Assessment of Switchgrass-Based Bioenergy Supply Using GIS-Based Fuzzy Logic and Network Optimization in Missouri (U.S.A.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.2. Case Study
3. Results
3.1. Potential Cultivating Regions of Switchgrass
3.2. Switchgrass Feedstock Supply Areas
3.3. Shortest Transportation Route
3.4. Least Transportation Costs
3.5. Ecosystem Services
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hiloidhari, M.; Baruah, D.; Singh, A.; Kataki, S.; Medhi, K.; Kumari, S.; Ramachandra, T.V.; Jenkins, B.M.; Thakur, I.S. Emerging role of Geographical Information System (GIS), Life Cycle Assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning. Bioresour. Technol. 2017, 242, 218–226. [Google Scholar] [CrossRef]
- Tilman, D.; Socolow, R.; Foley, J.A.; Hill, J.D.; Larson, E.; Lynd, L.R.; Pacala, S.; Reilly, J.; Searchinger, T.; Somerville, C.; et al. Beneficial biofuels—The food, energy, and environment trilemma. Science 2009, 325, 270–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fargione, J.; Hill, J.; Tillman, D.; Polasky, S.; Hawthorne, P. Land clearing and the biofuel carbon debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burli, P.; Forgoston, E.; Lal, P.; Billings, L.; Wolde, B. Adoption of switchgrass cultivation for biofuel under uncertainty: A discrete-time modeling approach. Biomass Bioenergy 2017, 105, 107–115. [Google Scholar] [CrossRef]
- Richard, T.L. Challenges in Scaling Up Biofuels Infrastructure. Science 2010, 329, 793–796. [Google Scholar] [CrossRef] [Green Version]
- Van Der Weijde, T.; Kamei, C.L.A.; Torres, A.F.; Vermerris, W.; Dolstra, O.; Visser, R.G.; Trindade, L.M. The potential of C4 grasses for cellulosic biofuel production. Front. Plant Sci. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Miller, S. A game theory analysis of market incentives for US switchgrass ethanol. Ecol. Econ. 2013, 93, 42–56. [Google Scholar] [CrossRef]
- Schnepf, R. Cellulosic Ethanol: Feedstocks, Conversion Technologies, Economics, and Policy Options, Congressional Research Service, CRS R41460. October 2010. Available online: www.crs.gov (accessed on 10 April 2019).
- Langholtz, M.H.; Stokes, B.J.; Eaton, L. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 1: Economic Availability of Feedstocks; US Department of Energy: Washington, DC, USA, 2016; p. 448.
- EPA. Final Renewable Fuel Standards for 2020, and the Biomass-Based Diesel Volume for 2021; EPA. December 2019. Available online: https://www.epa.gov/renewable-fuel-standard-program/final-renewable-fuel-standards-2020-and-biomass-based-diesel-volume#additional-resources (accessed on 18 August 2020).
- Voivontas, D.; Assimacopoulos, D.; Koukios, G.E. Assessment of biomass potential for power production: A GIS based method. Fuel Energy Abstr. 2002, 43, 118. [Google Scholar] [CrossRef]
- Beccali, M.; Columba, P.; D’Alberti, V.; Franzitta, V. Assessment of bioenergy potential in Sicily: A GIS-based support methodology. Biomass Bioenergy 2009, 33, 79–87. [Google Scholar] [CrossRef]
- Höhn, J.; Lehtonen, E.; Rasi, S.; Rintala, J. A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland. Appl. Energy 2014, 113, 1–10. [Google Scholar] [CrossRef]
- Sultana, A.; Kumar, A. Optimal siting and size of bioenergy facilities using geographic information system. Appl. Energy 2012, 94, 192–201. [Google Scholar] [CrossRef]
- ESRI. ArcGIS Help 10.1. ArcGIS Resources. Available online: http://resources.arcgis.com/en/help/main/10.1/index.html#/Location_allocation_analysis/004700000050000000/ (accessed on 2 November 2018).
- Hartman, J.C.; Nippert, J.B.; Springer, C.J. Ecotypic responses of switchgrass to altered precipitation. Funct. Plant Biol. 2012, 39, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, R.; Vogel, K.P.; Sarath, G. Managing and Enhancing Switchgrass as a Bioenergy Feedstock. 2008, p. 11. Available online: https://doi.org/10.1002/bbb.106 (accessed on 20 June 2020).
- Gallagher, E. The Gallagher Review of the Indirect Effects of Biofuels Production. Renewable Fuels Agency (RFA). July 2008. Available online: https://www.unido.org/sites/default/files/2009-11/Gallagher_Report_0.pdf (accessed on 20 September 2019).
- Lewis, S.; Kelly, M. Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales. ISPRS Int. J. Geo-Inf. 2014, 3, 430–459. [Google Scholar] [CrossRef] [Green Version]
- Kraxner, F.; Aoki, K.; Kindermann, G.; LeDuc, S.; Albrecht, F.; Liu, J.; Yamagata, Y. Bioenergy and the city—What can urban forests contribute. Appl. Energy 2016, 165, 990–1003. [Google Scholar] [CrossRef]
- Saha, M.; Eckelman, M.J. Geospatial assessment of regional scale bioenergy production potential on marginal and degraded land. Resour. Conserv. Recycl. 2018, 128, 90–97. [Google Scholar] [CrossRef]
- Zhao, X.; Monnell, J.D.; Niblick, B.; Rovensky, C.D.; Landis, A.E. The viability of biofuel production on urban marginal land: An analysis of metal contaminants and energy balance for Pittsburgh’s Sunflower Gardens. Landsc. Urban Plan. 2014, 124, 22–33. [Google Scholar] [CrossRef]
- Hartman, J.C.; Nippert, J.B. Physiological and growth responses of switchgrass (Panicum virgatum L.) in native stands under passive air temperature manipulation. GCB Bioenergy 2013, 5, 683–692. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Fike, J.H.; Pease, J.W.; Owens, V.; Farris, R.L.; Hansen, J.L.; Heaton, E.A.; Hong, C.O.; Mayton, H.S.; Mitchell, R.B.; Viands, D.R. Switchgrass nitrogen response and estimated production costs on diverse sites. GCB Bioenergy 2017, 9, 1526–1542. [Google Scholar] [CrossRef]
- Boyer, C.N.; Roberts, R.K.; English, B.C.; Tyler, D.D.; Larson, J.A.; Mooney, D.F. Effects of soil type and landscape on yield and profit maximizing nitrogen rates for switchgrass production. Biomass Bioenergy 2013, 48, 33–42. [Google Scholar] [CrossRef]
- Hui, D.; Yu, C.-L.; Deng, Q.; Dzantor, E.K.; Zhou, S.; Dennis, S.; Sauvé, R.; Johnson, T.L.; Fay, P.A.; Shen, W.; et al. Effects of precipitation changes on switchgrass photosynthesis, growth, and biomass: A mesocosm experiment. PLoS ONE 2018, 13, e0192555. [Google Scholar] [CrossRef] [PubMed]
- Ethanolproducer. Ethanol Producer Magazine. 29 June 2018. Available online: http://ethanolproducer.com/plants/listplants/US/Operational/All/page:1/sort:state/direction:asc (accessed on 10 April 2018).
- DOE’s. Biorefinery Optimization Workshop Summary Report; Workshop Summary; U.S. Department of Energy: Chicago, IL, USA, 2016. Available online: https://www.energy.gov/sites/prod/files/2017/02/f34/biorefinery_optimization_workshop_summary_report.pdf (accessed on 20 June 2020).
- Analysis Division and FMCSA. 2010–2011 Hours of Service Rule Regulatory Impact Analysis RIN 2126-AB26; U.S. Department of Transportation—Federal Motor Carrier Safety Administration: Washington, DC, USA, December 2011.
- Arguez, A.; Durre, I.; Applequist, S.; Squires, M.; Vose, R.; Yin, X.; Bilotta, R. NOAA’s U.S. Climate Normals (1981–2010); NOAA National Centers for Environmental Information: Boulder, CO, USA, 2010. [CrossRef]
- Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- ESRI. USA Street Map. ArcGIS. 22 May 2010. Available online: https://www.arcgis.com/home/item.html?id=f28762ef94ef4700864fd57d0ef7ec7a (accessed on 28 March 2018).
- USDA/NRCS—National Geospatial Center of Excellence. National Elevation Data 30 Meter. Present 2000. Available online: http://ned.usgs.gov/ (accessed on 21 November 2017).
- Soil Survey Staff. Web Soil Survey; Natural Resources Conservation Service, United States Department of Agriculture; Washington, DC, USA. Available online: https://datagateway.nrcs.usda.gov/GDGOrder.aspx (accessed on 21 November 2017).
- Perdue, J.H. The Biomass Site Assessment Tool (BioSAT) Final Report; USDA Forest Service, Southern Research Station: Asheville, NC, USA, May 2011. Available online: http://www.biosat.net/Pdf/The_Biomass_Site_Assessment_Tool.pdf (accessed on 27 June 2020).
- Jungers, J.M.; Sheaffer, C.C.; Lamb, J.A. The Effect of Nitrogen, Phosphorus, and Potassium Fertilizers on Prairie Biomass Yield, Ethanol Yield, and Nutrient Harvest. BioEnergy Res. 2015, 8, 279–291. [Google Scholar] [CrossRef]
- Lawrence, J.; Cherney, J.; Barney, P.; Ketterings, Q. Establishment and Management of Switchgrass; Series 20; Cornell University Cooperative Extension: New York, NY, USA, 2006; Available online: http://forages.org/files/bioenergy/Switchgrassfactsheet20.pdf (accessed on 22 June 2020).
- Kim, S.; Williams, A.; Kiniry, J.R.; Hawkes, C.V. Simulating diverse native C4 perennial grasses with varying rainfall. J. Arid Environ. 2016, 134, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Sherrard, M.E.; Joers, L.C.; Carr, C.M.; Cambardella, C.A. Soil type and species diversity influence selection on physiology in Panicum virgatum. Evol. Ecol. 2015, 29, 679–702. [Google Scholar] [CrossRef]
- Grumbach, S. Handling Interpolated Data. Comput. J. 2003, 46, 664–679. [Google Scholar] [CrossRef]
- U.S Fish & Wildlife Service. U.S. FWS Threatened & Endangered Species Active Critical Habitat Report. ECOS Environmental Conservation Online System Conserving the Nature of America. 22 June 2018. Available online: https://ecos.fws.gov/ecp/report/table/critical-habitat.html (accessed on 29 June 2018).
- Li, Y.-F.; Wang, Y.; Tang, Y.; Kakani, V.; Mahalingam, R. Transcriptome analysis of heat stress response in switchgrass (Panicum virgatum L.). BMC Plant Biol. 2013, 13, 153. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, M.; Reed, R.; Ocumpaugh, W.; Hussey, M.; Van Esbroeck, G.; Read, J.; Tischler, C.; Hons, F. Switchgrass cultivars and germplasm for biomass feedstock production in Texas. Bioresour. Technol. 1999, 67, 209–219. [Google Scholar] [CrossRef]
- Baskaran, L.; Jager, H.I.; Schweizer, P.E.; Srinivasan, R. Progress toward Evaluating the Sustainability of Switchgrass as a Bioenergy Crop using the SWAT Model. Trans. ASABE 2010, 53, 1547–1556. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Schmer, M.R.; Vogel, K.P.; Mitchell, R.B. Switchgrass Biomass Simulation at Diverse Sites in the Northern Great Plains of the U.S. BioEnergy Res. 2008, 1, 259–264. [Google Scholar] [CrossRef]
- Smith, R. Switchgrass Production Offers Opportunities, Growing Challenges; Southwest Farm Press: 6 December 2007. Available online: https://www.farmprogress.com/switchgrass-production-offers-opportunities-growing-challenges (accessed on 27 June 2020).
- Thomas, M.A.; Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Modeling Water Quality Impacts of Growing Corn, Switchgrass, and Miscanthus on Marginal Soils. J. Water Resour. Prot. 2014, 6, 1352–1368. [Google Scholar] [CrossRef] [Green Version]
- Jager, H.I.; Baskaran, L.M.; Brandt, C.C.; Davis, E.B.; Gunderson, C.A.; Wullschleger, S.D. Empirical geographic modeling of switchgrass yields in the United States. GCB Bioenergy 2010, 2, 248–257. [Google Scholar] [CrossRef]
- Garland, C.; Bates, G.; Clark, C.; Dalton, D. Growing and Harvesting Switchgrass for Ethanol Production in Tennessee; University of Tennessee Extension: Knoxville, TN, USA, May 2008; Available online: https://trace.tennessee.edu/utk_agexbiof/6/ (accessed on 20 June 2020).
- Perlack, R.D.; Stokes, B.J. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry; US Department of Energy: Washington, DC, USA, August 2011; p. 227.
- Casavant, K.; Denicoff, M.; Jessup, E.; Taylor, A.; Nibarger, D.; Sears, D.; Khachatryan, H.; McCracken, V.; Prater, M.; Bahizi, P. Study of Rural Transportation Issues; U.S. Department of Agriculture, Agricultural Marketing Service: Washington, DC, USA, April 2010. [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Bierbower, W. InVEST +VERSION+ User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund; Stanford University: Stanford, CA, USA, 2016; Available online: http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/index.html (accessed on 4 April 2020).
- Bagstad, K.J.; Ingram, J.C.; Lange, G.-M.; Masozera, M.; Ancona, Z.H.; Bana, M.; Kagabo, D.; Musana, B.; Nabahungu, N.L.; Rukundo, E.; et al. Towards ecosystem accounts for Rwanda: Tracking 25 years of change in flows and potential supply of ecosystem services. People Nat. 2019, 2, 163–188. [Google Scholar] [CrossRef]
- Murray, D.; Glidewell, S. An Analysis of the Operational Costs of Trucking; American Transportation Research Institute: Arlington, VA, USA, 2019; p. 48. [Google Scholar]
- Hooper, A.; Murray, D. An Analysis of the Operational Costs of Trucking; American Transportation Research Institute: Arlington, VA, USA, 2018; p. 49. [Google Scholar]
- AAA. Gas Prices. Available online: https://gasprices.aaa.com/?state=MO&fbclid=IwAR1x_10lK0B0_Thj06sNSkiRyuNakpkPmkmyl0KdjBXZvh_FzMl7Zpw3FqY (accessed on 20 June 2020).
- Jacobson, M.; Helsel, Z. NEWBio Switchgrass Budget for Biomass Production; PennState Cooperative Extension: University Park, PA, USA, April 2014; Available online: http://www.newbio.psu.edu/PublicationsFinal/SwitchgrassBudget.pdf (accessed on 25 June 2020).
- McGowan, A.R.; Min, D.-H.; Williams, J.R.; Rice, C.W. Impact of Nitrogen Application Rate on Switchgrass Yield, Production Costs, and Nitrous Oxide Emissions. J. Environ. Qual. 2018, 47, 228–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bies, L. The Biofuels Explosion: Is Green Energy Good for Wildlife. Wildl. Soc. Bull. 2006, 34, 1203–1205. [Google Scholar] [CrossRef]
- Werling, B.P.; Dickson, T.L.; Isaacs, R.; Gaines, H.; Gratton, C.; Gross, K.L.; Liere, H.; Malmstrom, C.M.; Meehan, T.D.; Ruan, L.; et al. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proc. Natl. Acad. Sci. USA 2014, 111, 1652–1657. [Google Scholar] [CrossRef] [Green Version]
- Timothy, L.D.; Katherine, L.G. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production? PLoS ONE 2015, 10, e0135253. [Google Scholar] [CrossRef] [Green Version]
Plants | Address | Feedstock | Platform | Capacity (MMgy) | |
---|---|---|---|---|---|
1 | Golden Triangle Energy, LLC | 15053 HW 111, Craig | Corn | Sugar/ Starch | 20 |
2 | Lifeline Foods, LLC, and ICM Pilot Int. Cell | 2811 S. 11th St., Joseph | Biomass crops | Cellulosic | 0.32 |
3 | Show Me Ethanol, LLC | 26530 HW 24, East Carrollton | Corn/ Sorghum | Sugar/ Starch | 60 |
4 | Mid-Missouri Energy | 15311 N. Saline, Malta Bend | Corn | Sugar/ Starch | 55 |
5 | Poet Biorefining | 809 North Pine, Laddonia | Corn | Sugar/ Starch | 58 |
6 | Poet Biorefining | 30211 Major Ave., Macon | Corn | Sugar/ Starch | 46 |
Value/Range | Type | References | |
---|---|---|---|
Temperature | 32/24 °C–22/14 °C | Max–Min day/night | [43,44] |
28/20 °C | Average day/night | [45] | |
25 °C | Average seasonal | [46,47] | |
Precipitation | 79 mm | Monthly | [46] |
626.25 mm | Growing season | [23] | |
635–889 mm | Yearly | [48,49] | |
350–850 mm | [27] | ||
>500 mm | [45,50] | ||
Slope of terrain | <25% | Average | [51] |
<33% | [52] |
No | LULC Name | Base Case (ha) | Scenario 1 (ha) | Scenario 2 (ha) |
---|---|---|---|---|
1 | Soybeans | 2,419,701.93 | 2,419,701.93 | 2,419,701.93 |
2 | Corn | 2,137,863.60 | 2,137,863.6 | 2,137,863.6 |
3 | Grass/Pasture | 3,839,489.55 | 3,839,489.55 | 2,098,031.67 (−1,741,457.88) |
4 | Wetlands | 196,811.19 | 196,811.19 | 196,811.19 |
5 | Urban | 937,167.75 | 937,167.75 | 937,167.75 |
6 | Forest | 3,146,988.96 | 3,146,988.96 | 3,146,988.96 |
7 | Alfalfa | 43,220.43 | 43,220.43 | 22,489.47 (−20,730.96) |
8 | Open Water | 197,862.03 | 197,862.03 | 197,862.03 |
9 | Fallow/Idle Cropland | 8521.47 | 6504.39 (−2017.08) | 7299.99 (−1221.48) |
10 | Small grain | 60,930 | 60,930 | 60,930 |
11 | Shrubland | 51,675.57 | 51,675.57 | 51,675.57 |
12 | Sorghum | 14,315.58 | 14,315.58 | 14,315.58 |
13 | Background | 2359.80 | 2359.8 | 2359.8 |
14 | Sod/Grass Seed | 2290.05 | 2290.05 | 1984.59 |
15 | Apples | 175.68 | 175.68 | 175.68 |
16 | Switchgrass | 2738.52 | 4755.60 (2017.08) | 1,766,454.3 (1,763,715.78) |
Cost | Range | Sources |
---|---|---|
Logistic cost | $3.24 | [4] |
Fixed cost (per minute) | $0.019–$0.4 | [56,57] |
Wages cost (per minute) | $0.27–$0.41 | [56,57] |
Fuel cost (per minute) | $0.26–$0.60 | [58] |
Scenario | Service Area_60 min | Service Area_120 min | Service Area_180 min | |||
---|---|---|---|---|---|---|
Area (ha) | Percent | Area (ha) | Percent | Area (ha) | Percent | |
Scenario 1 | 1153.44 | 24.3% | 4603.59 | 96.8% | 4755.60 | 100% |
Scenario 2 | 457,239.06 | 25.9% | 1,594,649.25 | 90.3% | 1,766,454.3 | 100% |
Biorefineries | Potential Sites | Potential Area (ha) | Percent | Yield Range (Mg) | |
---|---|---|---|---|---|
Min | Max | ||||
Golden Triangle Energy LLC (1) | 12 | 1186 | 25% | 12,098.72 | 26,593.47 |
LF, LLC & ICM Pilot Int. Cell (2) | 68 | 2367 | 50% | 24,142.87 | 53,066.97 |
Show Me Ethanol, LLC (3) | 8 | 263 | 6% | 2687.52 | 5907.27 |
Mid-Missouri Energy (4) | 2 | 252 | 5% | 2566.22 | 5640.65 |
Poet Biorefining 1 (5) | 4 | 27 | 1% | 270.59 | 594.76 |
Poet Biorefining 2 (6) | 22 | 661 | 14% | 6741.21 | 14,817.44 |
Total | 116 | 4756 | 100% | 48,507.12 | 106,620.55 |
Biorefineries | Potential Site | Potential Area | Percent | Yield Range (Mg) | |
---|---|---|---|---|---|
Min | Max | ||||
Golden Triangle Energy LLC (1) | 755 | 303,755.17 | 17% | 3,098,302.75 | 6,809,279.68 |
LF, LLC & ICM Pilot Int. Cell (2) | 1387 | 894,789.51 | 51% | 9,126,852.98 | 20,058,496.41 |
Show Me Ethanol, LLC (3) | 427 | 197,316.91 | 11% | 2,012,632.49 | 4,423,253.19 |
Mid-Missouri Energy (4) | 90 | 29,130.36 | 2% | 297,129.67 | 653,015.28 |
Poet Biorefining 1 (5) | 79 | 49,211.16 | 3% | 501,953.81 | 1,103,166.53 |
Poet Biorefining 2 (6) | 605 | 292,251.19 | 17% | 2,980,962.15 | 6,551,394.96 |
Total | 3343 | 1,766,454.30 | 100% | 18,017,833.86 | 39,598,606.04 |
Eco. Services | BASE | Scenario 1 | Scenario 2 | Per Hectare Service Change |
---|---|---|---|---|
Carbon storage (Mg C) | 1,782,871,676 | 1,782,949,307 | 1,842,152,972 | 33.14 ÷ 72.54 |
Annual water yiel (m3) | 33,968,655,988 | 33,967,261,280 | 34,430,988,747 | −1474 ÷ −233 |
Sediment total (Mg) | 716,297,693 | 715,984,989 | 700,968,778 | −150 ÷ −13 |
Sediment export (Mg) | 72,705,792 | 72,665,788 | 69,028,500 | na |
Changes compared to BASE (%) | ||||
Scenario 1 | Scenario 2 | |||
Carbon storage | 0.004% | 3.325% | ||
Annual water yield | −0.004% | 1.361% | ||
Sediment total | −0.044% | −2.140% | ||
Sediment export | −0.055% | −5.058% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.T.G.; Lyttek, E.; Lal, P.; Wieczerak, T.; Burli, P. Assessment of Switchgrass-Based Bioenergy Supply Using GIS-Based Fuzzy Logic and Network Optimization in Missouri (U.S.A.). Energies 2020, 13, 4516. https://doi.org/10.3390/en13174516
Nguyen HTG, Lyttek E, Lal P, Wieczerak T, Burli P. Assessment of Switchgrass-Based Bioenergy Supply Using GIS-Based Fuzzy Logic and Network Optimization in Missouri (U.S.A.). Energies. 2020; 13(17):4516. https://doi.org/10.3390/en13174516
Chicago/Turabian StyleNguyen, Huynh Truong Gia, Erik Lyttek, Pankaj Lal, Taylor Wieczerak, and Pralhad Burli. 2020. "Assessment of Switchgrass-Based Bioenergy Supply Using GIS-Based Fuzzy Logic and Network Optimization in Missouri (U.S.A.)" Energies 13, no. 17: 4516. https://doi.org/10.3390/en13174516
APA StyleNguyen, H. T. G., Lyttek, E., Lal, P., Wieczerak, T., & Burli, P. (2020). Assessment of Switchgrass-Based Bioenergy Supply Using GIS-Based Fuzzy Logic and Network Optimization in Missouri (U.S.A.). Energies, 13(17), 4516. https://doi.org/10.3390/en13174516