Energy-Related CO2 Emissions Growth in ASEAN Countries: Trends, Drivers and Policy Implications
Abstract
:1. Introduction
2. Methodology
2.1. Literature Review
2.2. LMDI Method Adopted in This Paper
2.3. Data Considerations
3. Analysis of Energy-Related CO2 Emissions Growth
3.1. Brunei
3.2. Cambodia
3.3. Indonesia
3.4. Malaysia
3.5. Myanmar
3.6. Philippines
3.7. Singapore
3.8. Thailand
3.9. Vietnam
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Beeson, M. Introduction: National Differences and Regional Dynamics in Southeast Asia. In Comptemporary Southeast Asia: Regional Dynamics, National Differences; Beeson, M., Ed.; Palgrave Macmillan: New York, NY, USA, 2004. [Google Scholar]
- ACE. The 5th ASEAN Energy Outlook; ASEAN Centre for Energy: Jakarta, Indonesia, 2017. [Google Scholar]
- Silitonga, A.S.; Mahlia, T.M.I.; Ong, H.C.; Riayatsyah, T.M.I.; Kusumo, F.; Ibrahim, H.; Dharma, S.; Gumilang, D. A comparative study of biodiesel production methods for Reutealis trisperma biodiesel. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 2006–2014. [Google Scholar] [CrossRef]
- Marquardt, J. How Power Shapes Energy Transitions in Southeast Asia: A Complex Governance Challenge; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Smits, M. Southeast Asian Energy Transitions: Between Modernity and Sustainability; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Ismail, M.S.; Moghavvemi, M.; Mahlia, T. Techno-economic analysis of an optimized photovoltaic and diesel generator hybrid power system for remote houses in a tropical climate. Energy Convers. Manag. 2013, 69, 163–173. [Google Scholar] [CrossRef]
- Mofijur, M.; Mahlia, T.M.I.; Silitonga, A.S.; Ong, H.C.; Silakhori, M.; Hasan, M.H.; Putra, N.; Rahman, S.M.A. Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview. Energies 2019, 12, 3167. [Google Scholar] [CrossRef] [Green Version]
- Ong, H.C.; Masjuki, H.H.; Mahlia, T.M.I.; Silitonga, A.S.; Chong, W.T.; Yusaf, T. Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine. Energy 2014, 69, 427–445. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Ong, H.C.; Chong, W.T. Experimental study on performance and exhaust emissions of a diesel engine fuelled with Ceiba pentandra biodiesel blends. Energy Convers. Manag. 2013, 76, 828–836. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Masjuki, H.H.; Ong, H.C.; Sebayang, A.H.; Dharma, S.; Kusumo, F.; Siswantoro, J.; Milano, J.; Daud, K.; Mahlia, T.M.I.; et al. Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine. Energy 2018, 159, 1075–1087. [Google Scholar] [CrossRef]
- IEA. Southeast Asia Energy Outlook; International Energy Agency: Paris, France, 2017. [Google Scholar]
- Eckstein, D.; Hutfils, M.-L.; Winges, M. Global Climate Risk Index 2019; GermanWatch: Bonn, Germany, 2019. [Google Scholar]
- Vinuya, F. A Decomposition Analysis of CO2 Emissions in the United States. Appl. Econ. Lett. 2010, 17, 925–931. [Google Scholar] [CrossRef]
- Shahiduzzaman, M.; Layton, A. Changes in CO2 Emissions over Business Cycle Recessions and Expansions in the United States: A Decomposion Analysis. Appl. Energy 2015, 150, 25–35. [Google Scholar] [CrossRef]
- Feng, K.; Davis, S.J.; Sun, L.; Hubacek, K. Drivers of the US CO2 Emissions 1997–2013. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.C.; Matsumura, W. Changes in the GHG Emission Intensity in EU-15: Lessons from a Decomposition Analysis. Energy 2010, 35, 3315–3322. [Google Scholar] [CrossRef]
- Moutinho, V.; Moreira, A.C.; Silva, P.M. The Driving Forces of Change in Energy-related CO2 Emissions in Eastern, Western, Northern and Southern Europe: The LMDI Approach to Decompositon Analysis. Renew. Sustain. Energy Rev. 2015, 50, 1485–1499. [Google Scholar] [CrossRef]
- Robaina-Alves, M.; Moutinho, V. Decomposition of Energy-related GHG Emissions in Agriculture Over 1995–2008 for European Countries. Appl. Energy 2014, 114, 949–957. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Zou, J. Decomposition of Energy-related CO2 emission in China: 1957–2000. Energy 2005, 30, 73–83. [Google Scholar] [CrossRef]
- Zhang, W.; Li, K.; Zhou, D.; Zhang, W.; Gao, H. Decomposition of Intensity of Energy-related CO2 Emission in Chinese Provinces Using the LMDI Method. Energy Policy 2016, 92, 369–381. [Google Scholar] [CrossRef]
- Zhang, M.; Mu, H.; Ning, Y.; Song, Y. Decomposition of Energy-related CO2 Emission Over 1991–2006 in China. Ecol. Econ. 2009, 68, 2122–2128. [Google Scholar] [CrossRef]
- Paul, S.; Bhattacharya, R.N. CO2 Emission from Energy Use in India: A Decomposition Analysis. Energy Policy 2004, 32, 585–593. [Google Scholar] [CrossRef]
- Das, A.; Paul, S.K. CO2 Emissions from Household Consumption in India between 1993–1994 and 2006–2007: A Decomposition Analysis. Energy Econ. 2014, 41, 90–105. [Google Scholar] [CrossRef]
- Wongsapai, W.; Phuangyod, A.; Damrongsak, D. Energy Efficiency Tracking in Thai Manufacturing Sector by Decomposition Technique. MATEC Web Conf. 2016, 70, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.; Techato, K.; Taweekun, J.; Rahman, M.; Rasul, M.; Mahlia, T.; Ashrafur, S. An overview of recent developments in biomass pyrolysis technologies. Energies 2018, 11, 3115. [Google Scholar] [CrossRef] [Green Version]
- Silitonga, A.S.; Mahlia, T.M.I.; Kusumo, F.; Dharma, S.; Sebayang, A.H.; Sembiring, R.W.; Shamsuddin, A.H. Intensification of Reutealis trisperma biodiesel production using infrared radiation: Simulation, optimisation and validation. Renew. Energy 2019, 133, 520–527. [Google Scholar] [CrossRef]
- Supasa, T.; Hsiau, S.; Lin, S.; Wongsapai, W.; Wu, J. Has Energy Conservation Been an Effective Policy for Thailand? An Input-Output Structural Decomposition Analysis from 1995 to 2010. Energy Policy 2016, 98, 210–220. [Google Scholar] [CrossRef]
- Tongsopit, S.; Kittner, N.; Chang, Y.; Aksornkij, A.; Wangjiraniran, W. Energy security in ASEAN: A quantitative approach for sustainable energy policy. Energy Policy 2016, 90, 60–72. [Google Scholar] [CrossRef]
- Kusumo, F.; Silitonga, A.S.; Masjuki, H.H.; Ong, H.C.; Siswantoro, J.; Mahlia, T.M.I. Optimization of transesterification process for Ceiba pentandra oil: A comparative study between kernel-based extreme learning machine and artificial neural networks. Energy 2017, 134, 24–34. [Google Scholar] [CrossRef]
- Kusumo, F.; Silitonga, A.S.; Ong, H.C.; Masjuki, H.H.; Mahlia, T.M.I. A comparative study of ultrasound and infrared transesterification of Sterculia foetida oil for biodiesel production. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 1339–1346. [Google Scholar] [CrossRef]
- Ong, H.C.; Milano, J.; Silitonga, A.S.; Hassan, M.H.; Shamsuddin, A.H.; Wang, C.T.; Mahlia, T.M.I.; Siswantoro, J.; Kusumo, F.; Sutrisno, J. Biodiesel production from Calophyllum inophyllum-Ceiba pentandra oil mixture: Optimization and characterization. J. Clean. Prod. 2019, 219, 183–198. [Google Scholar] [CrossRef]
- Silitonga, A.; Shamsuddin, A.; Mahlia, T.; Milano, J.; Kusumo, F.; Siswantoro, J.; Dharma, S.; Sebayang, A.; Masjuki, H.; Ong, H.C. Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization. Renew. Energy 2020, 146, 1278–1291. [Google Scholar] [CrossRef]
- Hossain, N.; Zaini, J.; Mahlia, T.; Azad, A.K. Elemental, morphological and thermal analysis of mixed microalgae species from drain water. Renew. Energy 2019, 131, 617–624. [Google Scholar] [CrossRef]
- Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I. Characterisation of PV panel and global optimisation of its model parameters using genetic algorithm. Energy Conserv. Manag. 2013, 81, 30–40. [Google Scholar]
- Huang, Y.W.; Kittner, N.; Kammen, D.M. ASEAN grid flexibility: Preparedness for grid integration of renewable energy. Energy Policy 2019, 128, 711–726. [Google Scholar] [CrossRef]
- Moutinho, V.; Varum, C.; Madaleno, M. How economic growth affects emissions? An investigation of the environmental KUznets curve in Portuguese and Spanish economic activity sectors. Energy Policy 2017, 106, 326–344. [Google Scholar] [CrossRef]
- Wang, S.S.; Zhou, D.Q.; Wang, Q.W. CO2 emissions, energy consumption and economic growth in China: A panel data analysis. Energy Policy 2011, 39, 4870–4875. [Google Scholar] [CrossRef]
- Waheed, R.; Sarwar, S.; Wei, C. The survey of economic growth, energy consumption and carbon emissions. Energy Rep. 2019, 5, 1103–1115. [Google Scholar] [CrossRef]
- Li, W.; Yang, G.; Li, X.; Sun, T.; Wang, J. Cluster analysis of the relationship between carbon dioxide emissions and economic growth. J. Clean. Prod. 2019, 225, 459–471. [Google Scholar] [CrossRef]
- Baek, J. A new look at the FDI-income-energy-environment nexus: Dynamic panel data analysis of ASEAN. Energy Policy 2016, 91, 22–27. [Google Scholar] [CrossRef]
- Nasir, M.A.; Huynh, T.L.D.; Tram, H.T.X. Role of financial development, economic growth & foreign direct investment in driving climate change: A case of emerging ASEAN. J. Environ. Manag. 2019, 242, 131–141. [Google Scholar]
- Charfeddine, L.; Kahia, M. Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis. Renew. Energy 2019, 139, 198–213. [Google Scholar] [CrossRef]
- Nguyen, K.H.; Kahkinaka, M. Renewable energy consumption, carbon emissions, and development stages: Some evidence from panel cointegration analysis. Renew. Energy 2019, 132, 1049–1057. [Google Scholar] [CrossRef]
- Ito, K. CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries. Int. Econ. 2017, 151, 1–6. [Google Scholar] [CrossRef]
- Chen, S.; Jin, H.; Lu, Y. Impact of urbanisation on CO2 emissions and energy consumption structure: A panel data analysis for Chinese prefecture-level cities. Struct. Chang. Econ. Dyn. 2019, 49, 107–119. [Google Scholar] [CrossRef]
- Liu, X.; Bae, J. Urbanisation and industrialisation impact of CO2 emissions in China. J. Clean. Prod. 2018, 172, 178–186. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, Y.; Tian, X.; Wang, Y.; Zhang, Y. CO2 emissions from the industrialisation and urbanisation processes in the manufacturing center Tianjin in China. J. Clean. Prod. 2017, 168, 867–875. [Google Scholar] [CrossRef]
- Kopidou, D.; Tsakanikas, A.; Diakoulaki, D. Common trends and drivers of CO2 emissions and employment: A decomposition analysis in the industrial sector of selected European Union countries. J. Clean. Prod. 2016, 112, 4159–4172. [Google Scholar] [CrossRef]
- Ang, B.W.; Zhang, F.Q. A survey of index decomposition analysis in energy and environmental studies. Energy 2000, 25, 1149–1176. [Google Scholar] [CrossRef]
- Ang, B.W. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [Google Scholar] [CrossRef]
- Zha, D.; Zhou, D.; Zhou, P. Driving Forces of Residential CO2 Emissions in Urban and Rural China: An Index Decomposition Analysis. Energy Policy 2010, 38, 3377–3383. [Google Scholar]
- Ehrlich, P.R.; Holdren, J.P. Impact of population growth. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef]
- Chertow, M.R. The IPAT equation and its variants. J. Ind. Ecol. 2000, 4, 13–29. [Google Scholar] [CrossRef]
- Kaya, Y.; Keiichi, Y. Environment, Energy and Economy: Strategies for Sustainability; United Nations University Press: Tokyo, Japan, 1997. [Google Scholar]
- Kaya, Y. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios; IPCC Response Strategies Working Group: Paris, France, 1990. [Google Scholar]
- Seibel, S. Decomposition Analysis of Carbon Dioxide Emission Changes in Germany—Conceptual Framework and Empirical Results; Federal Statistical Office of Germany: Wiesbaden, Germany, 2003.
- Bartelmus, P. Quantitative Eco-Nomics: How Sustainable are our Economies? Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Ang, B.W. Decomposition Analysis for Policymaking in Energy: Which is the Preferred Method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.L. A New Energy Decomposition Method: Perfect in Decomposition and Consistent in Aggregation. Energy 2001, 26, 537–548. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, N. Energy Decomposition Analysis: IEA Model versus Other Methods. Energy Policy 2007, 35, 1426–1432. [Google Scholar] [CrossRef]
- Oh, W.; Wehrmeyer, W.; Mulugetta, Y. Decomposition Analysis and Mitigation Strategies of CO2 emissions from Energy Consumption in South Korea. Energy Policy 2010, 38, 364–377. [Google Scholar] [CrossRef]
- Zhao, M.; Tan, L.; Zhang, W.; Ji, M.; Liu, Y.; Yu, L. Decomposing the Influencing Factors of Industrial Carbon Emissions in Shanghai using the LMDI method. Energy 2010, 35, 2505–2510. [Google Scholar] [CrossRef]
- Sandu, S.; Petchey, R. End Use Energy Intensity in the Australian Economy; Australian Bureau of Agricultural and Resource Economics Australia: Canberra, Australia, 2009.
- Sato, K. The ideal log-change index number. Rev. Econ. Stat. 1976, 58, 23–228. [Google Scholar] [CrossRef]
- Vartia, Y.O. Ideal log-change index numbers. Scand. J. Stat. 1976, 3, 121–126. [Google Scholar]
- IEA. CO2 Emissions from Fuel Combustion; International Energy Agency: Paris, France, 2018. [Google Scholar]
- IEA. World Energy Statistics; International Energy Agency: Paris, France, 2018. [Google Scholar]
- WB. World Development Indicators; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- APEC. APEC Energy Demand and Supply Outlook; Asia-Pacific Energy Research Centre: Yokohama, Japan, 2019. [Google Scholar]
- APEC. Peer Review on Energy Efficiency in Brunei Darussalam; Asia-Pacific Economic Cooperation: Singapore, 2013. [Google Scholar]
- ADB. Energy Sector Assessment, Strategy and Roadmap; Asian Development Bank: Manila, Philippines, 2018. [Google Scholar]
- ADB. Myanmar: Energy Sector Assessment, Strategy, and Road Map; Asian Development Bank: Manila, Philippines, 2016. [Google Scholar]
- ADB. Philippines: Energy Sector Assessment, Strategy, and Road Map; Asian Development Bank: Manila, Philippines, 2018. [Google Scholar]
- ADB. Thailand: Industrialisation and Economic Catch-Up; Asian Development Bank: Manila, Philippines, 2015. [Google Scholar]
- MoE. Thailand Power Development Plan 2015–2036; Ministry of Energy of Thailand: Bangkok, Thailand, 2015.
- ADB. Vietnam: Energy Sector Assessment, Strategy and Roadmap; Asian Development Bank: Manila, Philippines, 2016. [Google Scholar]
Countries | Annual Emissions (Mt) | Annual Growth Rate (%) | |||||
---|---|---|---|---|---|---|---|
1971 | 1990 | 2010 | 2016 | 1971–1989 | 1990–2009 | 2010–2016 | |
Brunei | 0.4 | 3 | 7 | 6 | 34.2 | 6.7 | −2.4 |
Cambodia | n.a. | n.a. | 5 | 9 | n.a. | n.a. | 13.3 |
Indonesia | 25 | 134 | 362 | 455 | 22.9 | 8.5 | 4.3 |
Malaysia | 13 | 50 | 190 | 216 | 15.0 | 14.0 | 2.3 |
Myanmar | 5 | 4 | 8 | 21 | −1.1 | 5.0 | 27.1 |
Philippines | 24 | 37 | 77 | 114 | 2.9 | 5.4 | 8.0 |
Singapore | 6 | 29 | 44 | 45 | 20.2 | 2.6 | 0.4 |
Thailand | 16 | 81 | 223 | 244 | 21.4 | 8.8 | 1.6 |
Vietnam | n.a. | 17 | 126 | 187 | n.a. | 32.1 | 8.1 |
ASEAN | 105 | 355 | 1041 | 1298 | 12.5 | 9.7 | 4.1 |
Countries | Time Phases | Population | Affluence | Technology | |||||
---|---|---|---|---|---|---|---|---|---|
Income | Structure | Fuel Mix | Efficiency | ||||||
Fuel | Conversion | End-Use | Overall | ||||||
Brunei | 1975–1989 | 33 | −28 | 52 | 19 | 25 | −28 | 27 | 24 |
1990–2009 | 45 | −18 | −31 | −62 | −10 | 151 | 25 | 166 | |
2010–2016 | 43 | −54 | 13 | 24 | −87 | −124 | 87 | −124 | |
Cambodia | 1971–1994 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
1995–2009 | 23 | 67 | 9 | 48 | 2 | −26 | −23 | −47 | |
2010–2016 | 13 | 42 | 5 | 39 | 2 | 6 | −8 | 0 | |
Indonesia | 1971–1989 | 29 | 49 | 0.7 | 53 | 1 | −14 | −26 | −39 |
1990–2009 | 28 | 57 | 1.5 | 34 | −4 | 6 | −28 | −26 | |
2010–2016 | 39 | 130 | −0.1 | 32 | 30 | −27 | −103 | −100 | |
Malaysia | 1971–1989 | 39 | 56 | 11 | 28 | 13 | −32 | −16 | −35 |
1990–2009 | 37 | 51 | −0.4 | 15 | −1 | −4 | 3 | −2 | |
2010–2016 | 53 | 106 | 2 | 19 | 11 | −38 | −53 | −80 | |
Myanmar | 1971–1989 | 521 | 168 | −349 | −258 | −29 | 132 | −285 | −182 |
1990–2009 | 51 | 420 | 121 | 31 | −63 | −13 | −446 | −522 | |
2010–2016 | 6 | 39 | 11 | 57 | 9 | 2 | −23 | −12 | |
Philippines | 1971–1989 | 114 | 43 | 16 | 9 | −51 | 55 | −87 | −83 |
1990–2009 | 73 | 59 | 14 | 71 | 27 | −32 | −112 | −117 | |
2010–2016 | 23 | 64 | 4 | 14 | 8 | 6 | −19 | −5 | |
Singapore | 1971–1989 | 28 | 89 | 2 | 4 | 10 | −32 | 1 | −21 |
1990–2009 | 103 | 128 | −18 | 3 | −59 | −57 | 0 | −116 | |
2010–2016 | 114 | 234 | −57 | 2 | −118 | −85 | 10 | −193 | |
Thailand | 1971–1989 | 24 | 65 | 4 | 19 | 6 | −1 | −18 | −13 |
1990–2009 | 18 | 69 | 3 | 31 | −30 | −20 | 28 | −22 | |
2010–2016 | 18 | 135 | −17 | 22 | −57 | −12 | 10 | −59 | |
Vietnam | 1971–1989 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
1990–2009 | 8 | 48 | −4 | 30 | −3 | −5 | 26 | 18 | |
2010–2016 | 14 | 62 | −5 | 19 | 0.1 | 0.3 | 10 | 10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandu, S.; Yang, M.; Mahlia, T.M.I.; Wongsapai, W.; Ong, H.C.; Putra, N.; Rahman, S.M.A. Energy-Related CO2 Emissions Growth in ASEAN Countries: Trends, Drivers and Policy Implications. Energies 2019, 12, 4650. https://doi.org/10.3390/en12244650
Sandu S, Yang M, Mahlia TMI, Wongsapai W, Ong HC, Putra N, Rahman SMA. Energy-Related CO2 Emissions Growth in ASEAN Countries: Trends, Drivers and Policy Implications. Energies. 2019; 12(24):4650. https://doi.org/10.3390/en12244650
Chicago/Turabian StyleSandu, Suwin, Muyi Yang, Teuku Meurah Indra Mahlia, Wongkot Wongsapai, Hwai Chyuan Ong, Nandy Putra, and S. M. Ashrafur Rahman. 2019. "Energy-Related CO2 Emissions Growth in ASEAN Countries: Trends, Drivers and Policy Implications" Energies 12, no. 24: 4650. https://doi.org/10.3390/en12244650