −0.75 | |||
Worry level among females by Newport and Pelham [68] | — | 0.99 | ||||
Worry level among males by Newport and Pelham [68] | — |
HR | SO2 | KD2.5 | KD10 | NO2 | CO | O3 | MS | RPM | VL | SD | SC | SP | DG | AG | HP | AR | IT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HR | 1 | |||||||||||||||||
SO2 | 0.635 ** | 1 | ||||||||||||||||
KD25 | 0.835 ** | 0.490 ** | 1 | |||||||||||||||
KD10 | 0.189 ** | 0.193 ** | 0.246 ** | 1 | ||||||||||||||
NO2 | 0.114 | 0.113 | 0.138 | 0.109 | 1 | |||||||||||||
CO | −0.157 * | −0.078 | −0.084 | −0.164 * | 0.135 | 1 | ||||||||||||
O3 | 0.242 ** | 0.213 ** | 0.185 ** | 0.125 | 0.127 | −0.118 | 1 | |||||||||||
MS | 0.736 ** | 0.424 ** | 0.569 ** | 0.14 | 0.036 | −0.054 | 0.176 * | 1 | ||||||||||
RPM | 0.11 | 0.047 | 0.077 | −0.071 | 0.165 * | 0.046 | 0.069 | −0.02 | 1 | |||||||||
VL | 0.13 | 0.007 | 0.125 | 0.153 * | 0.208 ** | −0.160 * | 0.007 | 0.035 | 0.014 | 1 | ||||||||
SD | 0.037 | −0.009 | 0.017 | 0.03 | −0.012 | 0.061 | 0.156* | −0.048 | −0.066 | 0.066 | 1 | |||||||
SC | 0.128 | 0.13 | 0.068 | −0.03 | 0.055 | 0.115 | 0.027 | 0.085 | −0.002 | −0.045 | 0.104 | 1 | ||||||
SP | −0.346 ** | −0.283 ** | −0.369 ** | −0.103 | −0.148 * | −0.002 | 0.019 | −0.197 ** | 0.011 | −0.018 | 0.012 | −0.046 | 1 | |||||
DG | 0.909 ** | 0.603 ** | 0.757 ** | 0.169 * | 0.127 | −0.193 ** | 0.266 ** | 0.666 ** | 0.092 | 0.153 * | −0.009 | 0.061 | −0.316 ** | 1 | ||||
AG | 0.886 ** | 0.532 ** | 0.754 ** | 0.153 * | 0.101 | −0.112 | 0.208 ** | 0.644 ** | 0.106 | 0.146 * | −0.044 | 0.106 | −0.346 ** | 0.805 ** | 1 | |||
HP | 0.421 ** | 0.293** | 0.401 ** | 0.220 ** | 0.097 | −0.086 | 0.067 | 0.303 ** | 0.064 | 0.123 | 0.02 | −0.13 | −0.105 | 0.352 ** | 0.383 ** | 1 | ||
AR | 0.798 ** | 0.440 ** | 0.679 ** | 0.166 * | 0.115 | −0.167 * | 0.238 ** | 0.539 ** | 0.106 | 0.158 ** | 0.078 | 0.049 | −0.295 ** | 0.726 ** | 0.750** | 0.350 ** | 1 | |
IT | 0.613 ** | 0.294 ** | 0.540 ** | 0.137 | 0.021 | −0.028 | 0.137 | 0.539 ** | 0.049 | 0.14 | 0.057 | −0.08 | −0.14 | 0.538 ** | 0.564 ** | 0.274 ** | 0.505 ** | 1 |
Independent Variables | Dependent Variable | F | p | R2 | |
---|---|---|---|---|---|
Heart Rate | |||||
Beta (β) | p | ||||
Constant | 0.000 | 106.642 | 0.000 | 0.857 | |
Sulfur dioxide concentration | 0.221 | 0.000 | |||
KD2.5 particle concentration | 0.408 | 0.000 | |||
KD10 particle concentration | −0.040 | 0.189 | |||
Carbon monoxide concentration | −0.054 | 0.070 | |||
Ozon concentration | 0.029 | 0.329 | |||
Magnetic Storm | 0.029 | 0.310 | |||
Surprise | −0.022 | 0.492 | |||
Happiness | 0.049 | 0.127 | |||
Arousal | 0.315 | 0.000 | |||
Interest | 0.140 | 0.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaklauskas, A.; Ubarte, I.; Kalibatas, D.; Lill, I.; Velykorusova, A.; Volginas, P.; Vinogradova, I.; Milevicius, V.; Vetloviene, I.; Grubliauskas, R.; et al. A Multisensory, Green, and Energy Efficient Housing Neuromarketing Method. Energies 2019, 12, 3836. https://doi.org/10.3390/en12203836
Kaklauskas A, Ubarte I, Kalibatas D, Lill I, Velykorusova A, Volginas P, Vinogradova I, Milevicius V, Vetloviene I, Grubliauskas R, et al. A Multisensory, Green, and Energy Efficient Housing Neuromarketing Method. Energies. 2019; 12(20):3836. https://doi.org/10.3390/en12203836
Chicago/Turabian StyleKaklauskas, Arturas, Ieva Ubarte, Darius Kalibatas, Irene Lill, Anastasiia Velykorusova, Pavelas Volginas, Irina Vinogradova, Virgis Milevicius, Ingrida Vetloviene, Raimondas Grubliauskas, and et al. 2019. "A Multisensory, Green, and Energy Efficient Housing Neuromarketing Method" Energies 12, no. 20: 3836. https://doi.org/10.3390/en12203836
APA StyleKaklauskas, A., Ubarte, I., Kalibatas, D., Lill, I., Velykorusova, A., Volginas, P., Vinogradova, I., Milevicius, V., Vetloviene, I., Grubliauskas, R., Bublienė, R., & Naumcik, A. (2019). A Multisensory, Green, and Energy Efficient Housing Neuromarketing Method. Energies, 12(20), 3836. https://doi.org/10.3390/en12203836