Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios
Abstract
:1. Introduction
2. Materials and Methods
3. Italian Case Study
3.1. Baseline
3.2. PNIEC 2030 Scenario
3.3. Decision Variables and Assumptions
- Solar PV. For residential rooftop PV a couple of studies, Taylor et al. [67] and Vartiainen et al. [68], together with internal studies of Eurac research based on the Solar Tyrol project [69] identified a share of 2 kW per person as the maximum rooftop PV potential. Considering roughly 60 million inhabitants in Italy the final maximum potential for residential PV is assumed to be 120 GW. For what concerns utility scale PV, the maximum potential is taken from a study of the Energy Strategy Group [70] which studied the potential for the Italian territory evaluating the brownfield sites and unutilized rural areas. The overall estimated value is equal to 70 GW. An analysis of the land use for solar power by 2030 was realized by F. Mancini et al. [71]. They demonstrated how the use of 10% of the soil already consumed could be sufficient to achieve the set objectives by 2030.
- On-shore wind power. Hoefnagels et al. [72] in the framework of the RE-shaping project estimated a maximum potential of 49 GW for Italy.
- Lithium-ion batteries. The maximum potential is evaluated through a series of simulations. A value above 600 GWh brings higher costs without any benefits in terms of renewable energy integration.
- Power to gas is managed through two variables: the produced hydrogen and the capacity of the electrolyzer. The produced hydrogen maximum potential is assumed to be 15% of the overall natural gas consumption. The maximum size of the electrolyzer is taken high enough to exploit the full potential of power-to-gas and low enough to contain the domain of the optimization problem.
- The installation of heat pumps is allowed only after a deep energy refurbishment of buildings. This decision variable is the percentage of the overall buildings that switched their heating system from boilers to heat pumps. For this reason, its maximum potential is 100%.
- The energy efficiency of buildings: the potential of energy efficiency by means of passive solutions is bound to the energy efficiency cost curve and is equal to 75%. The energy efficiency cost curve and the way it is implemented in the source code of EPLANopt is explained in a previous publication [21].
3.4. Optimization Problems Definition
- -
- One case considering 10% electric mobility
- -
- One case considering 20% electric mobility
4. Results
- (i)
- The PNIEC 2030 scenario produces a relevant reduction of CO2 emissions compared to the Baseline 2015. This reduction is in line with the CO2 emissions reduction target in 2030. The PNIEC 2030 scenario is found by Italian authorities through an optimization process but the assumptions on costs and efficiencies of the energy system components are not public. Therefore, it is important to validate the model and the PNIEC 2030 scenario. This result allows this validation which is added to the validation of the Baseline 2015 on CO2 emissions.
- (ii)
- The PNIEC 2030 scenario, characterized by 10% electric mobility penetration, is almost placed on the Pareto front characterized by 10% electric mobility. Thus, it is a solution close to the optimum. As already mentioned, the PNIEC 2030 scenario is found as a result of an optimization process by Italian authorities. In this study, the difference between the PNIEC 2030 scenario and the Pareto front with 10% electric mobility can be a consequence of different costs assumptions.
- (iii)
- With the same cost of the PNIEC 2030 scenario it is possible to reach higher CO2 emissions reduction by selecting a solution on the Pareto front with 20% electric mobility. The Advanced 2030 scenario showed that at the same costs of the PNIEC 2030 there are solutions which further reduce the CO2 emissions. In this case the Advanced 2030 scenario produces a further reduction of 10%.
- (iv)
- Another consideration that needs to be done is on the impact of electric mobility. The increase of electric mobility from 10 to 20% together with the optimal energy mix found by the optimization algorithm allows a further reduction of the CO2 emissions.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Energy Planning—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/engineering/energy-planning (accessed on 29 October 2019).
- Energy Strategy—European Commission. 2030. Available online: https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2030-energy-strategy (accessed on 12 April 2018).
- Ministero Dello Sviluppo Economico. PIANO NAZIONALE INTEGRATO PER L’ENERGIA E IL CLIMA. Available online: https://www.mise.gov.it/index.php/it/198-notizie-stampa/2039046-piano-nazionale-integrato-per-l-energia-e-il-clima-inviata-la-proposta-a-bruxelles (accessed on 1 April 2020).
- Poncelet, K.; Delarue, E.; Six, D.; Duerinck, J.; D’haeseleer, W. Impact of the level of temporal and operational detail in energy-system planning models. Appl. Energy 2016, 162, 631–643. [Google Scholar] [CrossRef] [Green Version]
- Aalborg University. EnergyPLAN|Advanced Energy Systems Analysis Computer Model. Available online: http://www.energyplan.eu/ (accessed on 10 February 2020).
- Lund, H. Chapter 4—Tool: The EnergyPLAN Energy System Analysis Model. Renewable Energy Systems. 2014. Available online: https://www.sciencedirect.com/science/article/pii/B9780124104235000043?via%3Dihub (accessed on 10 February 2020).
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Østergaard, P.A.; Möller, B.; Nielsen, S.; Ridjan, I.; Hvelplund, F.; Sperling, K.; Karnøe, P.; et al. Smart Energy Systems: Holistic and Integrated Energy Systems for the era of 100% Renewable Energy. 2013. Available online: https://vbn.aau.dk/en/publications/smart-energy-systems-holistic-and-integrated-energy-systems-for-t (accessed on 10 February 2020).
- Mathiesen, B.V.; Lund, H.; Connolly, D.; Wenzel, H.; Østergaard, P.A.; Möller, B.; Nielsen, S.; Ridjan, I.; Karnøe, P.; Sperling, K.; et al. Smart Energy Systems for coherent 100% renewable energy and transport solutions. Appl. Energy 2015, 145, 139–154. [Google Scholar] [CrossRef]
- Nastasi, B.; Lo Basso, G. Hydrogen to link heat and electricity in the transition towards future Smart Energy Systems. Energy 2016, 110, 5–22. [Google Scholar] [CrossRef]
- Prina, M.G.; Cozzini, M.; Garegnani, G.; Moser, D.; Filippi Oberegger, U.; Vaccaro, R.; Sparber, W. Smart energy systems applied at urban level: The case of the municipality of Bressanone-Brixen. Int. J. Sustain. Energy Plan. Manag. 2016, 10, 33–52. [Google Scholar]
- Bramstoft, R.; Skytte, K. Decarbonizing Sweden’s energy and transportation system by 2050. Int. J. Sustain. Energy Plan. Manag. 2017, 14, 3–20. [Google Scholar]
- Ben Amer, S.; Bramstoft, R.; Balyk, O.; Nielsen, P.S. Modelling the future low-carbon energy systems-case study of greater Copenhagen, Denmark. Int. J. Sustain. Energy Plan. Manag. 2019, 24, 21–32. [Google Scholar]
- Heinisch, V.; Göransson, L.; Odenberger, M.; Johnsson, F. Interconnection of the electricity and heating sectors to support the energy transition in cities. Int. J. Sustain. Energy Plan. Manag. 2019, 24, 57–66. [Google Scholar]
- Pavičević, M.; Mangipinto, A.; Nijs, W.; Lombardi, F.; Kavvadias, K.; Jiménez Navarro, J.P.; Colombo, E.; Quoilin, S. The potential of sector coupling in future European energy systems: Soft linking between the Dispa-SET and JRC-EU-TIMES models. Appl. Energy 2020, 267, 115100. [Google Scholar] [CrossRef]
- Lund, H.; Østergaard, P.A.; Connolly, D.; Ridjan, I.; Mathiesen, B.V.; Hvelplund, F.; Thellufsen, J.Z.; Sorknæs, P. Energy Storage and Smart Energy Systems. Int. J. Sustain. Energy Plan. Manag. 2016, 11, 3–14. [Google Scholar]
- Lund, H. EnergyPLAN. 2015. Available online: www.EnergyPLAN.eu (accessed on 10 February 2020).
- Documentation|EnergyPLAN. Available online: https://www.energyplan.eu/training/documentation/ (accessed on 24 January 2019).
- Batas Bjelić, I.; Rajaković, N. Simulation-based optimization of sustainable national energy systems. Energy 2015, 91, 1087–1098. [Google Scholar] [CrossRef]
- Mahbub, M.S.; Cozzini, M.; Østergaard, P.A.; Alberti, F. Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design. Appl. Energy 2016, 164, 140–151. [Google Scholar] [CrossRef]
- Mahbub, M.S.; Viesi, D.; Crema, L. Designing optimized energy scenarios for an Italian Alpine valley: The case of Giudicarie Esteriori. Energy 2016, 116, 236–249. [Google Scholar] [CrossRef]
- Prina, M.G.; Cozzini, M.; Garegnani, G.; Manzolini, G.; Moser, D.; Filippi Oberegger, U.; Pernetti, R.; Vaccaro, R.; Sparber, W. Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model. Energy 2018, 149, 213–221. [Google Scholar] [CrossRef]
- Prina, M.G.; Fanali, L.; Manzolini, G.; Moser, D.; Sparber, W. Incorporating combined cycle gas turbine flexibility constraints and additional costs into the EPLANopt model: The Italian case study. Energy 2018, 160, 33–43. [Google Scholar] [CrossRef]
- Prina, M.G.; Moser, D.; Vaccaro, R.; Sparber, W. EPLANopt optimization model based on EnergyPLAN applied at regional level: The future competition on excess electricity production from renewables. Int. J. Sustain. Energy Plan. Manag. 2020, 27, 35–50. [Google Scholar]
- Garegnani, G.; Prina, M.G.; Vaccaro, R.; Cozzini, M.; Filippi Oberegger, U.; Moser, D. EPLANopt: EnergyPLAN Optimization Library. Available online: https://gitlab.inf.unibz.it/URS/EPLANopt (accessed on 2 February 2020).
- The Paris Agreement|UNFCCC. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 20 April 2020).
- Rocco, M.; Rady, Y.; Colombo, E. Soft-linking bottom-up energy models with top-down input-output models to assess the environmental impact of future energy scenarios. Model. Meas. Control. C 2018, 79, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Tuladhar, S.D.; Yuan, M.; Bernstein, P.; Montgomery, W.D.; Smith, A. A top-down bottom-up modeling approach to climate change policy analysis. Energy Econ. 2009, 31, S223–S234. [Google Scholar] [CrossRef]
- Nikas, A.; Doukas, H.; Papandreou, A. A detailed overview and consistent classification of climate-economy models. In Understanding Risks and Uncertainties in Energy and Climate Policy: Multidisciplinary Methods and Tools for a Low Carbon Society; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 1–54. ISBN 9783030031527. [Google Scholar]
- Prina, M.G.; Manzolini, G.; Moser, D.; Nastasi, B.; Sparber, W. Classification and challenges of bottom-up energy system models—A review. Renew. Sustain. Energy Rev. 2020, 129, 109917. [Google Scholar] [CrossRef]
- Herbst, A.; Toro, F.; Reitze, F.; Jochem, E. Introduction to Energy Systems Modelling. Statistics 2012, 148, 111–135. [Google Scholar] [CrossRef] [Green Version]
- Prina, M.G.; Lionetti, M.; Manzolini, G.; Sparber, W.; Moser, D. Transition pathways optimization methodology through EnergyPLAN software for long-term energy planning. Appl. Energy 2019, 235, 356–368. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V. Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew. Sustain. Energy Rev. 2016, 60, 1634–1653. [Google Scholar] [CrossRef]
- Ćosić, B.; Krajačić, G.; Duić, N. A 100% renewable energy system in the year 2050: The case of Macedonia. Energy 2012, 48, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Leahy, M. The first step towards a 100% renewable energy-system for Ireland. Appl. Energy 2011, 88, 502–507. [Google Scholar] [CrossRef]
- Fernandes, L.; Ferreira, P. Renewable energy scenarios in the Portuguese electricity system. Energy 2014, 69, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Lund, H.; Mathiesen, B.V. Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050. Energy 2009, 34, 524–531. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Pican, E.; Leahy, M. The technical and economic implications of integrating fluctuating renewable energy using energy storage. Renew. Energy 2012, 43, 47–60. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Leahy, M. Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible. Energy 2010, 35, 2164–2173. [Google Scholar] [CrossRef]
- Komušanac, I.; Ćosić, B.; Duić, N. Impact of high penetration of wind and solar PV generation on the country power system load: The case study of Croatia. Appl. Energy 2016, 184, 1470–1482. [Google Scholar] [CrossRef] [Green Version]
- Jääskeläinen, J.; Veijalainen, N.; Syri, S.; Marttunen, M.; Zakeri, B. Energy security impacts of a severe drought on the future Finnish energy system. J. Environ. Manag. 2018, 217, 542–554. [Google Scholar] [CrossRef]
- Bhuvanesh, A.; Jaya Christa, S.T.; Kannan, S.; Karuppasamy Pandiyan, M. Aiming towards pollution free future by high penetration of renewable energy sources in electricity generation expansion planning. Futures 2018, 104, 25–36. [Google Scholar] [CrossRef]
- Novosel, T.; Pukšec, T.; Krajačić, G.; Duić, N. Role of District Heating in Systems with a High Share of Renewables: Case Study for the City of Osijek. Energy Procedia 2016, 95, 337–343. [Google Scholar] [CrossRef]
- Groppi, D.; Astiaso Garcia, D.; Lo Basso, G.; De Santoli, L. Synergy between smart energy systems simulation tools for greening small Mediterranean islands. Renew. Energy 2019, 515–524. [Google Scholar] [CrossRef]
- Alves, M.; Segurado, R.; Costa, M. Increasing the penetration of renewable energy sources in isolated islands through the interconnection of their power systems. The case of Pico and Faial islands, Azores. Energy 2019, 182, 502–510. [Google Scholar] [CrossRef]
- Marczinkowski, H.M.; Østergaard, P.A. Evaluation of electricity storage versus thermal storage as part of two different energy planning approaches for the islands SamsØ and Orkney. Energy 2019, 175, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II; Springer: Berlin/Heidelberg, Germany, 2000; pp. 849–858. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; Forster, P.M.; Kriegler, E.; Smith, C.J.; Séférian, R. Estimating and tracking the remaining carbon budget for stringent climate targets. Nature 2019, 571, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Heat Roadmap Europe. Available online: http://www.heatroadmap.eu/ (accessed on 10 April 2018).
- Energy Models—Heat Roadmap Europe. Available online: https://heatroadmap.eu/energy-models/ (accessed on 25 February 2019).
- Benini, M.; Celaschi, S.; Colzi, F.; De Nigris, M.; Gianinoni, I.M.; Girardi, P.; Martinotti, V.; Micolano, E.; Pirovano, G.; Riva, G.M.; et al. E… Muoviti! Mobilità Elettrica a Sistema. 2013. Available online: http://www.selidori.com/tech/00000-04999/724-MtMJB.pdf (accessed on 10 February 2020).
- Terna—Transparency Report. Available online: http://www.terna.it/en-gb/sistemaelettrico/transparencyreport.aspx (accessed on 17 January 2018).
- GSE, Statistiche. Available online: https://www.gse.it/dati-e-scenari/statistiche (accessed on 10 April 2018).
- Terna—Statistical Data. Available online: http://www.terna.it/en-gb/sistemaelettrico/statisticheeprevisioni/datistatistici.aspx (accessed on 10 April 2018).
- Noussan, M.; Roberto, R.; Nastasi, B. Performance Indicators of Electricity Generation at Country Level—The Case of Italy. Energies 2018, 11, 650. [Google Scholar] [CrossRef] [Green Version]
- Wagner, T.; Themeßl, M.; Schüppel, A.; Gobiet, A.; Stigler, H.; Birk, S. Impacts of climate change on stream flow and hydro power generation in the Alpine region. Environ. Earth Sci. 2017, 76, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Prina, M.G.; Garegnani, G.; Moser, D.; Oberegger, U.F.; Vaccaro, R.; Sparber, W.; Gazzani, M.; Manzolini, G. Economic and environmental impact of photovoltaic and wind energy high penetration towards the achievement of the Italian 20-20-20 targets. In Proceedings of the 2015 10th International Conference on Ecological Vehicles and Renewable Energies, EVER 2015, Monte-Carlo, Monaco, 31 March–2 April 2015. [Google Scholar]
- Terna Impianti di Generazione. 2015. Available online: https://www.terna.it/en/electric-system/statistical-data-forecast/evolution-electricity-market (accessed on 10 February 2020).
- Mazzoni, S.; Ooi, S.; Nastasi, B.; Romagnoli, A. Energy storage technologies as techno-economic parameters for master-planning and optimal dispatch in smart multi energy systems. Appl. Energy 2019, 254, 113682. [Google Scholar] [CrossRef]
- Noussan, M.; Nastasi, B. Data Analysis of Heating Systems for Buildings—A Tool for Energy Planning, Policies and Systems Simulation. Energies 2018, 11, 233. [Google Scholar] [CrossRef] [Green Version]
- CO2 Emissions from Fuel Combustion 2019—Analysis—IEA. Available online: https://www.iea.org/reports/co2-emissions-from-fuel-combustion-2019 (accessed on 16 June 2020).
- UNFCCC, Greenhouse Gas Inventory Data—Comparison by Category. Available online: http://di.unfccc.int/comparison_by_category (accessed on 21 February 2019).
- OECD iLibrary|Air and GHG Emissions. Available online: https://www.oecd-ilibrary.org/environment/air-and-ghg-emissions/indicator/english_93d10cf7-en (accessed on 21 February 2019).
- Dudley, B. BP CO2 Emissions—BP Statistical Review of World Energy 2018; BP Statistical Review: London, UK, 2018. [Google Scholar]
- ISPRA. National Inventory Report 2017. In ItalianGreenhouseGas Inventory1990–2015; ISPRA: Rome, Italy, 2017. [Google Scholar]
- Taylor, N.; Szabo, S.; Kona, A.; Melica, G.; Huld, T.; Jaeger-Waldau, A.; Ossenbrick, H. Deployment Pathways for Photovoltaics in the EU Towards 2020: Comparing Economic Factors with Policies at Municipal Level. In Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 14–18 September 2015. [Google Scholar]
- Vartiainen, E.; Masson, G.; Breyer, C. PV LCOE in Europe 2014–30; European Photovoltaic Technology Platform: Munich, Germany, 2015. [Google Scholar]
- Solar Tirol—WebGIS. Available online: http://webgis.eurac.edu/solartirol/ (accessed on 17 January 2018).
- Renewable Energy Report 2019|Energy & Strategy Group. Available online: http://www.energystrategy.it/area-riservata/rer-2019.html (accessed on 12 February 2020).
- Mancini, F.; Nastasi, B. Solar Energy Data Analytics: PV Deployment and Land Use. Energies 2020, 13, 417. [Google Scholar] [CrossRef] [Green Version]
- Re-shaping Project. Available online: http://www.reshaping-res-policy.eu/ (accessed on 14 December 2017).
- Azzone, G.; Piercesare, S.; Zaninelli, D. APRIAMO LA STRADA AL TRASPORTO ELETTRICO NAZIONALE. 2017. Available online: https://www.enelfoundation.org/content/dam/enel-found/topic-download/Apriamo%20la%20strada%20al%20trasporto%20elettrico%20nazionale.pdf (accessed on 10 February 2020).
- Energy Efficiency Trends & Policies|ODYSSEE-MURE. Available online: https://www.odyssee-mure.eu/ (accessed on 21 February 2020).
- GME—Gestore dei Mercati Energetici SpA. Available online: https://www.mercatoelettrico.org/it/ (accessed on 21 February 2020).
- Koffi, B.; Cerutti, A.; Duerr, M.; Iancu, A.; Kona, A.; Janssens-Maenhout, G. CoM Default Emission Factors for the Member States of the European Union—Version 2017|Knowledge for Policy; European Commission, Joint Research Centre (JRC): Ispra, Italy, 2017. [Google Scholar]
- Thiel, C.; Perujo, A.; Mercier, A. Cost and CO2 aspects of future vehicle options in Europe under new energy policy scenarios. Energy Policy 2010, 38, 7142–7151. [Google Scholar] [CrossRef]
- ACI Studi e Ricerche—Dati e Statistiche. Available online: http://www.aci.it/laci/studi-e-ricerche/dati-e-statistiche.html (accessed on 18 May 2020).
Sector | Data | Source | References |
---|---|---|---|
Electricity | Capacity of renewables | GSE | [54] |
Hourly profile for renewables | Terna, GSE | [53,54] | |
Capacity for other technologies | Terna | [55] | |
Electricity demand | Terna, HRE | [50,53] | |
Heating | Generation and consumption data | HRE | [50] |
Mobility | Consumption data | HRE | [50] |
Electric vehicles demand and charge profile | RSE | [52] |
Equivalent Hours | PV | Wind Power | Hydro (River) | Geothermal |
---|---|---|---|---|
Equivalent hours 2011 | 1325 | 1563 | 4060 | 7324 |
Equivalent hours 2012 | 1312 | 1855 | 4379 | 7243 |
Equivalent hours 2013 | 1241 | 1793 | 4392 | 7321 |
Equivalent hours 2014 | 1211 | 1767 | 4454 | 7206 |
Equivalent hours 2015 | 1225 | 1683 | 4374 | 7534 |
Average equivalent hours | 1263 | 1732 | 4332 | 7325 |
Decision Variables | ||
---|---|---|
Residential PV (GW) | 15 | 120 |
Utility scale PV (GW) | 4 | 70 |
Wind power (GW) | 9 | 49 |
Lithium-ion batteries (GWh) | 0 | 600 |
Power to gas, H2 produced (%) | 0 | 15 |
Power to gas, Electrolyzer max capacity (GW) | 0 | 30 |
Advanced biomethane (TWh) | 3 | 15 |
Energy efficiency of buildings (%) | 0 | 75 |
Heat pumps (%) | 0 | 100 |
Scenarios | PV | Wind Power | Stationary Batteries | Batteries of EV | Advanced Biomethane | Energy Efficiency of Buildings |
---|---|---|---|---|---|---|
Baseline 2015 | 19 GW | 9 GW | 0 GWh | 0 GWh | 3 TWh | 0% |
PNIEC 2030 | 59 GW | 23 GW | 40 GWh | 200 GWh | 15 TWh | 15% |
Advanced 2030 | 86 GW | 48 GW | 0 GWh | 400 GWh | 3 TWh | 30% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prina, M.G.; Manzolini, G.; Moser, D.; Vaccaro, R.; Sparber, W. Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios. Energies 2020, 13, 3255. https://doi.org/10.3390/en13123255
Prina MG, Manzolini G, Moser D, Vaccaro R, Sparber W. Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios. Energies. 2020; 13(12):3255. https://doi.org/10.3390/en13123255
Chicago/Turabian StylePrina, Matteo Giacomo, Giampaolo Manzolini, David Moser, Roberto Vaccaro, and Wolfram Sparber. 2020. "Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios" Energies 13, no. 12: 3255. https://doi.org/10.3390/en13123255
APA StylePrina, M. G., Manzolini, G., Moser, D., Vaccaro, R., & Sparber, W. (2020). Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios. Energies, 13(12), 3255. https://doi.org/10.3390/en13123255