The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals
Abstract
:1. Introduction
2. Background
2.1. Storage
2.2. Supplementing the Gas Grid
2.3. Power Generation
2.4. Transport
3. Materials and Methods
4. Results
4.1. Storage
4.2. Gas Grid Supplementation
4.3. Power Generation
4.4. Transportation
4.5. Other Sectors
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations Framework Convention on Climate Change (UNFCCC). Paris Agreement on Climate Change, 2015. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 29 May 2020).
- Roelfsema, M.; Van Soest, H.L.; Harmsen, M.J.H.M.; Van Vuuren, D.; Bertram, C.; Elzen, M.G.D.; Höhne, N.; Iacobuta, G.; Krey, V.; Kriegler, E.; et al. Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gatti, D. The Hydrogen Economy, Fuel Cells and Hydrogen Production Methods, 2020. IDTechEx. Available online: https://www.idtechex.com/en/research-report/the-hydrogen-economy-fuel-cells-and-hydrogen-production-methods/744 (accessed on 29 May 2020).
- Hydrogen and Fuel Cells Strategy Office, Advanced Energy Systems and Structure Division, Energy Conservation and Renewable Energy Department, Agency for Natural Resources and Energy Japan. In Basic Hydrogen Strategy; 2017; pp. 1–37. Available online: https://www.meti.go.jp/english/press/2017/pdf/1226_003b.pdf (accessed on 16 April 2020).
- Ministry of Economy Trade and Industry. Japan’s Fifth Strategic Energy Plan (Provisional Translation). 2018. Available online: https://www.enecho.meti.go.jp/en/category/others/basic_plan/5th/pdf/strategic_energy_plan.pdf (accessed on 29 May 2020).
- Nižetić, S.; Barbir, F.; Djilali, N. The role of hydrogen in energy transition. Int. J. Hydrogen Energy 2019, 44, 9673–9674. [Google Scholar] [CrossRef]
- Heuberger, C.F.; Mac Dowell, N. Real-World Challenges with a Rapid Transition to 100% Renewable Power Systems. Joule 2018, 2, 367–370. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.-H.; Zhao, Y.-Y.; Wu, B. Toward a hydrogen society: Hydrogen and smart grid integration. Int. J. Hydrog. Energy 2020, 45, 20164–20175. [Google Scholar] [CrossRef]
- McPherson, M.; Johnson, N.; Strubegger, M. The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions. Appl. Energy 2018, 216, 649–661. [Google Scholar] [CrossRef]
- Jensen, I.G.; Wiese, F.; Bramstoft, R.; Münster, M. Potential role of renewable gas in the transition of electricity and district heating systems. Energy Strat. Rev. 2020, 27, 100446. [Google Scholar] [CrossRef]
- Jones, D.R.; Al-Masry, W.A.; Dunnill, C.W. Hydrogen-enriched natural gas as a domestic fuel: An analysis based on flash-back and blow-off limits for domestic natural gas appliances within the UK. Sustain. Energy Fuels 2018, 2, 710–723. [Google Scholar] [CrossRef] [Green Version]
- Partidário, P.; Aguiar, R.; Martins, P.; Rangel, C.M.; Cabrita, I. The hydrogen roadmap in the Portuguese energy system—Developing the P2G case. Int. J. Hydrogen Energy 2019. [Google Scholar] [CrossRef] [Green Version]
- de Miranda, P.E.V. (Ed.) Application of Hydrogen Combustion for Electrical and Motive Power Generation. In Science and Engineering of Hydrogen-Based Energy Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 259–278. [Google Scholar]
- Pambudi, N.A.; Itaoka, K.; Kurosawa, A.; Yamakawa, N. Impact of Hydrogen fuel for CO2 Emission Reduction in Power Generation Sector in Japan. Energy Procedia 2017, 105, 3075–3082. [Google Scholar] [CrossRef]
- Ahmed, A.; Al-Amin, A.Q.; Ambrose, A.F.; Saidur, R. Hydrogen fuel and transport system: A sustainable and environmental future. Int. J. Hydrogen Energy 2016, 41, 1369–1380. [Google Scholar] [CrossRef]
- Jayakumar, A.; Chalmers, A.; Lie, T.T. Review of prospects for adoption of fuel cell electric vehicles in New Zealand. IET Electr. Syst. Transp. 2017, 7, 259–266. [Google Scholar] [CrossRef]
- Davis, K.; Hayes, J.G. Fuel cell vehicle energy management strategy based on the cost of ownership. IET Electr. Syst. Transp. 2019, 9, 226–236. [Google Scholar] [CrossRef]
- Dominković, D.F.; Bačeković, I.; Pedersen, A.S.; Krajačić, G. The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition. Renew. Sustain. Energy Rev. 2018, 82, 1823–1838. [Google Scholar] [CrossRef]
- Din, T.; Hillmansen, S. Energy consumption and carbon dioxide emissions analysis for a concept design of a hydrogen hybrid railway vehicle. IET Electr. Syst. Transp. 2017, 8, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Economy Trade and Industry. Basic Hydrogen Strategy (Key Points). 2017. Available online: https://www.meti.go.jp/english/press/2017/pdf/1226_003a.pdf (accessed on 27 March 2020).
- Akimoto, K.; Sano, F.; Homma, T.; Oda, J.; Nagashima, M.; Kii, M. Estimates of GHG emission reduction potential by country, sector, and cost. Energy Policy 2010, 38, 3384–3393. [Google Scholar] [CrossRef]
- Matsuo, Y.; Yanagisawa, A.; Yamashita, Y.N. A global energy outlook to 2035 with strategic considerations for Asia and Middle East energy supply and demand interdependencies. Energy Strat. Rev. 2013, 2, 79–91. [Google Scholar] [CrossRef]
- Lee, D.-H. Development and environmental impact of hydrogen supply chain in Japan: Assessment by the CGE-LCA method in Japan with a discussion of the importance of biohydrogen. Int. J. Hydrogen Energy 2014, 39, 19294–19310. [Google Scholar] [CrossRef]
- Oshiro, K.; Masui, T. Diffusion of low emission vehicles and their impact on CO2 emission reduction in Japan. Energy Policy 2015, 81, 215–225. [Google Scholar] [CrossRef]
- Ishimoto, Y.; Kurosawa, A.; Sasakura, M.; Sakata, K. Significance of CO2-free hydrogen globally and for Japan using a long-term global energy system analysis. Int. J. Hydrogen Energy 2017, 42, 13357–13367. [Google Scholar] [CrossRef]
- Inoue, T.; Yamada, K. Economic evaluation toward zero CO2 emission power generation system after 2050 in Japan. Energy Procedia 2017, 142, 2761–2766. [Google Scholar] [CrossRef]
- Ozawa, A.; Kudoh, Y.; Murata, A.; Honda, T.; Saita, I.; Takagi, H. Hydrogen in low-carbon energy systems in Japan by 2050: The uncertainties of technology development and implementation. Int. J. Hydrogen Energy 2018, 43, 18083–18094. [Google Scholar] [CrossRef]
- Nagashima, M. Japan’s Hydrogen Strategy and Its Economic and Geopolitical Implications, 2018. Etudes de l’Ifri. Available online: https://www.ifri.org/sites/default/files/atoms/files/nagashima_japan_hydrogen_2018_.pdf (accessed on 27 March 2020).
- Matsuo, Y.; Endo, S.; Nagatomi, Y.; Shibata, Y.; Komiyama, R.; Fujii, Y. A quantitative analysis of Japan’s optimal power generation mix in 2050 and the role of CO2-free hydrogen. Energy 2018, 165, 1200–1219. [Google Scholar] [CrossRef]
- Li, Y.; Gao, W.; Ruan, Y. Potential and sensitivity analysis of long-term hydrogen production in resolving surplus RES generation—A case study in Japan. Energy 2019, 171, 1164–1172. [Google Scholar] [CrossRef]
- Kuriyama, A.; Tamura, K.; Kuramochi, T. Can Japan enhance its 2030 greenhouse gas emission reduction targets? Assessment of economic and energy-related assumptions in Japan’s NDC. Energy Policy 2019, 130, 328–340. [Google Scholar] [CrossRef]
- Sugiyama, M.; Fujimori, S.; Wada, K.; Endo, S.; Fujii, Y.; Komiyama, R.; Kato, E.; Kurosawa, A.; Matsuo, Y.; Oshiro, K.; et al. Japan’s long-term climate mitigation policy: Multi-model assessment and sectoral challenges. Energy 2019, 167, 1120–1131. [Google Scholar] [CrossRef]
- Tlili, O.; Mansilla, C.; Frimat, D.; Perez, Y. Hydrogen market penetration feasibility assessment: Mobility and natural gas markets in the US, Europe, China and Japan. Int. J. Hydrogen Energy 2019, 44, 16048–16068. [Google Scholar] [CrossRef]
- Iida, S.; Sakata, K. Hydrogen technologies and developments in Japan. Clean Energy 2019, 3, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Tsukushi, Y.; Hasegawa, K.; Ihara, M.; Okubo, T.; Kikuchi, Y. A region-specific analysis of technology implementation of hydrogen energy in Japan. Int. J. Hydrogen Energy 2019, 44, 19434–19451. [Google Scholar] [CrossRef]
- Oshiro, K.; Gi, K.; Fujimori, S.; Van Soest, H.L.; Bertram, C.; Després, J.; Masui, T.; Rochedo, P.; Roelfsema, M.; Vrontisi, Z. Mid-century emission pathways in Japan associated with the global 2 °C goal: National and global models’ assessments based on carbon budgets. Clim. Chang. 2019, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, Y.; Endo, S.; Nagatomi, Y.; Shibata, Y.; Komiyama, R.; Fujii, Y. Investigating the economics of the power sector under high penetration of variable renewable energies. Appl. Energy 2020, 267, 113956. [Google Scholar] [CrossRef]
- Chapman, A.; Nguyen, H.; Farabi-Asl, K.; Itaoka, K. Hirose, Hydrogen Penetration and Fuel Cell Vehicle Deployment in the Carbon Constrained Future Energy System. IET Electr. Syst. Transp. 2020. in Press. [Google Scholar]
- Proctor, D. Hydrogen Fueling Turbines at Japan Refinery. Power Magazine. 25 June 2020. Available online: https://www.powermag.com/hydrogen-fueling-turbines-at-japan-refinery/ (accessed on 24 August 2020).
- International Energy Agency (IEA). Global EV Outlook, 2020. Available online: https://www.iea.org/reports/global-ev-outlook-2020 (accessed on 24 August 2020).
- World_Nuclear_Association. Heat Values of Various Fuels, 2020. Available online: https://www.world-nuclear.org/information-library/facts-and-figures/heat-values-of-various-fuels.aspx (accessed on 23 July 2020).
- Chapman, A.J.; Itaoka, K. Energy transition to a future low-carbon energy society in Japan’s liberalizing electricity market: Precedents, policies and factors of successful transition, Renew. Sustain. Energy Rev. 2018, 81, 2019–2027. [Google Scholar] [CrossRef]
- World Bank. Carbon Pricing Dashboard, 2020. Available online: https://carbonpricingdashboard.worldbank.org/map_data (accessed on 15 July 2020).
- Whitmarsh, L.E.; Xenias, D.; Jones, C.R. Framing effects on public support for carbon capture and storage. Palgrave Commun. 2019, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Dumlao, S.M.G.; Ishihara, K.N. Reproducing solar curtailment with Fourier analysis using Japan dataset. Energy Rep. 2020, 6, 199–205. [Google Scholar] [CrossRef]
- World Nuclear Association. Nuclear Power in Japan. 2020. Available online: https://www.world-nuclear.org/information-library/country-profiles/countries-g-n/japan-nuclear-power.aspx (accessed on 21 July 2020).
- Next Generation Vehicle Promotion Center. Hydrogen Station Deployment Progress. 2020. Available online: http://www.cev-pc.or.jp/suiso_station/ (accessed on 21 July 2020).
- Japan H2 Mobility (JHyM). FCV and Hydrogen Refueling Station Deployment Targets. 2020. Available online: https://www.jhym.co.jp/nav-about/ (accessed on 21 July 2020).
- Advanced Cogeneration and Energy Utilization_Center_Japan. Ene-Farm Manufacturer Sales. 2020. Available online: https://www.ace.or.jp/web/works/works_0090.html (accessed on 21 July 2020).
- Esteban, M.; Portugal-Pereira, J.; McLellan, B.; Bricker, J.; Farzaneh, H.; Djalilova, N.; Ishihara, K.N.; Takagi, H.; Roeber, V. 100% renewable energy system in Japan: Smoothening and ancillary services. Appl. Energy 2018, 224, 698–707. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Shigetomi, Y.; Managi, S.; Matsumoto, K. Uncovering Household Carbon Footprint Drivers in an Aging, Shrinking Society. Energies 2019, 12, 3745. [Google Scholar] [CrossRef] [Green Version]
- Shigetomi, Y.; Matsumoto, K.; Ogawa, Y.; Shiraki, H.; Yamamoto, Y.; Ochi, Y.; Ehara, T. Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan. Appl. Energy 2018, 228, 2321–2332. [Google Scholar] [CrossRef]
- Shigetomi, Y.; Ohno, H.; Managi, S.; Fujii, H.; Nansai, K.; Fukushima, Y. Clarifying Demographic Impacts on Embodied and Materially Retained Carbon toward Climate Change Mitigation. Environ. Sci. Technol. 2019, 53, 14123–14133. [Google Scholar] [CrossRef] [Green Version]
- Managi, S.; Shigetomi, Y. Visualizing the shape of society: An analysis of public bads and burden allocation due to household consumption using an input-output approach. Sci. Total Environ. 2018, 639, 385–396. [Google Scholar] [CrossRef]
- Shigetomi, Y.; Chapman, A.; Nansai, K.; Matsumoto, K.; Tohno, S. Quantifying lifestyle based social equity implications for national sustainable development policy. Environ. Res. Lett. 2020, 15, 084044. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Lenzen, M.; Steinberger, J.K. Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications. Energy Policy 2013, 63, 696–707. [Google Scholar] [CrossRef]
- Kleijn, R.; Van Der Voet, E. Resource constraints in a hydrogen economy based on renewable energy sources: An exploration. Renew. Sustain. Energy Rev. 2010, 14, 2784–2795. [Google Scholar] [CrossRef]
- Habib, K.; Hansdóttir, S.T.; Habib, H. Critical metals for electromobility: Global demand scenarios for passenger vehicles, 2015–2050. Resour. Conserv. Recycl. 2020, 154, 104603. [Google Scholar] [CrossRef]
- Watari, T.; Nansai, K.; Nakajima, K. Review of critical metal dynamics to 2050 for 48 elements. Resour. Conserv. Recycl. 2020, 155, 104669. [Google Scholar] [CrossRef]
- Hienuki, S.; Noguchi, K.; Shibutani, T.; Fuse, M.; Noguchi, H.; Miyake, A. Risk identification for the introduction of advanced science and technology: A case study of a hydrogen energy system for smooth social implementation. Int. J. Hydrogen Energy 2020, 45, 15027–15040. [Google Scholar] [CrossRef]
- Moreau, V.; Dos Reis, P.C.; Vuille, F. Enough Metals? Resource Constraints to Supply a Fully Renewable Energy System. Resources 2019, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- De Castro, C.; Capellán, I. Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies. Energies 2020, 13, 3036. [Google Scholar] [CrossRef]
- Capellán, I.; De Blas, I.; Nieto, J.; De Castro, C.; Miguel, L.J.; Carpintero, Ó.; Mediavilla, M.; Lobejón, L.F.; Ferreras-Alonso, N.; Rodrigo, P.; et al. MEDEAS: A new modeling framework integrating global biophysical and socioeconomic constraints. Energy Environ. Sci. 2020, 13, 986–1017. [Google Scholar] [CrossRef]
- Nieto, J.; Carpintero, Ó.; Miguel, L.J.; De Blas, I. Macroeconomic modelling under energy constraints: Global low carbon transition scenarios. Energy Policy 2020, 137, 111090. [Google Scholar] [CrossRef] [Green Version]
- Heard, B.; Brook, B.W.; Wigley, T.; Bradshaw, C. Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renew. Sustain. Energy Rev. 2017, 76, 1122–1133. [Google Scholar] [CrossRef]
Benchmark Factors | Mid Term (~2030) Target | Long Term (~2050) Target |
---|---|---|
Source of supply | Developing international H2 supply chains and domestic RE based power-to-gas supply | CO2 free hydrogen (including fossil fuels with CCS to H2 and RE to H2) |
Annual volume (t/year) | 300,000 | 5,000,000–10,000,000 |
Cost (US$/kg) | 3 | 2 |
Power generation cost (JPY/kWh) | 17 (commercialization) | 12 (replacing gas-fired generation) |
Mobility | ||
| 900 800,000 1200 10,000 | Replacing gas stations Replacing gasoline vehicles Introducing large FCVs- |
Fuel cell utilization (Ene-Farm 1) | 5,300,000 | Replacing traditional residential energy systems |
Year | Title | Model | Themes | Ref |
---|---|---|---|---|
2010 | Estimates of GHG emission reduction potential by country, sector, and cost | DNE21+ | P | [21] |
2013 | A global energy outlook to 2035 with strategic considerations for Asia and Middle East energy supply and demand interdependencies | Macroeconomic, supply & demand, tech. assessment | T | [22] |
2014 | Development and environmental impact of hydrogen supply chain in Japan: Assessment by the CGE-LCA method in Japan with a discussion of the importance of biohydrogen | GTAP-LCA | S, T | [23] |
2015 | Diffusion of low emission vehicles and their impact on CO2 emission reduction in Japan | AIM/Enduse | S, T | [24] |
2017 | Significance of CO2-free hydrogen globally and for Japan using a long-term global energy system analysis | GRAPE | S, P, T | [25] |
2017 | Economic evaluation toward zero CO2 emission power generation system after 2050 in Japan | Dynamic optimized multi-regional power generation model | P | [26] |
2018 | Hydrogen in low-carbon energy systems in Japan by 2050: The uncertainties of technology development and implementation. | MARKAL | P, T | [27] |
2018 | Japan’s hydrogen strategy and its economic and geopolitical implications | Policy review | S, G, P, T | [28] |
2018 | A quantitative analysis of Japan’s optimal power generation mix in 2050 and the role of CO2-free hydrogen | OPGM | S, P, T | [29] |
2019 | Potential and sensitivity analysis of long-term hydrogen production in resolving surplus RES generation—a case study in Japan | Simulation | S, G, P | [30] |
2019 | Can Japan enhance its 2030 greenhouse gas emission reduction targets? Assessment of economic and energy-related assumptions in Japan’s NDC | Analytical Framework | P | [31] |
2019 | Japan’s long-term climate mitigation policy: Multi-model assessment and sectoral challenges | Multi-Model Comparison | S, G, P, T | [32] |
2019 | Hydrogen market penetration feasibility assessment: Mobility and natural gas markets in the US, Europe, China and Japan | Economic penetration feasibility study | S, G, T | [33] |
2019 | Hydrogen technologies and developments in Japan | GRAPE | S, G, P, T | [34] |
2019 | A region-specific analysis of technology implementation of hydrogen energy in Japan | Simulation | S, G, T | [35] |
2019 | Mid-century emission pathways in Japan associated with the global 2 °C goal: national and global models’ assessments based on carbon budgets | AIM/Enduse, DNE21+ | S, P, T | [36] |
2020 | Investigating the economics of the power sector under high penetration of variable renewable energies | OPGM | S, P | [37] |
2020 | Hydrogen Penetration and Fuel Cell Vehicle Deployment in the Carbon Constrained Future Energy System | Modified DNE | S, G, P, T | [38] |
Key Sector | 2030 Target | 2050 Target | Model Outcomes |
---|---|---|---|
Storage |
|
| |
Gas grid |
|
| |
Power generation |
|
|
|
Transport |
|
|
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaube, A.; Chapman, A.; Shigetomi, Y.; Huff, K.; Stubbins, J. The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals. Energies 2020, 13, 4539. https://doi.org/10.3390/en13174539
Chaube A, Chapman A, Shigetomi Y, Huff K, Stubbins J. The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals. Energies. 2020; 13(17):4539. https://doi.org/10.3390/en13174539
Chicago/Turabian StyleChaube, Anshuman, Andrew Chapman, Yosuke Shigetomi, Kathryn Huff, and James Stubbins. 2020. "The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals" Energies 13, no. 17: 4539. https://doi.org/10.3390/en13174539
APA StyleChaube, A., Chapman, A., Shigetomi, Y., Huff, K., & Stubbins, J. (2020). The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals. Energies, 13(17), 4539. https://doi.org/10.3390/en13174539