Correlation of Ventilative Cooling Potentials and Building Energy Savings in Various Climatic Zones
Abstract
1. Introduction
2. Methodology
2.1. Balance Temperature Difference
2.2. Definition of VCPs
2.3. Climates
2.4. Building and Energy Simulation Model
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kolokotroni, M.; Heiselberg, P. Ventilative Cooling State of the Art Review; Annex 62 Ventilative Cooling: Aalborg, Denmark, 2015. [Google Scholar]
- Artmann, N.; Manz, H.; Heiselberg, P. Climatic potential for passive cooling of buildings by night-time ventilation in Europe. Appl. Energy 2007, 84, 187–201. [Google Scholar] [CrossRef]
- Haase, M.; Amato, A. An investigation of the potential for natural ventilation and building orientation to achieve thermal comfort in warm and humid climates. Sol. Energy 2009, 83, 389–399. [Google Scholar] [CrossRef]
- Yao, R.; Li, B.; Steemers, K.; Short, A. Assessing the natural ventilation cooling potential of office buildings in different climate zones in China. Renew. Energy 2009, 34, 2697–2705. [Google Scholar] [CrossRef]
- Causone, F. Climatic potential for natural ventilation. Arch. Sci. Rev. 2016, 59, 212–228. [Google Scholar] [CrossRef]
- Campaniço, H.; Hollmuller, P.; Soares, P.M.M. Assessing energy savings in cooling demand of buildings using passive cooling systems based on ventilation. Appl. Energy 2014, 134, 426–438. [Google Scholar] [CrossRef]
- Campaniço, H.; Soares, P.M.M.M.; Hollmuller, P.; Cardoso, R.M. Climatic cooling potential and building cooling demand savings: High resolution spatiotemporal analysis of direct ventilation and evaporative cooling for the Iberian Peninsula. Renew. Energy 2016, 85, 766–776. [Google Scholar] [CrossRef]
- Belleri, A.; Avantaggiato, M.; Psomas, T.; Heiselberg, P. Evaluation tool of climate potential for ventilative cooling. Int. J. Vent. 2017, 2044–4044. [Google Scholar] [CrossRef]
- British Standards Institution. PrEN 16798-1. (2016-02-07 under Approval). In Energy Performance of Buildings—Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; British Standards Institution: London, UK, 2016. [Google Scholar]
- ASHRAE. Thermal Environmental Conditions for Human Occupancy. Available online: http://www.aicarr.org/Documents/Editoria_Libri/ASHRAE_PDF/STD55-2004.pdf (accessed on 12 February 2019).
- De Dear, R.J.; Brager, G.S.; Artmann, N. Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard 55. Energy Build. 2002, 34, 549–561. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 2007, 4, 439–473. [Google Scholar] [CrossRef]
- Energyplus, Weather Data. 2016. Available online: https://energyplus.net/weather (accessed on 12 February 2019).
- Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; et al. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock; NREL/TP-5500-46861; NREL: Lakewood, CO, USA, 2011; p. 19. [Google Scholar]
- Maria-Alenjandra, B.M.; Glicksman, L. Coolvent: A multizone airflow and thermal analysis simulator for natural ventilation in building. In Proceedings of the 3rd National Conference of IBPSA-USA, Berkeley, CA, USA, 30 July–1 August 2008. [Google Scholar]
- Rahman, H.; Han, H. Ventilative cooling potential based on climatic condition and building thermal characteristics. In Proceedings of the AIVC Conference, Nottingham, UK, 13–14 September 2017. [Google Scholar]
Climate Zone | City | Location | Average Outdoor Temperature (°C) | Average Wind Speed (m/s) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Jun | Jul | Aug | Sep | Jun | Jul | Aug | Sep | |||
Tropical (Megathermal) | Jakarta (Indonesia) | 6.13 S, 106.75 E | 29.0 | 29.0 | 29.4 | 29.6 | 4.51 | 4.76 | 5.11 | 4.89 |
Mumbai (India) | 18.9 N 72.82 E | 29.0 | 27.8 | 27.2 | 27.6 | 2.74 | 3.26 | 3.23 | 2.08 | |
Dry (Arid) | Madrid (Spain) | 40.45 N, 3.55 W | 23.2 | 27.0 | 20.6 | 25.5 | 2.73 | 3.26 | 3.61 | 3.46 |
Alice (Australia) | 23.8 S 133.88 E | 11.5 | 12.0 | 13.1 | 20.4 | 2.62 | 1.39 | 1.66 | 3.52 | |
Temperate (Mesothermal) | Los Angles (USA) | 33.93 N, 118.4 W | 24.7 | 20.1 | 21.9 | 21.6 | 4.54 | 5.00 | 5.10 | 4.49 |
Yunnan (China) | 22.78 N 100.97 E | 22.5 | 22.0 | 21.8 | 21.2 | 1.04 | 0.76 | 0.76 | 0.66 | |
Continental (Microthermal) | Seoul, (Korea) | 37.57 N, 126.97 E | 23.2 | 26.2 | 27.0 | 22.3 | 2.46 | 2.60 | 2.25 | 2.17 |
Prague (Czech) | 50.1 N 14.28 E | 15.6 | 17.3 | 17.6 | 13.3 | 4.03 | 3.07 | 3.40 | 3.80 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, H.; Han, H. Correlation of Ventilative Cooling Potentials and Building Energy Savings in Various Climatic Zones. Energies 2019, 12, 968. https://doi.org/10.3390/en12060968
Rahman H, Han H. Correlation of Ventilative Cooling Potentials and Building Energy Savings in Various Climatic Zones. Energies. 2019; 12(6):968. https://doi.org/10.3390/en12060968
Chicago/Turabian StyleRahman, Haolia, and Hwataik Han. 2019. "Correlation of Ventilative Cooling Potentials and Building Energy Savings in Various Climatic Zones" Energies 12, no. 6: 968. https://doi.org/10.3390/en12060968
APA StyleRahman, H., & Han, H. (2019). Correlation of Ventilative Cooling Potentials and Building Energy Savings in Various Climatic Zones. Energies, 12(6), 968. https://doi.org/10.3390/en12060968