Electric Vehicles Plug-In Duration Forecasting Using Machine Learning for Battery Optimization
Abstract
:1. Introduction
- We evaluate for the first time the effectiveness of a ML-based approach for predicting the plug-in duration of EVs in domestic charge stations.
- We show that this method is superior in terms of prediction accuracy with respect to the straightforward policies used by previous works.
- Finally, we show that this reduction of the prediction error actually translates into an improvement in terms of quality-of-service and battery aging, when the prediction is used within an aging-aware EV charging protocol.
2. Background and Related Works
2.1. EV Battery Capacity Aging Degradation
2.2. EV Battery Charging with CC-CV
2.3. Aging-Aware Charging Protocols
2.4. Machine Learning Applications in EVs
3. Methods
3.1. Continuous Charge Behaviour Learning with Edge Computing
3.2. Light Gradient Boosting
3.3. Baseline Algorithms
3.3.1. Fix Duration and Fix Time
3.3.2. Exponential Moving Average
3.3.3. Historical Average
4. Results
4.1. Experimental Setup
4.2. Forecasting Error
Aging and QoS Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EVs | Electric Vehicles |
SOC | State Of Charge |
ML | Machine Learning |
DOD | Depth Of Discharge |
CC-CV | Constant Current-Constant Voltage |
LightGBM | Light Gradient Boosting |
SOH | State Of Health |
QoS | Quality of Service |
EMA | Exponential Moving Average |
HA | Historical Average |
CPU | Central Processing Unit |
MCU | Micro-controller Unit |
GBDT | Gradient Boosting Decision Tree |
GOSS | Gradient-based One-Side Sampling |
EFB | Exclusive Feature Bundling |
MSE | Mean Square Error |
References
- Zhang, Q.; Ou, X.; Yan, X.; Zhang, X. Electric vehicle market penetration and impacts on energy consumption and CO2 emission in the future: Beijing case. Energies 2017, 10, 228. [Google Scholar] [CrossRef] [Green Version]
- Eberle, U.; Von Helmolt, R. Sustainable transportation based on electric vehicle concepts: A brief overview. Energy Environ. Sci. 2010, 3, 689–699. [Google Scholar] [CrossRef]
- Yang, Z.; Shang, F.; Brown, I.P.; Krishnamurthy, M. Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications. IEEE Trans. Transp. Electrif. 2015, 1, 245–254. [Google Scholar] [CrossRef]
- Baek, D.; Chen, Y.; Bocca, A.; Bottaccioli, L.; Cataldo, S.D.; Gatteschi, V.; Pagliari, D.J.; Patti, E.; Urgese, G.; Chang, N.; et al. Battery-Aware Operation Range Estimation for Terrestrial and Aerial Electric Vehicles. IEEE Trans. Veh. Technol. 2019, 68, 5471–5482. [Google Scholar] [CrossRef]
- Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; Van Mierlo, J. Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies 2017, 10, 1314. [Google Scholar] [CrossRef] [Green Version]
- Hannan, M.; Hoque, M.; Mohamed, A.; Ayob, A. Review of energy storage systems for electric vehicle applications: Issues and challenges. Renew. Sustain. Energy Rev. 2017, 69, 771–789. [Google Scholar] [CrossRef]
- Jafari, M.; Gauchia, A.; Zhang, K.; Gauchia, L. Simulation and analysis of the effect of real-world driving styles in an EV battery performance and aging. IEEE Trans. Transp. Electrif. 2015, 1, 391–401. [Google Scholar] [CrossRef]
- Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M.; Suard, F.; Riu, D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 2013, 241, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Bashash, S.; Moura, S.J.; Forman, J.C.; Fathy, H.K. Plug-in hybrid electric vehicle charge pattern optimization for energy cost and battery longevity. J. Power Sources 2011, 196, 541–549. [Google Scholar] [CrossRef]
- Bocca, A.; Chen, Y.; Macii, A.; Macii, E.; Poncino, M. Aging and Cost Optimal Residential Charging for Plug-In EVs. IEEE Design Test 2017, 35, 16–24. [Google Scholar] [CrossRef]
- Matsumura, N.; Otani, N.; Hamaji, K. Intelligent Battery Charging Rate Management. U.S. Patent Application 12/059,967, 1 October 2009. [Google Scholar]
- Pröbstl, A.; Kindt, P.; Regnath, E.; Chakraborty, S. Smart2: Smart charging for smart phones. In Proceedings of the 2015 IEEE 21st International Conference on Embedded and Real-Time Computing Systems and Applications, Hong Kong, China, 19–21 August 2015; pp. 41–50. [Google Scholar]
- Bocca, A.; Sassone, A.; Macii, A.; Macii, E.; Poncino, M. An aging-aware battery charge scheme for mobile devices exploiting plug-in time patterns. In Proceedings of the 2015 33rd IEEE International Conference on Computer Design (ICCD), New York, NY, USA, 18–21 October 2015; pp. 407–410. [Google Scholar]
- Klein, R.; Chaturvedi, N.A.; Christensen, J.; Ahmed, J.; Findeisen, R.; Kojic, A. Optimal charging strategies in lithium-ion battery. In Proceedings of the 2011 American Control Conference, San Francisco, CA, USA, 29 June–1 July 2011; pp. 382–387. [Google Scholar]
- Shen, W.; Vo, T.T.; Kapoor, A. Charging algorithms of lithium-ion batteries: An overview. In Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, 18–20 July 2012; pp. 1567–1572. [Google Scholar]
- Guo, Z.; Liaw, B.Y.; Qiu, X.; Gao, L.; Zhang, C. Optimal charging method for lithium ion batteries using a universal voltage protocol accommodating aging. J. Power Sources 2015, 274, 957–964. [Google Scholar] [CrossRef]
- Chen, Y.; Bocca, A.; Macii, A.; Macii, E.; Poncino, M. A li-ion battery charge protocol with optimal aging-quality of service trade-off. In Proceedings of the 2016 International Symposium on Low Power Electronics and Design, San Francisco, CA, USA, 8–10 August 2016; pp. 40–45. [Google Scholar]
- Electric Chargepoint Analysis 2017: Domestics. Available online: https://www.gov.uk/government/statistics/electric-chargepoint-analysis-2017-domestics (accessed on 12 August 2020).
- Millner, A. Modeling lithium ion battery degradation in electric vehicles. In Proceedings of the 2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply, Waltham, MA, USA, 27–29 September 2010; pp. 349–356. [Google Scholar]
- Hoke, A.; Brissette, A.; Smith, K.; Pratt, A.; Maksimovic, D. Accounting for lithium-ion battery degradation in electric vehicle charging optimization. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 691–700. [Google Scholar] [CrossRef]
- Hussein, A.A.H.; Batarseh, I. A review of charging algorithms for nickel and lithium battery chargers. IEEE Trans. Veh. Technol. 2011, 60, 830–838. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, X.; Xie, Q.; Chang, N.; Pedram, M. Minimizing state-of-health degradation in hybrid electrical energy storage systems with arbitrary source and load profiles. In Proceedings of the 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 24–28 March 2014; pp. 1–4. [Google Scholar]
- Shin, D.; Sassone, A.; Bocca, A.; Macii, A.; Macii, E.; Poncino, M. A compact macromodel for the charge phase of a battery with typical charging protocol. In Proceedings of the 2014 International Symposium on Low Power Electronics and Design, La Jolla, CA, USA, 11–13 August 2014; pp. 267–270. [Google Scholar]
- Pröbstl, A.; Islam, B.; Nirjon, S.; Chang, N.; Chakraborty, S. Intelligent Chargers Will Make Mobile Devices Live Longer. IEEE Des. Test 2020. [Google Scholar] [CrossRef]
- Zheng, B.; He, P.; Zhao, L.; Li, H. A Hybrid Machine Learning Model for Range Estimation of Electric Vehicles. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar]
- Sun, S.; Zhang, J.; Bi, J.; Wang, Y. A Machine Learning Method for Predicting Driving Range of Battery Electric Vehicles. J. Adv. Transp. 2019, 2019, 4109148. [Google Scholar] [CrossRef]
- López, K.L.; Gagné, C.; Gardner, M. Demand-Side Management Using Deep Learning for Smart Charging of Electric Vehicles. IEEE Trans. Smart Grid 2019, 10, 2683–2691. [Google Scholar] [CrossRef]
- Murphey, Y.L.; Masrur, M.A.; Chen, Z.; Zhang, B. Model-based fault diagnosis in electric drives using machine learning. IEEE/ASME Trans. Mechatron. 2006, 11, 290–303. [Google Scholar] [CrossRef]
- Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Emadi, A. State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach. J. Power Sources 2018, 400, 242–255. [Google Scholar] [CrossRef]
- Vidal, C.; Malysz, P.; Kollmeyer, P.; Emadi, A. Machine Learning Applied to Electrified Vehicle Battery State of Charge and State of Health Estimation: State-of-the-Art. IEEE Access 2020, 8, 52796–52814. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.E.; Yang, Y. Advanced Machine Learning Approach for Lithium-Ion Battery State Estimation in Electric Vehicles. IEEE Trans. Transp. Electrif. 2016, 2, 140–149. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, J.; Cao, D.; Egardt, B. Battery Health Prognosis for Electric Vehicles Using Sample Entropy and Sparse Bayesian Predictive Modeling. IEEE Trans. Ind. Electron. 2016, 63, 2645–2656. [Google Scholar] [CrossRef]
- Xiao, J.; Xiong, Z.; Wu, S.; Yi, Y.; Jin, H.; Hu, K. Disk Failure Prediction in Data Centers via Online Learning. In Proceedings of the ICPP 2018 47th International Conference on Parallel Processing, Eugene, OR, USA, 13–16 August 2018; Association for Computing Machinery: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Pate, M.; Ho, M.; Texas Instruments. Charging ahead toward an EV Support Infrastructure. Available online: https://www.ti.com/lit/wp/swpy030/swpy030.pdf (accessed on 12 August 2020).
- Chen, J.; Ran, X. Deep Learning With Edge Computing: A Review. Proc. IEEE 2019, 107, 1655–1674. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Jahier Pagliari, D.; Poncino, M.; Macii, E. Energy-Efficient Digital Processing via Approximate Computing. In Smart Systems Integration and Simulation; Bombieri, N., Poncino, M., Pravadelli, G., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Chapter 4; pp. 55–89. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning; The MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Nice, France, 2017; pp. 3146–3154. [Google Scholar]
- Kumar, A.; Goyal, S.; Varma, M. Resource-efficient Machine Learning in 2 KB RAM for the Internet of Things. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Precup, D., Teh, Y.W., Eds.; PMLR, International Convention Centre: Sydney, Australia, 2017; Volume 70, pp. 1935–1944. [Google Scholar]
- Li, F.; Zhang, L.; Chen, B.; Gao, D.; Cheng, Y.; Zhang, X.; Yang, Y.; Gao, K.; Huang, Z.; Peng, J. A light gradient boosting machine for remainning useful life estimation of aircraft engines. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 3562–3567. [Google Scholar]
- Jiang, J.; Wang, R.; Wang, M.; Gao, K.; Nguyen, D.D.; Wei, G.W. Boosting Tree-Assisted Multitask Deep Learning for Small Scientific Datasets. J. Chem. Inf. Model. 2020, 60, 1235–1244. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Sun, X.; Liu, M.; Sima, Z. A novel cryptocurrency price trend forecasting model based on LightGBM. Financ. Res. Lett. 2020, 32, 101084. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Shi, X.; Almpanidis, G.; Fan, G.; Shen, X. On Incremental Learning for Gradient Boosting Decision Trees. Neural Process. Lett. 2019, 50, 957–987. [Google Scholar] [CrossRef]
- Python LightGBM Package. Available online: https://lightgbm.readthedocs.io/en/latest/ (accessed on 12 August 2020).
Station ID | Events (Cycles) |
---|---|
AN05770 | 326 |
AN10157 | 196 |
AN23533 | 186 |
AN08563 | 159 |
AN03003 | 141 |
Feature | Description |
---|---|
Plug-in Instant | Day ∈ 0–366, Hour ∈ 0–23, Minute ∈ 0–59 |
Plug-in day of the week | One-hot encoded vector |
Prev. Plug-out Instant | Day ∈ 0–366, Hour ∈ 0–23, Minute ∈ 0–59 |
Prev. Plug-in Duration | In hours (possibly fractional) |
Station | Model | MSE | SOH | QoS | SOH * QoS | |||
---|---|---|---|---|---|---|---|---|
Aging Optimal | ASAP | Aging Optimal | ASAP | Aging Optimal | ASAP | |||
AN05770 | Ideal | 0 | 0.89 | 0.88 | 1 | 1 | 0.89 | 0.88 |
LightGBM | 1.75 | 0.91 | 0.89 | 0.79 | 0.91 | 0.72 | 0.81 | |
HA | 8.62 | 0.93 | 0.92 | 0.50 | 0.72 | 0.46 | 0.67 | |
EMA | 12.99 | 0.93 | 0.92 | 0.49 | 0.70 | 0.46 | 0.65 | |
Fix Time | 15.43 | 0.96 | 0.95 | 0.34 | 0.58 | 0.33 | 0.55 | |
Fix duration | 25.02 | 0.98 | 0.96 | 0.23 | 0.50 | 0.23 | 0.48 | |
AN10157 | Ideal | 0 | 0.94 | 0.93 | 1 | 1 | 0.94 | 0.93 |
LightGBM | 2.18 | 0.95 | 0.94 | 0.71 | 0.87 | 0.68 | 0.82 | |
HA | 4.15 | 0.95 | 0.95 | 0.63 | 0.81 | 0.60 | 0.77 | |
EMA | 5.40 | 0.95 | 0.95 | 0.59 | 0.80 | 0.57 | 0.77 | |
Fix Time | 9.07 | 0.96 | 0.95 | 0.32 | 0.61 | 0.31 | 0.59 | |
Fix duration | 27.21 | 0.99 | 0.98 | 0.14 | 0.60 | 0.14 | 0.59 | |
AN23533 | Ideal | 0 | 0.93 | 0.93 | 1 | 1 | 0.93 | 0.93 |
LightGBM | 2.00 | 0.95 | 0.95 | 0.67 | 0.84 | 0.64 | 0.80 | |
HA | 2.14 | 0.96 | 0.95 | 0.59 | 0.80 | 0.57 | 0.77 | |
EMA | 3.32 | 0.95 | 0.95 | 0.60 | 0.80 | 0.58 | 0.77 | |
Fix Time | 13.50 | 0.99 | 0.98 | 0.16 | 0.51 | 0.16 | 0.50 | |
Fix duration | 25.99 | 0.99 | 0.99 | 0.02 | 0.43 | 0.02 | 0.43 | |
AN08563 | Ideal | 0 | 0.94 | 0.94 | 1 | 1 | 0.94 | 0.94 |
LightGBM | 2.35 | 0.96 | 0.95 | 0.64 | 0.83 | 0.62 | 0.80 | |
HA | 2.55 | 0.96 | 0.96 | 0.58 | 0.82 | 0.56 | 0.78 | |
EMA | 3.93 | 0.96 | 0.96 | 0.58 | 0.79 | 0.58 | 0.79 | |
Fix Time | 11.54 | 0.97 | 0.97 | 0.32 | 0.58 | 0.31 | 0.56 | |
Fix duration | 26.26 | 0.99 | 0.99 | 0.09 | 0.50 | 0.08 | 0.49 | |
AN03003 | Ideal | 0 | 0.94 | 0.94 | 1 | 1 | 0.94 | 0.94 |
LightGBM | 0.75 | 0.96 | 0.96 | 0.74 | 0.84 | 0.72 | 0.81 | |
HA | 8.62 | 0.96 | 0.96 | 0.59 | 0.78 | 0.57 | 0.75 | |
EMA | 1.58 | 0.96 | 0.96 | 0.67 | 0.80 | 0.65 | 0.77 | |
Fix Time | 17.52 | 0.98 | 0.98 | 0.24 | 0.59 | 0.24 | 0.58 | |
Fix duration | 16.06 | 0.99 | 0.99 | 0.01 | 0.33 | 0.01 | 0.33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Alamin, K.S.S.; Jahier Pagliari, D.; Vinco, S.; Macii, E.; Poncino, M. Electric Vehicles Plug-In Duration Forecasting Using Machine Learning for Battery Optimization. Energies 2020, 13, 4208. https://doi.org/10.3390/en13164208
Chen Y, Alamin KSS, Jahier Pagliari D, Vinco S, Macii E, Poncino M. Electric Vehicles Plug-In Duration Forecasting Using Machine Learning for Battery Optimization. Energies. 2020; 13(16):4208. https://doi.org/10.3390/en13164208
Chicago/Turabian StyleChen, Yukai, Khaled Sidahmed Sidahmed Alamin, Daniele Jahier Pagliari, Sara Vinco, Enrico Macii, and Massimo Poncino. 2020. "Electric Vehicles Plug-In Duration Forecasting Using Machine Learning for Battery Optimization" Energies 13, no. 16: 4208. https://doi.org/10.3390/en13164208
APA StyleChen, Y., Alamin, K. S. S., Jahier Pagliari, D., Vinco, S., Macii, E., & Poncino, M. (2020). Electric Vehicles Plug-In Duration Forecasting Using Machine Learning for Battery Optimization. Energies, 13(16), 4208. https://doi.org/10.3390/en13164208