Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. LCA Methodology and Global Warming Potential
Description of the Plant and Data Inventory
- Delivery, pre-treatment, storage: in this step, the raw materials enter into the system, namely semi-solid biomass (manure and green crop residues such as fruit and vegetable waste, foliage, vegetable mowing, pruning residues, gardening waste) and liquid waste (cheese whey and composting plant wastewater). Liquid wastes are subject to screening and poured into pre-accumulation tanks, while the solid waste is sent to a storage tank where all materials are fluidized (with up to a maximum of 8% solid concentration) and sent to the digesters;
- Flotation and anaerobic digestion of the serum: The serum from the pre-accumulation tanks is sent to the anaerobic digesters. The suspended solids and possible residues of fat are removed through flotation. Then, the serum remains in the digesters for an optimal period of 20 days. Meanwhile, continuous agitation of the sludge and the anaerobic fermentation produces biogas together with sludge, stabilized with a 95% water-percentage. Recirculation by centrifugal pumps ensures both suspension of the bacterial flora located in the lower part of the reactor and thickness restriction of the biologic layer that forms on the synthetic support of the upper part. The reactor heating is ensured by a heat exchanger.
- Conventional anaerobic digestion of fluidized greenery: After fluidization of the semi-solid material, the cattle sewage and composting plant wastewater in the pre-accumulation tanks is directed to two digesters, where they are completely mixed with a high retention time. Each reactor is heated by a system with two spiral heat exchangers particularly suitable for sewage with high solid-content.
- Common gas line, with gasometer and emergency thermal power plant: The treated product then passes from the digester to a third final storage tank, where the biogas is conveyed into two gasometers and subjected to a process of dehumidification and desulfurization in order to obtain a clean and functional chemical composition for the engines.
- Production of electrical energy and heat with internal combustion engines powered by the biogas: The overall electrical and thermal efficiency is assumed to be 40% and 44%, respectively. The thermal energy (hot water at 80–90 °C) needed to heat up the biomass inside the digester is recycled from engine exhaust gas at 450 °C. The cogenerated heat largely exceeds the digestion process demand.
- Dehydration, stripping and composting of digestate: For the sludge coming out of the digester reactor, the digested solid is dehydrated in a special centrifuge plant, stripping the ammonia in the dehydration with attached treatments like flocculation and coagulation, to recover the water in the storage tank in order to reuse it in future production cycles. The dehydrated sludge in this phase is deposited in a storage warehouse until it is subject to further stabilization by means of a composting process to obtain pure fertilizer. The refined material may be sent to bulk storage or used for bagging or pelleting, which are not considered in the study.
- Aerobic biologic process (composting) and serum filtration: According to the stringent regulations in the region of Puglia, the biochemical parameters of BOD (biochemical oxygen demand) and COD (chemical oxygen demand) related to the sludge coming out of the serum digestate are still higher than values permissible for disposal. For this reason, it must undergo a series of purification operations, such as aerobic biologic processes and sand filtration of the various liquid flows for further reduction in the values of BOD and COD. The last processes are secondary flocculation and final disinfection of wastewater with UV rays.
2.2. Economic Analysis
3. Result and Discussion
3.1. Environmental Analysis
3.2. Economic Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A Technological Overview of Biogas Production from Biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Carlini, M.; Castellucci, S.; Mennuni, A. Thermal and fluid dynamic analysis within a batch micro-reactor for biodiesel production fromwaste vegetable oil. Sustainability 2017, 9, 2308. [Google Scholar] [CrossRef] [Green Version]
- Malinauskaite, J.; Jouhara, H. The trilemma of waste-to-energy: A multi-purpose solution. Energy Policy 2019, 129, 636–645. [Google Scholar] [CrossRef]
- Pallozzi, V.; Di Carlo, A.; Bocci, E.; Villarini, M.; Foscolo, P.U.; Carlini, M. Performance evaluation at different process parameters of an innovative prototype of biomass gasification system aimed to hydrogen production. Energy Convers. Manag. 2016, 130, 34–43. [Google Scholar] [CrossRef]
- Carlini, M.; Castellucci, S.; Cocchi, S.; Manzo, A. Waste wood biomass arising from pruning of urban green in viterbo town: Energy characterization and potential uses. In International Conference on Computational Science and Its Applications; Springer: Berlin/Heidelberg, Germany, 2013; pp. 242–255. [Google Scholar]
- Pantaleo, A.; Villarini, M.; Colantoni, A.; Carlini, M.; Santoro, F.; Hamedani, S.R. Techno-economic modeling of biomass pellet routes: Feasibility in Italy. Energies 2020, 13, 1636. [Google Scholar] [CrossRef] [Green Version]
- Villarini, M.; Bocci, E.; Di Carlo, A.; Savuto, E.; Pallozzi, V. The case study of an innovative small scale biomass waste gasification heat and power plant contextualized in a farm. Energy Procedia 2015, 82, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Rajabi Hamedani, S.; Bocc, E.; Villarini, M.; Di Carlo, A.; Naso, V. Techno-economic Analysis of Hydrogen Production Using Biomass Gasification -A Small Scale Power Plant Study. Energy Procedia 2016, 101, 806–813. [Google Scholar] [CrossRef]
- Oreggioni, G.D.; Gowreesunker, B.L.; Tassou, S.A.; Bianchi, G.; Reilly, M.; Kirby, M.E.; Toop, T.A.; Theodorou, M.K. Potential for energy production from farm wastes using anaerobic digestion in the UK: An economic comparison of different size plants. Energies 2017, 10, 1396. [Google Scholar] [CrossRef] [Green Version]
- Browne, J.; Allen, E.; Murphy, J. Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation. Appl. Energy 2014, 128, 307–314. [Google Scholar] [CrossRef]
- Carlini, M.; Castellucci, S.; Mennuni, A.; Ferrelli, S.; Felicioni, M.A. Application of a circular & green economy model to a ceramic industrial district: An Italian case study. AIP Conf. Proc. 2019, 2123, 020087. [Google Scholar] [CrossRef]
- Carlini, M.; Castellucci, S.; Moneti, M. Anaerobic co-digestion of olive-mill solid waste with cattle manure and cattle slurry: Analysis of bio-methane potential. Energy Procedia 2015, 81, 354–367. [Google Scholar] [CrossRef] [Green Version]
- Carlini, M.; Castellucci, S.; Moneti, M. Biogas production from poultry manure and cheese whey wastewater under mesophilic conditions in batch reactor. Energy Procedia 2015, 82, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Carlini, M.; Mosconi, E.M.; Castellucci, S.; Villarini, M.; Colantoni, A. An Economical Evaluation of Anaerobic Digestion Plants Fed with Organic Agro-Industrial Waste. Energies 2017, 10, 1165. [Google Scholar] [CrossRef]
- Santoro, F.; Anifantis, A.S.; Ruggiero, G.; Zavadskiy, V.; Pascuzzi, S. Lightning protection systems suitable for stables: A case study. Agriculture 2019, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Fagerström, A.; Al Seadi, T.; Rasi, S.; Briseid, T. The Role of Anaerobic Digestion and Biogas in the Circular Economy; Murphy, J.D., Ed.; Cork, IE, IEA Bioenergy Task 37: Paris, France, 2018. [Google Scholar]
- GSE. Quarta Relazione Dell’Italia in Merito Ai Progressi Ai Sensi Della Direttiva 2009/28/CE. 2017. Available online: https://www.gse.it/documenti_site/Documenti%20GSE/Studi%20e%20scenari/Progress%20Report%20Rinnovabili%20Italia%202017.pdf (accessed on 9 April 2020).
- Italian Decree Dlgs 2 March 2018, n.d. Available online: https://www.gse.it/documenti_site/Documenti GSE/Servizi per te/BIOMETANO/NORMATIVA/D.M. MiSE 2 marzo 2018.pdf (accessed on 9 April 2020).
- Decreto Legislativo 16 Marzo 1999 n. 79. Available online: https://www.gazzettaufficiale.it/eli/id/1999/03/31/099G0136/sg (accessed on 9 April 2020).
- Blanchet, C.A.C.; Pantaleo, A.M.; van Dam, K.H. A process systems engineering approach to designing a solar/biomass hybrid energy system for dairy farms in Argentina. Comput. Aided Chem. Eng. 2019, 46, 1609–1614. [Google Scholar] [CrossRef]
- Liu, M.; van Dam, K.H.; Pantaleo, A.M.; Guo, M. Optimisation of Integrated Bioenergy and Concentrated Solar Power Supply Chains in South Africa. Comput. Aided Chem. Eng. 2018, 43, 1463–1468. [Google Scholar] [CrossRef]
- Pantaleo, A.M.; Camporeale, S.; Shah, N. Natural gas-biomass dual fuelled microturbines: Comparison of operating strategies in the Italian residential sector. Appl. Therm. Eng. 2014, 71, 686–696. [Google Scholar] [CrossRef]
- Pantaleo, A.M.; Camporeale, S.M.; Shah, N. Thermo-economic assessment of externally fired micro-gas turbine fired by natural gas and biomass: Applications in Italy. Energy Convers. Manag. 2013, 75, 202–213. [Google Scholar] [CrossRef]
- Pantaleo, A.M.; Camporeale, S.M.; Sorrentino, A.; Miliozzi, A.; Shah, N.; Markides, C.N. Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas. Renew Energy 2020, 147, 2913–2931. [Google Scholar] [CrossRef]
- Pantaleo, A.M.; Camporeale, S.M.; Miliozzi, A.; Russo, V.; Shah, N.; Markides, C.N. Novel hybrid CSP-biomass CHP for flexible generation: Thermo-economic analysis and profitability assessment. Appl. Energy 2017, 204, 994–1006. [Google Scholar] [CrossRef]
- Rajabi Hamedani, S.; Del Zotto, L.; Bocci, E.; Colantoni, A.; Villarini, M. Eco-efficiency assessment of bioelectricity production from Iranian vineyard biomass gasification. Biomass Bioenergy 2019, 127, 105271. [Google Scholar] [CrossRef]
- Rajabi Hamedani, S.; Colantoni, A.; Gallucci, F.; Salerno, M.; Silvestri, C.; Villarini, M. Comparative energy and environmental analysis of agro-pellet production from orchard woody biomass. Biomass Bioenergy 2019, 129, 105334. [Google Scholar] [CrossRef]
- Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Mintz, M.M.; Snyder, S.W. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs. Renew Sustain. Energy Rev. 2015, 50, 346–362. [Google Scholar] [CrossRef] [Green Version]
- Jürgensen, L.; Ehimen, E.A.; Born, J.; Holm-Nielsen, J.B. A combination anaerobic digestion scheme for biogas production from dairy effluent—CSTR and ABR, and biogas upgrading. Biomass Bioenergy 2018, 111, 241–247. [Google Scholar] [CrossRef]
- Al-Addous, M.; Saidan, M.N.; Bdour, M.; Alnaief, M. Evaluation of biogas production from the co-digestion of municipal food waste and wastewater sludge at refugee camps using an automated methane potential test system. Energies 2019, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Yong, Z.; Dong, Y.; Zhang, X.; Tan, T. Anaerobic co-digestion of food waste and straw for biogas production. Renew Energy 2015, 78, 527–530. [Google Scholar] [CrossRef]
- De Menna, F.; Malagnino, R.A.; Vittuari, M.; Molari, G.; Seddaiu, G.; Deligios, P.A.; Solinas, S.; Ledda, L. Potential biogas production from artichoke byproducts in Sardinia, Italy. Energies 2016, 9, 92. [Google Scholar] [CrossRef]
- Hassaan, M.A.; Pantaleo, A.; Tedone, L.; Elkatory, M.R.; Ali, R.M.; Nemr, A.E.; Mastro, D.G. Enhancement of biogas production via green ZnO nanoparticles: Experimental results of selected herbaceous crops. Chem. Eng. Commun. 2019. [Google Scholar] [CrossRef]
- Amirante, R.; Demastro, G.; Distaso, E.; Hassaan, M.A.; Mormando, A.; Pantaleo, A.M.; Tamburrano, P.; Tedone, L.; Clodoveo, M.L. Effects of Ultrasound and Green Synthesis ZnO Nanoparticles on Biogas Production from Olive Pomace. Energy Procedia 2018, 148, 940–947. [Google Scholar] [CrossRef]
- Pantaleo, A.D.E.; Gennaro, B.; Shah, N. Assessment of optimal size of anaerobic co-digestion plants: An application to cattle farms in the province of Bari (Italy). Renew Sustain. Energy Rev. 2013, 20, 57–70. [Google Scholar] [CrossRef]
- Bulgakov, V.; Pascuzzi, S.; Santoro, F.; Anifantis, A.S. Mathematical model of the plane-parallel movement of the self-propelled root-harvesting machine. Sustainability 2018, 10, 3614. [Google Scholar] [CrossRef] [Green Version]
- Bulgakov, V.; Pascuzzi, S.; Anifantis, A.S.; Santoro, F. Oscillations analysis of front-mounted beet topper machine for biomass harvesting. Energies 2019, 12, 2774. [Google Scholar] [CrossRef] [Green Version]
- Guerrieri, A.S.; Anifantis, A.S.; Santoro, F.; Pascuzzi, S. Study of a large square baler with innovative technological systems that optimize the baling effectiveness. Agric 2019, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Carlini, M.; Castellucci, S.; Mennuni, A.; Selli, S. Poultry Manure Biomass: Energetic Characterization and ADM1-based Simulation. J. Phys. Conf. Ser. 2019, 1172, 012063. [Google Scholar] [CrossRef]
- De Vries, J.W.; Vinken, T.M.W.J.; Hamelin, L.; De Boer, I.J.M. Comparing environmental consequences of anaerobic mono-and co-digestion of pig manure to produce bioenergy – a life cycle perspective. Bioresour. Technol. 2012, 125, 239–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comparetti, A.; Greco, C.; Navickas, K.; Venslauskas, K. Evaluation of potential biogas production in sicily. Eng. Rural. Dev. 2012, 24, 555–559. [Google Scholar]
- Risberg, K.; Cederlund, H.; Pell, M.; Arthurson, V.; Schnürer, A. Comparative characterization of digestate versus pig slurry and cow manure—Chemical composition and effects on soil microbial activity. Waste Manag. 2017, 61, 529–538. [Google Scholar] [CrossRef]
- Al saedi, T.; Drosg, B.; Fuchs, W.; Rutz, D.; Janssen, R. Biogas digestate quality and utilization. In The Biogas Handbook; Woodhead Publishing: Cambridge, UK, 2013; pp. 267–301. [Google Scholar]
- Longhurst, P.J.; Tompkins, D.; Pollard, S.J.T.; Hough, R.L.; Chambers, B.; Gale, P.; Tyrrel, S.; Villa, R.; Taylor, M.; Wu, S.; et al. Risk assessments for quality-assured, source-segregated composts and anaerobic digestates for a circular bioeconomy in the UK. Environ. Int. 2019, 127, 253–266. [Google Scholar] [CrossRef]
- Pivato, A.; Vanin, S.; Raga, R.; Lavagnolo, M.C.; Barausse, A.; Rieple, A.; Laurent, A.; Cossu, R. Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: An ecotoxicological study for future indicators in risk and life cycle assessment. Waste Manag. 2016, 49, 378–389. [Google Scholar] [CrossRef]
- Al Seadi, T.; Lukehurst, C. Quality management of digestate from biogas plants used as fertiliser. IEA Bioenergy Task 2012, 40. [Google Scholar]
- Bustamante, M.A.; Alburquerque, J.A.; Restrepo, A.P.; De Fuente, C.; Paredes, C.; Moral, R.; Bernal, M.P. Co-composting of the solid fraction of anaerobic digestates, to obtain added-value materials for use in agriculture. Biomass Bioenergy 2012, 43, 26–35. [Google Scholar] [CrossRef]
- Martínez-ruano, J.A.; Restrepo-serna, D.L.; Carmona-garcia, E.; Alejandro, J.; Giraldo, P.; Aroca, G.; Cardona, C.A. Effect of co-digestion of milk-whey and potato stem on heat and power generation using biogas as an energy vector: Techno-economic assessment. Appl. Energy 2019, 241, 504–518. [Google Scholar] [CrossRef]
- Martínez-ruano, J.A.; Caballero-galván, A.S.; Restrepo-serna, D.L.; Cardona, C.A. Techno-economic and environmental assessment of biogas production from banana peel ( Musa paradisiaca ) in a biorefinery concept. Environ. Sci. Pollut. Res. 2018, 25, 35971–35980. [Google Scholar] [CrossRef] [PubMed]
- Hamzehkolaei, F.T.; Amjady, N. A techno-economic assessment for replacement of conventional fossil fuel based technologies in animal farms with biogas fueled CHP units. Renew Energy 2018, 118, 602–614. [Google Scholar] [CrossRef]
- Hijazi, O.; Munro, S.; Zerhusen, B.; Effenberger, M. Review of life cycle assessment for biogas production in Europe. Renew Sustain. Energy Rev. 2016, 54, 1291–1300. [Google Scholar] [CrossRef]
- Vochozka, M.; Marous, A. Obsolete Laws: Economic and Moral Aspects, Case Study—Composting Standards. Sci. Eng. Ethics 2016, 1–6. [Google Scholar] [CrossRef]
- Bickel, P.; Friedrich, R.; Droste-Franke, B.; Bachmann, T.; Greßmann, A.; Rabl, A.; Hunt, A.; Markandya, A.; Tol, R.; Hurley, F.; et al. ExternE—Externalities of Energy, Methodology 2005 Update; Bickel, P., Friedrich, R., Eds.; Office for Official Publications of the European Communities: Luxembourg, 2005; Volume EUR, ISBN 92-79-00423-9.
- Bielecki, A.; Ernst, S.; Skrodzka, W.; Wojnicki, I. The externalities of energy production in the context of development of clean energy generation. Environ. Sci. Pollut. Res. 2020, 27, 11506–11530. [Google Scholar] [CrossRef] [Green Version]
- Patrizio, P.; Leduc, S.; Chinese, D.; Kraxner, F. Internalizing the external costs of biogas supply chains in the Italian energy sector. Energy 2017, 125, 85–96. [Google Scholar] [CrossRef]
- ISO 14040:2016 Environmental Management—Life Cycle Assessment—Principles and Framework; ISO: Geneva, Switzerland, 2016.
- ISO 14044:2006 Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO: Geneva, Switzerland, 2006.
- Del, A.; Di, F. DCO 2/08 2008. Available online: https://www.arera.it/it/docs/dc/08/080220_2.htm (accessed on 10 April 2020).
- Poeschl, M.; Ward, S.; Owende, P. Environmental impacts of biogas deployment—Part I: Life cycle inventory for evaluation of production process emissions to air. J. Clean. Prod. 2012, 24, 168–183. [Google Scholar] [CrossRef]
- Lijó, L.; González-garcía, S.; Bacenetti, J.; Fiala, M.; Feijoo, G.; Lema, J.M.; Moreira, M.T. Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops. Renew Energy 2014, 68, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Rajabi Hamedani, S.; Kuppens, T.; Malina, R.; Bocci, E.; Colantoni, A.; Villarini, M. Life cycle assessment and environmental valuation of biochar production: Two case studies in Belgium. Energies 2019, 12, 2166. [Google Scholar] [CrossRef] [Green Version]
- Villarini, M.; Rajabi Hamedani, S.; Marcantonio, V.; Colantoni, A.; Cecchini, M.; Monarca, D. Comparison of Environmental Impact of Two Different Bioelectricity Conversion Technologies by Means of LCA. Innov. Biosyst. Eng. Sustain. Agric. For. Food Prod. 2020. [Google Scholar] [CrossRef]
- Rajabi Hamedani, S.; Villarini, M.; Colantoni, A.; Moretti, M.; Bocci, E. Life Cycle Performance of Hydrogen Production via Agro-Industrial Residue Gasification—A Small Scale Power Plant Study. Energies 2018, 11, 675. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.R.; Kim, Y.R.; Woo, S.H.; Park, D.; Park, J.M. System optimization for eco-design by using monetization of environmental impacts: A strategy to convert bi-objective to single-objective problems. J. Clean. Prod. 2013, 39, 303–311. [Google Scholar] [CrossRef]
- Weidema, B.P.; Brandão, M.; Pizzol, M. The use of monetary valuation of environmental impacts in life cycle assessment: State of the art, strengths and weaknesses. SCORE-LCA Rep. Nb 2012-03. Aalborg University. 2013. [Google Scholar]
- Pizzol, M.; Weidema, B.; Brandão, M.; Osset, P. Monetary valuation in Life Cycle Assessment: A review. J. Clean. Prod. 2015, 86, 170–179. [Google Scholar] [CrossRef]
- Weidema, B. Using the budget constraint to monetise impact assessment results. Ecol. Econ. 2009, 68, 1591–1598. [Google Scholar] [CrossRef]
- Grebe EU Project, n.d. Available online: http://grebeproject.eu/ (accessed on 9 April 2020).
- Salerno, M.; Gallucci, F.; Pari, L.; Zambon, I.; Sarri, D.; Colantoni, A. Costs-benefits analysis of a small-scale biogas plant and electric energy production. Bulg. J. Agric. Sci. 2017, 23, 357–362. [Google Scholar]
- Lovarelli, D.; Falcone, G.; Orsi, L.; Bacenetti, J. Agricultural small anaerobic digestion plants: Combining economic and environmental assessment. Biomass Bioenergy 2019, 128, 105302. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Li, Y.; Jia, S.; Song, Y.; Sun, Y.; Zheng, Z.; Yu, J.; Cui, Z.; Han, Y.; et al. Methane production from the co-digestion of pig manure and corn stover with the addition of cucumber residue: Role of the total solids content and feedstock-to-inoculum ratio. Bioresour. Technol. 2020, 306, 123172. [Google Scholar] [CrossRef] [PubMed]
- Monarca, D.; Cecchini, M.; Guerrieri, M.; Colantoni, A. Conventional and alternative use of biomasses derived by hazelnut cultivation and processing. Acta Hortic. 2009, 845, 627–634. [Google Scholar] [CrossRef]
- Zambon, I.; Colantoni, A.; Carlucci, M.; Morrow, N.; Sateriano, A.; Salvati, L. Land quality, sustainable development and environmental degradation in agricultural districts: A computational approach based on entropy indexes. Environ. Impact Assess. Rev. 2017, 64, 37–46. [Google Scholar] [CrossRef]
Inputs | Outputs | ||
---|---|---|---|
Manure | 3.67 ton | Electricity | 1 MWh |
Whey from cheese factories | 9.36 ton | Compost | 1.41 ton |
Green crop residues | 1.53 ton | ||
Composting plant wastewater | 2.44 ton | Avoided products | |
Transport | 306.5 tkm * | Natural gas (heat) | 50.31 kg |
Ammonium nitrate | 12.93 kg | ||
Triple superphosphate | 24.31 kg | ||
Potassium sulfate | 55.74 kg |
Investment Costs | |
---|---|
Cost item | Value (kEur) |
Cost of civil works | 700 |
Cost of digesters, tanks and biogas treatment | 1150 |
Cost of electrical system group and cogeneration plant | 600 |
Dewatering, stripping and composting plant cost | 750 |
Cost of filtration and clariflocculation | 650 |
Engineering and development costs | 150 |
Total amount | 4000 |
Operating Costs kEur/year | |
Biomass | 47 |
Global service | 211 |
Staff | 140 |
Overhead expenses | 60 |
Total amount | 458 |
Additional Parameters | |
Plant useful life | 15 years |
Discount rate | 8% |
Heat exploitation | 50% |
External benefit (Stepwise 2006 method) | 13.22 €M Whe−1 |
Electricity selling price | 120 €M Whe−1 |
Price of natural gas | 75 €M Whth−1 |
Price of compost | 10 €t-1 |
Economic Index | With Externalities | Without Externalities | Unit of Measurement |
---|---|---|---|
Payback time (PBT) | 8 | 10 | years |
Net present value (NPV) | 312 | −323 | kEur |
Internal rate of return (IRR) | 9.36 | 6.54 | % |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajabi Hamedani, S.; Villarini, M.; Colantoni, A.; Carlini, M.; Cecchini, M.; Santoro, F.; Pantaleo, A. Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant. Energies 2020, 13, 2724. https://doi.org/10.3390/en13112724
Rajabi Hamedani S, Villarini M, Colantoni A, Carlini M, Cecchini M, Santoro F, Pantaleo A. Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant. Energies. 2020; 13(11):2724. https://doi.org/10.3390/en13112724
Chicago/Turabian StyleRajabi Hamedani, Sara, Mauro Villarini, Andrea Colantoni, Maurizio Carlini, Massimo Cecchini, Francesco Santoro, and Antonio Pantaleo. 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant" Energies 13, no. 11: 2724. https://doi.org/10.3390/en13112724
APA StyleRajabi Hamedani, S., Villarini, M., Colantoni, A., Carlini, M., Cecchini, M., Santoro, F., & Pantaleo, A. (2020). Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant. Energies, 13(11), 2724. https://doi.org/10.3390/en13112724