Net Electricity and Heat Generated by Reusing Mediterranean Agro-Industrial By-Products
Abstract
:1. Introduction
2. Citrus Pulp and Olive Pomace Production
3. Materials and Methods
3.1. Study Area
3.2. The Model for Net Electricity and Heat Computation
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ragauskas, A.J.; Williams, C.; Davison, B.; Britovsek, G.; Carney, J.; Eckert, C.A.; Frederick, W.J., Jr.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The path forward for biofuels and biomaterials. Science 2006, 27, 484–489. [Google Scholar] [CrossRef] [PubMed]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: Mitigation. In Contribution of Working Group 3 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Allen, B.R.; Keegan, D.; Elbersen, B. Biomass and bioenergy in the wider land-use context of the European Union. Biofuels Bioprod. Biorefin. 2013, 7, 207–216. [Google Scholar] [CrossRef]
- Kucharik, C.J.; Brye, K.R.; Norman, J.M.; Gower, S.T.; Bundy, L.G.; Foley, J.A. Measurements and modeling of carbon and nitrogen dynamics in managed and natural ecosystems in southern Wisconsin: Potential for SOC sequestration in the next 50 years. Ecosystems 2001, 4, 237–258. [Google Scholar] [CrossRef]
- Ruiz-Arias, J.A.; Terrados, J.; Pérez-Higueras, P.; Pozo-Vázquez, D.; Almonacid, G.; Ruiz-Aria, J.A.; Terrados, J.; Pérez-Higueras, P.; Pozo-Vázquez, D.; Almonacid, G. Assessment of the renewable energies potential for intensive electricity production in the province of Jaén, southern Spain. Renew. Sustain. Energy Rev. 2012, 16, 2994–3001. [Google Scholar] [CrossRef]
- Lanfranchi, M.; Giannetto, C.; de Pascale, A. Analysis and models for the reduction of food waste in organized large-scale retail distribution in eastern Sicily. Am. J. Appl. Sci. 2014, 11, 1860–1874. [Google Scholar] [CrossRef]
- Schneider, D.R.; Duić, N.; Bogdan, Ž. Mapping the potential for decentralized energy generation based on renewable energy sources in the Republic of Croatia. Energy 2007, 32, 1731–1744. [Google Scholar] [CrossRef]
- Rösch, C.; Kaltschmitt, M. Energy from biomass—Do non-technical barriers prevent an increased use? Biomass Bioenergy 1999, 16, 347–356. [Google Scholar] [CrossRef]
- Perlack, R.D.; Stokes, B.J. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry; Oak Ridge Natl. Lab.: Oak Ridge, TN, USA, 2005. [Google Scholar]
- Liu, Z.; Wang, S.; Ouyang, Y. Reliable Biomass Supply Chain Design under Feedstock Seasonality and Probabilistic Facility Disruptions. Energies 2017, 10, 1895. [Google Scholar] [CrossRef]
- Romano, S.; Cozzi, M.; di Napoli, F.; Viccaro, M. Building Agro-Energy Supply Chains in the Basilicata Region: Technical and Economic Evaluation of Interchangeability between Fossil and Renewable Energy Sources. Energies 2013, 6, 5259–5282. [Google Scholar] [CrossRef] [Green Version]
- Testa, R.; di Trapani, A.M.; Foderà, M.; Sgroi, F.; Tudisca, S. Economic evaluation of introduction of poplar as biomass crop in Italy. Renew. Sustain. Energy Rev. 2014, 38, 775–780. [Google Scholar] [CrossRef]
- Fiorese, G.; Guariso, G. Energy from Agricultural and Animal Farming Residues: Potential at a Local Scale. Energies 2012, 5, 3198–3217. [Google Scholar] [CrossRef] [Green Version]
- Edwards, J.; Othman, M.; Burn, S. A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia. Renew. Sustain. Energy Rev. 2015, 52, 815–828. [Google Scholar] [CrossRef]
- Smith, J.U.; Fischer, A.; Hallett, P.D.; Homans, H.Y.; Smith, P.; Abdul-Salam, Y.; Emmerling, H.H.; Phimister, E. Sustainable use of organic resources for bioenergy, food and water provision in rural Sub-Saharan Africa. Renew. Sustain. Energy Rev. 2015, 50, 903–917. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.J.; Hobbs, P.J.; Holliman, P.J.; Jones, D.L. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 2008, 99, 7928–7940. [Google Scholar] [CrossRef] [PubMed]
- Mata-Alvarez, J.; Dosta, J.; Romero-Güiza, M.S.; Fonoll, X.; Peces, M.; Astals, S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
- Sun, Q.; Li, H.; Yan, J.; Liu, L.; Yu, Z.; Yu, X. Selection of appropriate biogas upgrading technology—A review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 2015, 51, 521–532. [Google Scholar] [CrossRef]
- American Biogas Council, Current and Potential Biogas Production. American Biogas Council (2015). Available online: https://www.americanbiogascouncil.org (accessed on 10 December 2015).
- Biogas Opportunities Roadmap, Voluntary Actions to Reduce Methane Emissions and Increase Energy Independence. US Department of Agriculture, US Environmental Protection Agency, US Department of Energy (USDA, EPA, DOE), 2014. Available online: https://www3.epa.gov/climatechange/Downloads/Biogas-Roadmap-Factsheet.pdf (accessed on 15 October 2015).
- Boscaro, D.; Pezzuolo, A.; Grigolato, S.; Cavalli, R.; Marinello, F.; Sartori, L. Preliminary analysis on mowing and harvesting grass along riverbanks for the supply of anaerobic digestion plants in North-Eastern Italy. J. Agric. Eng. 2015, 46, 100–104. [Google Scholar] [CrossRef]
- Thompson, W.; Meyer, S. Second generation biofuels and food crops: Co-products or competitors? Glob. Food Secur. 2013, 2, 89–96. [Google Scholar] [CrossRef]
- Dale, B.E.; Sibilla, F.; Fabbri, C.; Pezzaglia, M.; Pecorino, B.; Veggia, E.; Baronchelli, A.; Gattoni, P.; Bozzetto, S. Biogasdoneright®: An innovative new system is commercialized in Italy. Biofuels Bioprod. Biorefin. 2016, 10, 341–345. [Google Scholar] [CrossRef]
- Selvaggi, R.; Valenti, F.; Pappalardo, G.; Rossi, L.; Bozzetto, S.; Pecorino, B.; Dale, B.E. Sequential crops for food, energy and economic development in rural areas: The case of Sicily. Biofuels Bioprod. Biorefin. 2018, 12, 22–28. [Google Scholar] [CrossRef]
- Feyereisen, G.W.; Camargo, G.G.T.; Baxter, R.E.; Baker, J.M.; Richard, T.L. Cellulosic Biofuel Potential of a Winter Rye Double Crop across the U.S. Corn–Soybean Belt. Publ. Agron. J. 2013, 105, 631–642. [Google Scholar] [CrossRef]
- Dell’Antonia, D.; Cividino, S.R.S.; Carlino, A.; Gubiani, R. Development perspectives for biogas production from agricultural waste in Friuli Venezia Giulia (Nord-East of Italy). J. Agric. Eng. 2013, 1, 10–13. [Google Scholar] [CrossRef]
- Arcidiacono, C.; Porto, S.M.C. A model to manage crop-shelter spatial development by multi-temporal coverage analysis and spatial indicators. Biosyst. Eng. 2010, 107, 107–122. [Google Scholar] [CrossRef]
- Valenti, F.; Porto, S.M.; Chinnici, G.; Cascone, G.; Arcidiacono, C. A GIS-based model to estimate citrus pulp availability for biogas production: An application to a region of the Mediterranean Basin. Biofuels Bioprod. Biorefin. 2016, 10, 710–727. [Google Scholar] [CrossRef]
- Valenti, F.; Porto, S.M.C.; Chinnici, G.; Selvaggi, R.; Cascone, G.; Arcidiacono, C.; Pecorino, B. Use of citrus pulp for biogas production: A GIS analysis of citrus-growing areas and processing industries in South Italy. Land Use Policy 2017, 66, 151–161. [Google Scholar] [CrossRef]
- Pulighe, G.; Bonati, G.; Fabiani, S.; Barsali, T.; Lupia, F.; Vanino, S.; Nino, P.; Arca, P.; Roggero, P.P. Assessment of the Agronomic Feasibility of Bioenergy Crop Cultivation on Marginal and Polluted Land: A GIS-Based Suitability Study from the Sulcis Area, Italy. Energies 2016, 9, 895. [Google Scholar] [CrossRef]
- Balaman, Ş.Y.; Selim, H. A network design model for biomass to energy supply chains with anaerobic digestion systems. Appl. Energy 2014, 130, 289–304. [Google Scholar] [CrossRef]
- Galvez, D.; Rakotondranaivo, A.; Morel, L.; Camargo, M.; Fick, M. Reverse logistics network design for a biogas plant: An approach based on MILP optimization and Analytical Hierarchical Process (AHP). J. Manuf. Syst. 2015, 37, 616–623. [Google Scholar] [CrossRef]
- Batzias, F.A.; Sidiras, D.K.; Spyrou, E.K. Evaluating livestock manures for biogas production: A GIS based method. Renew. Energy 2005, 30, 1161–1176. [Google Scholar] [CrossRef]
- Höhn, J.; Lehtonen, E.; Rasi, S.; Rintala, J. A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland. Appl. Energy 2014, 113, 1–10. [Google Scholar] [CrossRef]
- Noon, C.E.; Daly, M.J. GIS-based biomass resource assessment with BRAVO. Biomass Bioenergy 1996, 10, 101–109. [Google Scholar] [CrossRef]
- Sliz-Szkliniarz, B.; Vogt, J. A GIS-based approach for evaluating the potential of biogas production from livestock manure and crops at a regional scale: A case study for the Kujawsko-Pomorskie Voivodeship. Renew. Sustain. Energy Rev. 2012, 16, 752–763. [Google Scholar] [CrossRef]
- Zubaryeva, A.; Zaccarelli, N.; del Giudice, C.; Zurlini, G. Spatially explicit assessment of local biomass availability for distributed biogas production via anaerobic co-digestion—Mediterranean case study. Renew. Energy 2012, 39, 261–270. [Google Scholar]
- Rehl, T.K.S.; Leis, H.; Müller, J. Analysis of biomass residues potential for electrical energy generation in Albania. Renew. Sustain. Energy Rev. 2010, 14, 493–499. [Google Scholar]
- Franco, C.; Bojesen, M.; Hougaard, J.L.; Nielsen, K. A fuzzy approach to a multiple criteria and Geographical Information System for decision support on suitable locations for biogas plants. Appl. Energy 2015, 140, 304–315. [Google Scholar] [CrossRef]
- Roberts, J.J.; Cassula, A.M.; Prado, P.O.; Dias, R.A.; Balestieri, J.A.P. Assessment of dry residual biomass potential for use as alternative energy source in the party of General Pueyrredón, Argentina. Renew. Sustain. Energy Rev. 2015, 41, 568–583. [Google Scholar] [CrossRef]
- Brahma, A.; Saikia, K.; Hiloidhari, M.; Baruah, D.C. GIS based planning of a biomethanation power plant in Assam, India. Renew. Sustain. Energy Rev. 2016, 62, 596–608. [Google Scholar] [CrossRef]
- Schievano, A.; D’Imporzano, G.; Adani, F. Substituting energy crops with organic wastes and agro-industrial residues for biogas production. J. Environ. Manag. 2009, 90, 2537–2541. [Google Scholar] [CrossRef]
- Kryvoruchko, V.; Machmüller, A.; Bodiroza, V.; Amon, B.; Amon, T. Anaerobic digestion of by-products of sugar beet and starch potato processing. Biomass Bioenergy 2009, 33, 620–627. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Greco, R.; Evangelou, A.; Komilis, D. Anaerobic digestion of tomato processing waste: Effect of alkaline pretreatment. J. Environ. Manag. 2015, 163, 49–52. [Google Scholar] [CrossRef]
- De Menna, F.; Malagnino, R.A.; Vittuari, M.; Molari, G.; Seddaiu, G.; Deligios, P.E.; Solinas, S.; Ledda, L. Potential Biogas Production from Artichoke Byproducts in Sardinia, Italy. Energies 2016, 9, 92. [Google Scholar] [CrossRef]
- Börjesson, P.; Berglund, M. Environmental systems analysis of biogas systems—Part II: The environmental impact of replacing various reference systems. Biomass Bioenergy 2007, 31, 326–344. [Google Scholar] [CrossRef]
- Lijó, L.; González-García, S.; Bacenetti, J.; Negri, M.; Fiala, M.; Feijoo, G.; Moreira, M.T. Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production. Waste Manag. 2015, 41, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Schievano, A.; D’Imporzano, G.; Orzi, V.; Colombo, G.; Maggiore, T.; Adani, F. Biogas from dedicated energy crops in Northern Italy: Electric energy generation costs. GCB Bioenergy 2015, 7, 899–908. [Google Scholar] [CrossRef]
- De Menna, F.; Vittuari, M.; Molari, G. Impact evaluation of integrated food-bioenergy systems: A comparative LCA of peach nectar. Biomass Bioenergy 2014, 73, 48–61. [Google Scholar] [CrossRef]
- Cavicchi, B.; Bryden, J.M.; Vittuari, M. A comparison of bioenergy policies and institutional frameworks in the rural areas of Emilia Romagna and Norway. Energy Policy 2014, 67, 355–363. [Google Scholar] [CrossRef]
- Restuccia, A.; Failla, S.; Longo, D.; Caruso, L.; Mallia, I.; Schillaci, G. Assessment of energy return on energy investment (EROEI) of oil bearing crops for renewable fuel production. J. Agric. Eng. 2013, 44, 539–545. [Google Scholar] [CrossRef]
- Selvaggi, R.; Parisi, M.; Pecorino, B. Economic assessment of cereal straw management in Sicily. Qual. Access Success 2017, 18, 409–415. [Google Scholar]
- Istat. Database Istat.it. 2015. Available online: http://dati-censimentoagricoltura.istat.it/Index.aspx# (accessed on 8 August 2015).
- Kale, P.N.; Adsule, P.G. Citrus. In Handbook of Fruit Science and Technology: Production, Composition, Storage, and Processing; Salunkhe, D.K., Kadam, S.S., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1995; pp. 39–65. [Google Scholar]
- Inea. L’agricoltura Nella Sicilia in Cifre 2013; Istituto Nazionale di Economia Agraria: Rome, Italy, 2014.
- Inea. Annuario Dell’agricoltura Italiana Volume LXV (2014); Istituto Nazionale di Economia Agraria: Rome, Italy, 2014.
- FAOSTAT. Crops Processed Data for Olive Oil. 2009. Available online: Faostat.fao.org/site/636/DesktopDefault.aspx?PageID=636#ancor (accessed on 8 May 2015).
- IOCC, International Olive Oil Council. 2010. Available online: http://www.internationaloliveoil.org (accessed on 8 February 2015).
- Rana, G.; Rinaldi, M.; Introna, M. Volatilisation of substances alter spreading olive oil waste water on the soil in a Mediterranean environment. Agric. Ecosyst. Environ. 2003, 96, 49–58. [Google Scholar] [CrossRef]
- Morillo, J.; Antizar-Ladislao, B.; Monteoliva-Sánchez, M.; Ramos-Cormenzana, A.; Russell, N.J. Bioremediation and biovalorisation of olive-mill wastes. Appl. Microbiol. Biotechnol. 2009, 82, 25–39. [Google Scholar] [CrossRef]
- Milanese, M.; de Risi, A.; de Riccardis, A.; Laforgia, A. Numerical study of anaerobic digestion system for olive pomace. Energy Procedia 2014, 45, 141–149. [Google Scholar] [CrossRef]
- Barreca, F.; Praticò, P. Post-occupancy evaluation of buildings for sustainable agri-food production-A method applied to an olive oil mill. Buildings 2018, 8, 83. [Google Scholar] [CrossRef]
- Barreca, F.; Fichera, C.R. Design of sustainable olive mill wastewaters ponds. Res. Agric. Eng. 2014, 60, 159–164. [Google Scholar] [CrossRef] [Green Version]
- UNCTAD. Info Coom. Information de Marche dans le Secteur des Produits de Base. 2015. Available online: www.unctad.org/infocomm/ (accessed on 17 March 2016).
- Istat. 6° Censimento Generale dell’Agricoltura (2013) [WWW Document]. Ist. Naz. di Stat. Available online: http://censimentoagricoltura.istat.it/index.php?id=73 (accessed on 6 August 2016).
- Valenti, F.; Arcidiacono, C.; Cascone, G.; Porto, S.M. Quantification of olive pomace availability for biogas production by using a GIS-based model. Biofuels Bioprod. Biorefin. 2017, 11, 784–797. [Google Scholar] [CrossRef]
- DellaGreca, M.; Monaco, P.; Pinto, G.; Pollio, A.; Previtera, L.; Temussi, F. Phytotoxicity of low-molecular-weight phenols from olive mill waste waters. Bull. Environ. Contam. Toxicol. 2001, 67, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Paredes, M.J.; Moreno, E.; Ramos-Cormenzana, A.; Martinez, J. Characteristics of soil after pollution with waste waters fromolive oil extraction plants. Chemosphere 1987, 16, 1557–1564. [Google Scholar] [CrossRef]
- Salomone, R.; Ioppolo, G. Environmental impacts of olive oil production: A Life Cycle Assessment case study in the province of Messina (Sicily). J. Clean. Prod. 2012, 28, 88–100. [Google Scholar] [CrossRef]
- Valenti, F.; Porto, S.M.; Chinnici, G.; Cascone, G.; Arcidiacono, C. Assessment of citrus pulp availability for biogas production by using a GIS-based model the case study of an area in southern Italy. Chem. Eng. Trans. 2017, 58, 529–534. [Google Scholar]
- Valenti, F.; Porto, S.M.C.; Cascone, G.; Arcidiacono, C. Potential Biogas Production from Agricultural By-Products in Sicily: A Case Study of Citrus Pulp and Olive Pomace. J. Agric. Eng. 2017, 48, 196–202. [Google Scholar] [CrossRef]
- Arcidiacono, C.; Porto, S.M.C. Image processing for the classification of crop shelters. Acta Horticult. 2008, 801, 309–316. [Google Scholar] [CrossRef]
- Arcidiacono, C.; Porto, S.M.C. Pixel-based classification of high-resolution satellite images for crop shelter coverage recognition. Acta Horticult. 2012, 937, 1003–1010. [Google Scholar] [CrossRef]
- Cerruto, E.; Selvaggi, R.; Papa, R. Potential biogas production from by-products of citrus industry in Sicily. Qual. Access Success 2016, 1, 251–258. [Google Scholar]
- Reale, F.; Stolica, R.; Gaeta, M.; Ferri, M.; Sarnataro, M.; Vitale, V. Analisi e Stima Quantitativa Della Potenzialità di Produzione Energetica da Biomassa Digeribile a Livello Regionale. Studio e Sviluppo di un Modello per Unità Energetiche Parte 1—Metodologia. Report RSE/2009/RSE182. 2009. Available online: http://www.enea.it/it/Ricerca_sviluppo/documenti/ricerca-di-sistema-elettrico/celle-a-combustibile/rse182.pdf (accessed on 30 March 2017).
- Valenti, F.; Zhong, Y.; Sun, M.; Porto, S.M.C.; Toscano, A.; Dale, B.E.; Sibilla, F.; Liao, W. Anaerobic co-digestion of multiple agricultural residues to enhance biogas production in southern Italy. Waste Manag. 2018, 78, 151–157. [Google Scholar] [CrossRef]
- EPA US. Catalog of CHP Technologies; The U.S. Environmental Protection Agency: Washington, DC, USA, 2015.
- Terna. L‘elettricita’ Nelle Regioni. Terna Group, 2016. Available online: https://www.terna.it/it-it/sistemaelettrico/statisticheeprevisioni/datistatistici.aspx (accessed on 14 May 2018).
- Chinnici, G.; D’Amico, M.; Rizzo, M.; Pecorino, B. Analysis of biomass availability for Energy use in Sicily. Renew. Sustain. Energy Rev. 2015, 52, 1025–1030. [Google Scholar] [CrossRef]
- Valenti, F.; Porto, S.M.C.; Selvaggi, R.; Pecorino, B. Evaluation of biomethane potential from by-products and agricultural residues co-digestion in southern Italy. J. Environ. Manag. 2018, 223, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Algieri, A.; Andiloro, S.; Tamburino, V.; Zema, D.A. The potential of agricultural residues for energy production in Calabria (Southern Italy). Renew. Sustain. Energy Rev. 2019, 104, 1–14. [Google Scholar] [CrossRef]
- Kaur, G.; Uisan, K.; Ong, K.L.; Lin, C.S.K. Recent Trends in Green and Sustainable Chemistry & Waste Valorisation: Rethinking Plastics in a circular economy. Curr. Opin. Green Sustain. Chem. 2018, 9, 30–39. [Google Scholar]
- European Cooperation in Science & Technology: Food Waste Valorisation for Sustainable Chemicals, Materials and Fuels (EUBis). 2016. Available online: http://www.cost.eu/COST_Actions/fa/TD1203 (accessed on 21 November 2017).
- European Cooperation in Science & Technology, COST (2012–2016). 2016. Available online: http://www.cost.eu/about_cost (accessed on 21 November 2017).
- Smart Specialisation Strategy (S3). Smart Specialisation Platform. Available online: http://s3platform.jrc.ec.europa.eu/ (accessed on 4 May 2018).
Municipality | ||||||
---|---|---|---|---|---|---|
(t) | (t) | (t) | (t) | |||
Aci Bonaccorsi | 3.11 | 1.40 | 0.00 | - | - | - |
Aci Castello | 51.75 | 23.25 | 0.07 | 575.54 | 330.94 | 0.17 |
Aci Catena | 8.27 | 3.72 | 0.01 | - | - | - |
Aci Sant’antonio | 18.50 | 8.31 | 0.03 | - | - | - |
Acireale | 175.06 | 78.64 | 0.24 | - | - | - |
Adrano | 1486.05 | 667.53 | 2.02 | - | - | - |
Belpasso | 2750.83 | 1235.67 | 3.73 | 20,622.18 | 11,857.75 | 6.27 |
Biancavilla | 1029.85 | 462.61 | 1.40 | - | - | - |
Bronte | 2063.45 | 926.90 | 2.80 | 316.49 | 181.98 | 0.10 |
Calatabiano | 351.40 | 157.85 | 0.48 | 167.85 | 96.51 | 0.05 |
Caltagirone | 4333.26 | 1946.50 | 5.88 | 3164.02 | 1819.31 | 0.96 |
Camporotondo Etneo | 134.94 | 60.62 | 0.18 | - | - | - |
Castel Di Iudica | 775.20 | 348.22 | 1.05 | 2315.63 | 1331.48 | 0.70 |
Castiglione Di Sicilia | 1297.18 | 582.69 | 1.76 | - | - | - |
Catania | 812.30 | 364.89 | 1.10 | 22,181.20 | 12,754.19 | 6.74 |
Fiumefreddo Di Sicilia | 39.15 | 17.59 | 0.05 | 2845.59 | 1636.21 | 0.86 |
Giarre | 65.50 | 29.42 | 0.09 | 6291.87 | 3617.83 | 1.91 |
Grammichele | 330.90 | 148.64 | 0.45 | 2353.16 | 1353.07 | 0.71 |
Gravina Di Catania | - | - | - | - | - | - |
Licodia Eubea | 706.93 | 317.55 | 0.96 | 473.95 | 272.52 | 0.14 |
Linguaglossa | 359.64 | 161.55 | 0.49 | 15.41 | 8.86 | 0.00 |
Maletto | 161.78 | 72.67 | 0.22 | 31.15 | 17.91 | 0.01 |
Maniace | 680.31 | 305.60 | 0.92 | 11.07 | 6.36 | 0.00 |
Mascali | 94.86 | 42.61 | 0.13 | 6859.22 | 3944.05 | 2.08 |
Mascalucia | 55.20 | 24.80 | 0.07 | - | - | - |
Mazzarrone | 481.61 | 216.34 | 0.65 | 243.56 | 140.04 | 0.07 |
Militello In Val Di Catania | 764.50 | 343.41 | 1.04 | 4095.68 | 2355.02 | 1.24 |
Milo | 13.75 | 6.17 | 0.02 | 205.63 | 118.24 | 0.06 |
Mineo | 2776.05 | 1247.00 | 3.77 | 17,922.16 | 10,305.24 | 5.45 |
Mirabella Imbaccari | 372.52 | 167.33 | 0.51 | - | - | - |
Misterbianco | 314.95 | 141.48 | 0.43 | 7381.34 | 4244.27 | 2.24 |
Motta Sant’anastasia | 635.75 | 285.58 | 0.86 | 5605.42 | 3223.12 | 1.70 |
Nicolosi | 44.78 | 20.12 | 0.06 | - | - | - |
Palagonia | 377.46 | 169.56 | 0.51 | 18,711.86 | 10,759.32 | 5.68 |
Paterno’ | 1928.51 | 866.29 | 2.62 | 16,588.60 | 9538.45 | 5.04 |
Pedara | 10.01 | 4.50 | 0.01 | - | - | - |
Piedimonte Etneo | 282.33 | 126.82 | 0.38 | 1032.53 | 593.70 | 0.31 |
Raddusa | 138.74 | 62.32 | 0.19 | 19.45 | 11.18 | 0.01 |
Ragalna | 453.84 | 203.87 | 0.62 | - | - | - |
Ramacca | 2154.73 | 967.91 | 2.92 | 40,378.26 | 23,217.50 | 12.27 |
Randazzo | 1024.96 | 460.41 | 1.39 | - | - | - |
Riposto | 16.02 | 7.19 | 0.02 | 2713.18 | 1560.08 | 0.82 |
San Cono | 52.15 | 23.43 | 0.07 | - | - | - |
San Giovanni La Punta | 50.16 | 22.53 | 0.07 | 14.82 | 8.52 | 0.00 |
San Gregorio Di Catania | 10.23 | 4.60 | 0.01 | 154.93 | 89.08 | 0.05 |
San Michele Di Ganzaria | 512.68 | 230.30 | 0.70 | 42.41 | 24.39 | 0.01 |
San Pietro Clarenza | 64.87 | 29.14 | 0.09 | - | - | - |
Santa Maria Di Licodia | 1192.90 | 535.85 | 1.62 | - | - | - |
Santa Venerina | 139.42 | 62.63 | 0.19 | 582.95 | 335.20 | 0.18 |
Sant’agata Li Battiati | 6.22 | 2.79 | 0.01 | 68.10 | 39.16 | 0.02 |
Sant’alfio | 45.44 | 20.41 | 0.06 | 1384.89 | 796.31 | 0.42 |
Scordia | 307.95 | 138.33 | 0.42 | 3762.82 | 2163.62 | 1.14 |
Trecastagni | 27.15 | 12.20 | 0.04 | - | - | - |
Tremestieri Etneo | 11.23 | 5.04 | 0.02 | - | - | - |
Valverde | 11.32 | 5.09 | 0.02 | - | - | - |
Viagrande | 57.38 | 25.77 | 0.08 | - | - | - |
Vizzini | 900.16 | 404.35 | 1.22 | 114.27 | 65.71 | 0.03 |
Zafferana Etnea | 134.48 | 60.41 | 0.18 | 13.41 | 7.71 | 0.00 |
By-Products | Potential Biogas Production | Engine Power Size | Net Electricity Generation | Net Heat Generation |
---|---|---|---|---|
(Nm3) | (kW) | (kWh y−1) | (GJ y−1) | |
Catania province | ||||
Citrus pulp | 9,718,056 | 2082 | 13,266,208 | 73,474 |
Olive pomace | 1,947,758 | 417 | 2,658,902 | 14,726 |
Total | 11,665,815 | 2500 | 15,925,111 | 88,200 |
Area 1 | ||||
Citrus pulp | 1,396,762 | 299 | 1,906,733 | 10,560 |
Olive pomace | 455,942 | 97 | 622,410 | 3447 |
Total | 1,852,704 | 397 | 2,529,144 | 14,007 |
Area 2 | ||||
Citrus pulp | 1,910,680 | 409 | 2,608,287 | 14,449 |
Olive pomace | 359,103 | 76 | 490,214 | 2715 |
Total | 2,269,783 | 486 | 3,098,502 | 17,160 |
Area 3 | ||||
Citrus pulp | 24,869 | 5 | 33,949 | 188 |
Olive pomace | 366,483 | 78 | 500,290 | 2770 |
Total | 391,353 | 83 | 534,239 | 2958 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenti, F.; Porto, S.M.C. Net Electricity and Heat Generated by Reusing Mediterranean Agro-Industrial By-Products. Energies 2019, 12, 470. https://doi.org/10.3390/en12030470
Valenti F, Porto SMC. Net Electricity and Heat Generated by Reusing Mediterranean Agro-Industrial By-Products. Energies. 2019; 12(3):470. https://doi.org/10.3390/en12030470
Chicago/Turabian StyleValenti, Francesca, and Simona M. C. Porto. 2019. "Net Electricity and Heat Generated by Reusing Mediterranean Agro-Industrial By-Products" Energies 12, no. 3: 470. https://doi.org/10.3390/en12030470