Dynamic Response of Articulated Offshore Wind Turbines under Different Water Depths †
Abstract
:1. Introduction
2. Physical Problem Description
3. Methodology
3.1. Governing Equation
3.2. Friction Damping
3.3. Restoring Force
3.4. Environmental Loads
3.4.1. Wind Load
3.4.2. Hydrodynamic Loads
3.4.3. Current Load
3.5. Flow Chart of Simulation
4. Results
4.1. Wave–Body Interaction Performance
4.1.1. Hydrostatic Analysis
4.1.2. Hydrodynamic Analysis
4.2. Dynamic Response under Operation Conditions
4.2.1. Pitch Motion
4.2.2. Aerodynamic Performance
4.2.3. Tension on Hinged Joint
5. Conclusions and Discussions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
(x, y) | a Cartesian coordinate system with its origin at the hinged joint |
pitch angle of the AOWT [rad] | |
pitch angular speed of the AOWT [rad/s] | |
pitch angular acceleration of the AOWT [rad/s2] | |
I | system moment of inertia [kg·m2] |
IA (ω) | additional moment of inertia [kg·m2] |
Iinf | additional moment of inertia when the frequency approaches infinite [kg·m2] |
ω | wave frequency [rad/s] |
β | phase angle [rad] |
C1 (ω) | radiation damping coefficient [N·m / rad·s−1] |
C2 | viscous friction damping coefficient [N·m / rad·s−1] |
K | restoring stiffness of the system [N·m /rad] |
F (ω, β) | wave force in frequency domain [N] |
h (t) | retardation function |
D | damping coefficient [N·m / rad·s−1] |
Q | external environmental loads [N] |
Mfr | friction damping moment [N·m] |
μ | friction coefficient (μ = 0.1) |
N | normal force [N] |
R | radius of the spherical articulated joint (R = 1.5, m) |
unit vectors in the same direction as angular velocity vectors | |
Mvi | overall damping moment [N·m] |
Cvi | dimensionless damping ratio (Cvi = 0.055) |
MR | restoring moment [N·m] |
Fbuoy | buoyancy of the articulated foundation [N] |
lb | moment arm of buoyancy to the hinged joint [m] |
M | total mass of the whole structure [kg] |
lg | moment arm of gravity to the hinged joint [m] |
g | acceleration of gravity (9.81, m/s2) |
dT | axial thrust on blade element [N] |
dM | torque on blade element [N·m] |
ρ | air density [kg/m3] |
V | resultant wind speed on the blade [m/s] |
B | number of blades |
c | chord length of the blade element [m] |
Cl | lift coefficient of the blade element |
Cd | drag coefficient of the blade element |
φ | inflow angle [rad] |
r | distance from the local element to the hub [m] |
dr | length of the blade element [m] |
F | Prandtl loss factor |
Ftip | Prandtl tip-loss factor |
Fhub | Prandtl hub-loss factor |
Fwind | wind load on the tower [N] |
n | total number of tower components |
Ch | height coefficient (Ch = 1.0) |
Cs | shape coefficient (Cs = 1.0) |
Ai(α) | projection area of the corresponding part when the wind direction angle is α [m2] |
Vri | relative wind speed corresponding to different heights [m/s] |
Mw | total wind moment [N·m] |
lR | moment arm of aerodynamic thrust to the hinged joint [m] |
lc | moment arm of wind pressure on tower to the hinged joint [m] |
Fwave | wave force [N] |
aj | wave amplitude corresponding to the j-th wave component [m] |
ωj | circular wave frequency corresponding to the j-th wave component [rad/s] |
φj | initial phase angle corresponding to the j-th wave component [rad] |
F1 (ω) | hydrodynamic transfer function |
Fcur | current load [N] |
CD | drag coefficient on foundation (CD = 0.7) |
ρw | seawater density [kg/m3] |
A | projection area of the component perpendicular to the velocity of current [m2] |
Vcur | relative velocity of current [m/s] |
References
- Stock-Williams, C.; Swamy, S.K. Automated daily maintenance planning for offshore wind farms. Renew. Energy 2019, 133, 1393–1403. [Google Scholar] [CrossRef]
- Gonzalez-Rodriguez, A.G. Review of offshore wind farm cost components. Energy Sustain. Dev. 2017, 37, 10–19. [Google Scholar] [CrossRef]
- Lacal-Arántegui, R.; Yusta, J.M.; Domínguez-Navarro, J.A. Offshore wind installation: Analyzing the evidence behind improvements in installation time. Renew. Sustain. Energy Rev. 2018, 92, 133–145. [Google Scholar] [CrossRef]
- Whiteman, A.; Esparrago, J.; Elsayed, S. Renewable Energy Statistics 2018; International Renewable Energy Agency: Abu Dhabi, UAE, 2018. [Google Scholar]
- Wu, X.; Hu, Y.; Li, Y.; Yang, J.; Duan, L.; Wang, T.; Borthwick, A. Foundations of offshore wind turbines: A review. Renew. Sustain. Energy Rev. 2019, 104, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Hsu, W.; Thiagarajan, K.P.; Manuel, L. Extreme mooring tensions due to snap loads on a floating offshore wind turbine system. Mar. Struct. 2017, 55, 182–199. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Yuan, Z.; Gao, Y. Dynamic and structural performances of offshore floating wind turbines in turbulent wind flow. Ocean Eng. 2019, 179, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Salehyar, S.; Li, Y.; Zhu, Q. Fully-coupled time-domain simulations of the response of a floating wind turbine to non-periodic disturbances. Renew. Energy 2017, 111, 214–226. [Google Scholar] [CrossRef]
- Oguz, E.; Clelland, D.; Day, A.H.; Incecik, A.; López, J.A.; Sánchez, G.; Almeria, G.G. Experimental and numerical analysis of a TLP floating offshore wind turbine. Ocean Eng. 2018, 147, 591–605. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Hu, Z.; Liu, G.; Wan, D. Coupled aero-hydro-servo-elastic methods for floating wind turbines. Renew. Energy 2019, 130, 139–153. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Liu, X. Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning. Energies 2020, 13, 2264. [Google Scholar] [CrossRef]
- Le, C.; Li, Y.; Ding, H. Study on the Coupled Dynamic Responses of a Submerged Floating Wind Turbine under Different Mooring Conditions. Energies 2019, 12, 418. [Google Scholar] [CrossRef] [Green Version]
- Karimirad, M.; Michailides, C. Dynamic analysis of a brakeless semisubmersible offshore wind turbine in operational conditions. Energy Procedia 2015, 80, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.K.; Park, S.; Kim, M.H.; Kim, K.H.; Hong, K. Effects of heave plates on the global performance of a multi-unit floating offshore wind turbine. Renew. Energy 2019, 134, 526–537. [Google Scholar] [CrossRef]
- Sauder, T.; Chabaud, V.; Thys, M. Real-Time Hybrid Model Testing of a Brakeless Semi-Submersible Wind Turbine: Part I—The Hybrid Approach. In Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, Busan, Korea, 19–24 June 2016; American Society of Mechanical Engineers: New York, NY, USA, 2016. [Google Scholar]
- Melis, C.; Caille, F.; Perdrizet, T.; Poirette, Y.; Bozonnet, P. A Novel Tension-Leg Application for Floating Offshore Wind: Targeting Lower Nacelle Motions. In Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, Busan, Korea, 19–24 June 2016; American Society of Mechanical Engineers: New York, NY, USA, 2016. [Google Scholar]
- De Guzmán, S.; Marón, D.; Bueno, P.; Taboada, M.; Moreu, M. A Reduced Draft Spar Concept for Large Offshore Wind Turbines. In Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, 17–22 June 2018; American Society of Mechanical Engineers: New York, NY, USA, 2018. [Google Scholar]
- Nagamani, K.; Ganapathy, C. Finite element analysis of nonlinear dynamic response of articulated towers. Comput. Struct. 1996, 59, 213–223. [Google Scholar] [CrossRef]
- Nagamani, K.; Ganapathy, C. The dynamic response of a three-leg articulated tower. Ocean Eng. 2000, 27, 1455–1471. [Google Scholar] [CrossRef]
- Pezo, E.; Gonçalves, P.; Roehl, D. Non-Linear Finite Element Analysis of the Dynamics of a Slender Cable Stayed Tower. MATEC Web Conf. 2018, 148, 03001. [Google Scholar] [CrossRef]
- Gavassoni, E.; Gonçalves, P.B.; de Mesquita Roehl, D. Nonlinear vibration modes of an offshore articulated tower. Ocean Eng. 2015, 109, 226–242. [Google Scholar] [CrossRef]
- Zaheer, M.M.; Islam, N. Dynamic response of articulated towers under correlated wind and waves. Ocean Eng. 2017, 132, 114–125. [Google Scholar] [CrossRef]
- Javed, S.Y. Near Fault Effect on the Response of Single Hinged Compliant Offshore Tower. MATEC Web Conf. 2018, 203, 01015. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.T.; Zhang, L.; Zhao, J.; Ye, X.R. Primary Design and Dynamic Analysis of an Articulated Floating Offshore Wind Turbine. In Advanced Materials Research, Proceedings of the International Conference on Energy, Environment and Sustainable Development (ICEESD 2011), Shanghai, China, 21–23 October 2011; Trans. Tech. Publications: Zurich, Switzerland, 2012; Volume 347, pp. 2191–2194. Available online: http://fbic30fd8c346ef34d67903a5b6d8ea5d318snc9u5c5wfv566qpk.fiac.eds.tju.edu.cn/10.4028/www.scientific.net/AMR.347-353.2191 (accessed on 1 May 2020).
- Philip, V.; Joseph, A.; Joy, C.M. Three legged articulated support for 5 MW offshore wind turbine. Aquat. Procedia 2015, 4, 500–507. [Google Scholar] [CrossRef]
- Joy, C.M.; Joseph, A.; Mangal, L. Experimental investigation on the dynamic response of a three-legged articulated type offshore wind tower. In Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, Busan, Korea, 19–24 June 2016; American Society of Mechanical Engineers: New York, NY, USA, 2016; p. V001T01A009. [Google Scholar]
- Navin, S.S.; Philip, V. Fatigue Analysis of Articulated Support for Offshore Wind Turbine. Int. Res. J. Eng. Technol. 2016, 4, 2266–2271. [Google Scholar]
- Casale, C.; Lembo, E.; Serri, L.; Viani, S. Preliminary design of a floating wind turbine support structure and relevant system cost assessment. Wind Eng. 2010, 34, 29–50. [Google Scholar] [CrossRef]
- Zhou, M.H. Analysis of Nonlinear Dynamics Response of an Articulated Tower Platform. Master’s Thesis, Tianjin University, Tianjin, China, 2005. (In Chinese). [Google Scholar]
- Li, Y.; Zhu, Q.; Liu, L.; Tang, Y. Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines. Renew. Energy 2018, 122, 576–588. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Tang, Y.; Zhu, X.; Zhang, R. Dynamic Response of a Conceptual Designed Articulated Offshore Wind Turbine. In Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, Glasgow, Scotland, UK, 9–14 June 2019; Volume 10: Ocean Renewable Energy. ASME: New York, NY, USA, 2019; p. V010T09A050. [Google Scholar]
- Xie, W.; Tang, Y.; Zhou, M. Nonlinear dynamic characteristic analysis of articulated tower platform in the deep water. Eng. Mech. 2006, 23, 36–41+119. (In Chinese) [Google Scholar]
- DNV GL. Position Mooring. Offshore Standards, DNVGL-OS-E301. Edition July 2018. Available online: http://rules.dnvgl.com/docs/pdf/dnvgl/os/2018-07/dnvgl-os-e301.pdf (accessed on 1 May 2020).
- Tao, L.B. Viscous damping of TLP and Spar in deep water. Ship Build. China 2006, 2, 21–27. (In Chinese) [Google Scholar]
- Zhang, P.; Yang, S.; Li, Y.; Tang, Y. Coupled Response Analysis of an Offshore Articulated Wind Turbine under Different Environmental Loads. In Proceedings of the 11th International Workshop on Ship and Marine Hydrodynamics, Hamburg, Germany, 22–25 September 2019. [Google Scholar]
- Moriarty, P.J.; Hansen, A.C. AeroDyn Theory Manual (No. NREL/TP-500-36881); National Renewable Energy Lab.: Golden, CO, USA, 2005.
- Lerch, M.; De-Prada-Gil, M.; Molins, C. The influence of different wind and wave conditions on the energy yield and downtime of a Spar-buoy floating wind turbine. Renew. Energy 2019, 136, 1–14. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Zhu, Q.; Guo, Y.; Hu, Z.; Tang, Y. Influence of vortex-induced loads on the motion of SPAR-type wind turbine: A coupled aero-hydro-vortex-mooring investigation. J. Offshore Mech. Arct. Eng. 2018, 140, 051903. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Hu, Z.; Wang, J.; Ma, Y. Development and Validation of an Aero-hydro Simulation Code for Offshore Floating Wind Turbine. J. Ocean Wind Energy 2015, 2, 1–11. [Google Scholar]
- Allen, C.K.; Goupee, A.J.; Viselli, A.M.; Dagher, H.J. Experimental Validation of a Spectral-Based Structural Analysis Model Implemented in the Design of the VolturnUS 6MW Floating Offshore Wind Turbine. In Proceedings of the 27th International Ocean and Polar Engineering Conference, San Francisco, CA, USA, 25–30 June 2017. [Google Scholar]
- Qu, X.; Li, Y.; Tang, Y.; Hu, Z.; Zhang, P.; Yin, T. Dynamic response of spar-type floating offshore wind turbine in freak wave considering the wave-current interaction effect. Appl. Ocean Res. 2020, 100, 102178. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Y.; Zhu, Q.; Qu, X.; Wang, B.; Zhang, R. Effects of second-order wave forces and aerodynamic forces on dynamic responses of a TLP-type floating offshore wind turbine considering the set-down motion. J. Renew. Sustain. Energy 2017, 9, 063302. [Google Scholar] [CrossRef]
- Li, Y.; Qu, X.; Liu, L.; Xie, P.; Yin, T.; Tang, Y. A Numerical Prediction on the Transient Response of a Spar-type Floating Offshore Wind Turbine in Freak Waves. ASME J. Offshore Mech. Arct. Eng. 2020. [Google Scholar] [CrossRef]
- China Classification Society. Offshore Mobile Platform Classification Guidelines; Communications Press: Beijing, China, 2005. (In Chinese) [Google Scholar]
- China Classification Society. Offshore Wind Turbine Classification Guidelines; Beijing, China Classification Society: Beijing, China, 2012. (In Chinese) [Google Scholar]
- International Electrotechnical Commission. Wind Energy Generation Systems. Part 3–1: Design Requirements for Fixed Offshore Wind Turbines; International Electrotechnical Commission: Geneva, Switzerland, April 2019; Available online: http://www.doc88.com/p-1931753549706.html (accessed on 1 May 2020).
- Faltinsen, O. Sea Loads on Ships and Offshore Structures; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Kirk, C.L.; Jain R, K. Response of articulated towers to waves and current. Soc. Pet. Eng. J. 1978, 18, 283–290. [Google Scholar] [CrossRef]
- Frigo, M.; Johnson, S.G. FFTW: An adaptive software architecture for the FFT. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98, Seattle, WA, USA, 12–15 May 1998; Volume 3, pp. 1381–1384. [Google Scholar]
- Pires, I.M.; Garcia, N.M.; Pombo, N.; Flórez-Revuelta, F.; Spinsante, S. Approach for the Development of a Framework for the Identification of Activities of Daily Living Using Sensors in Mobile Devices. Sensors 2018, 18, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, X.; Li, Y.; Tang, Y.; Chai, W.; Gao, Z. Comparative study of short-term extreme responses and fatigue damages of a floating wind turbine using two different blade models. Appl. Ocean Res. 2020, 97, 102088. [Google Scholar] [CrossRef]
- Wu, L.; Shao, M.; Sahlée, E. Impact of Air–Wave–Sea Coupling on the Simulation of Offshore Wind and Wave Energy Potentials. Atmosphere 2020, 11, 327. [Google Scholar] [CrossRef] [Green Version]
- Ahn, H.J.; Shin, H. Model test and numerical simulation of OC3 spar type floating offshore wind turbine. Int. J. Nav. Arch. Ocean Eng. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Urban, A.M.; Guanche, R. Wind turbine aerodynamics scale-modeling for floating offshore wind platform testing. J. Wind Eng. Ind. Aerodyn. 2019, 186, 49–57. [Google Scholar] [CrossRef]
- Ulazia, A.; Gonzalez-Rojí, S.J.; Ibarra-Berastegi, G.; Carreno-Madinabeitia, S.; Sáenz, J.; Nafarrate, A. Seasonal Air Density Variations over the East of Scotland and The Consequences for Offshore Wind Energy. In Proceedings of the 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 14–17 October 2018; pp. 261–265. [Google Scholar] [CrossRef]
- Ulazia, A.; Ibarra-Berastegi, G.; Sáenz, J.; Carreno-Madinabeitia, S.; González-Rojí, S.J. Seasonal Correction of Offshore Wind Energy Potential due to Air Density: Case of the Iberian Peninsula. Sustainability 2019, 11, 3648. [Google Scholar] [CrossRef] [Green Version]
- Ulazia, A.; Sáenz, J.; Ibarra-Berastegi, G.; González-Rojí, S.J.; Carreno-Madinabeitia, S. Global estimations of wind energy potential considering seasonal air density changes. Energy 2019, 187, 115938. [Google Scholar] [CrossRef]
- Chen, J.H.; Hu, Z.Q.; Liu, G.L.; Wan, D.C. Study on Rigid-Flexible Coupling Effects of Floating Offshore Wind Turbines. China Ocean Eng. 2019, 33, 1–13. [Google Scholar] [CrossRef]
Project | Working Area | Support Buoy | Depth (m) | Capacity (MW) |
---|---|---|---|---|
Hywind Demo | Norway | Spar | 220 | 2.3 |
Hywind Scotland | Scotland | Spar | 120 | 30 |
Windfloat Atlantic | Portugal | Semi | About 100 | 25 |
Flocan 5 Canary | Spain | Semi | 50~120 | 25 |
Sea Twirl S2 | Sweden | Spar | 90~120 | 1 |
Kincardine | UK | Semi | 45~145 | 49 |
PGL Wind Farm | France | TLP | >100 | 24 |
Katanes Floating Energy Park-Array | UK | Barge | 60~100 | 32 |
Hywind Tampen | Norway | Spar | >200 | 88 |
Parameter | AOWT 1 | AOWT 2 | AOWT 3 |
---|---|---|---|
Design Water Depth | 50 m | 70 m | 75 m |
Tower Column Diameter | 6 m | 6 m | 6 m |
Ballast Tank Diameter | 14 m | 10 m | 9 m |
Buoyancy Tank Diameter | 25 m | 19 m | 18 m |
Air Gap | 10 m | 10 m | 10 m |
Total Mass | 5,205,808 kg | 5,210,387 kg | 5,195,109 kg |
Center of Gravity | (0.0 m, 0.0 m, 29.47 m) | (0.0 m, 0.0 m, 39.61 m) | (0.0 m, 0.0 m, 40.87 m) |
Buoyancy | 9,517,945 kg | 8,220,100 kg | 7,769,800 kg |
Center of Buoyancy | (0.0 m, 0.0 m, 31.35 m) | (0.0 m, 0.0 m, 45.40 m) | (0.0 m, 0.0 m, 46.91 m) |
Overall inertia | 1.15 × 1010 kg·m2 | 1.84 × 1010 kg·m2 | 1.88 × 1010 kg·m2 |
Initial tension on hinge | 4.23 × 107 N | 3.18 × 107 N | 2.51 × 107 N |
Item | Value |
---|---|
Wind velocity (m/s) | 11.4 |
Wave Spectrum | JONSWAP |
Wave height (m) | 3.0 |
Peak period (s) | 6.3 |
Peak parameter | 3.3 |
Current velocity (m/s) | 0.4 |
Parameter | AFOWT 1 | AFOWT 2 | AFOWT 3 |
---|---|---|---|
Natural Frequency (rad/s) | 0.299 | 0.237 | 0.225 |
Natural Period (s) | 21.003 | 26.527 | 27.869 |
Parameter | AFOWT 1 | AFOWT 2 | AFOWT 3 |
---|---|---|---|
Overall Inertia (kg·m2) | 1.15 × 1010 | 1.75 × 1010 | 1.88 × 1010 |
Added Inertia (kg·m2) | 2.34 × 109 | 7.02 × 109 | 7.77 × 109 |
Stiffness (N·m/rad) | 1.24 × 109 | 1.43 × 109 | 1.31 × 109 |
Critical Damping (N·m/rad·s−1) | 8.27 × 109 | 1.18 × 1010 | 1.16 × 1010 |
Added Overall Damping (N·m / rad·s−1) | 4.55 × 108 | 6.51 × 108 | 6.40 × 109 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Yang, S.; Li, Y.; Gu, J.; Hu, Z.; Zhang, R.; Tang, Y. Dynamic Response of Articulated Offshore Wind Turbines under Different Water Depths. Energies 2020, 13, 2784. https://doi.org/10.3390/en13112784
Zhang P, Yang S, Li Y, Gu J, Hu Z, Zhang R, Tang Y. Dynamic Response of Articulated Offshore Wind Turbines under Different Water Depths. Energies. 2020; 13(11):2784. https://doi.org/10.3390/en13112784
Chicago/Turabian StyleZhang, Pei, Shugeng Yang, Yan Li, Jiayang Gu, Zhiqiang Hu, Ruoyu Zhang, and Yougang Tang. 2020. "Dynamic Response of Articulated Offshore Wind Turbines under Different Water Depths" Energies 13, no. 11: 2784. https://doi.org/10.3390/en13112784
APA StyleZhang, P., Yang, S., Li, Y., Gu, J., Hu, Z., Zhang, R., & Tang, Y. (2020). Dynamic Response of Articulated Offshore Wind Turbines under Different Water Depths. Energies, 13(11), 2784. https://doi.org/10.3390/en13112784