Parameter Calibration for a TRNSYS BIPV Model Using In Situ Test Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Situ Measurement of the Target BIPV System
2.2. Theoretical Review of the TRNSYS BIPV Model
2.3. Parametric Sensitivity Analysis
2.4. Parameter Calibration Using the Optimization Method
3. Results
3.1. Results of the Parameter Sensitivity Analysis
3.2. Parameter Calibration Results for the BIPV Model
3.3. Annual Prediction of Energy Production
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Symbols | ||
A | Area | (m2) |
Cloud factor | (-) | |
Power production | (kW) | |
Current | (A) | |
Voltage | (V) | |
Inlet flowrate of air channel | (kg/h) | |
Number | (-) | |
Solar radiation | (W/m2) | |
Resistance | (m·K/W) | |
Temperature | (°C) | |
Air velocity | (m/s) | |
Convective heat transfer coefficient | (m2·K/W) | |
Greeks | ||
Emissivity | (-) | |
Efficiency | (-) | |
Product of transmittance and absorptance | (-) | |
Incidence angle | (rad) | |
Superscripts | ||
lb | Lower bound | |
ub | Upper bound | |
Subscripts | ||
amb | Ambient | |
back | Back insulation | |
cell | PV cell | |
channel | Channel space | |
conv | Convection | |
cover | Cover of BIPV module | |
gen | Generations | |
in | Inlet | |
indoor | Indoor space | |
ini | Initial | |
max | Maximum | |
mea | Measurement | |
MPP | Maximum power point | |
n | Normal | |
obj | Object for optimization | |
opt | Optimal value | |
pts | Particles | |
R | Solar radiation modifier | |
ref | Reference | |
sim | Simulated | |
sky | Sky temperature | |
sol | Solar radiation | |
subs | Substrate | |
T | Temperature modifier | |
total | Total solar radiation |
Abbreviations
A-Si | Amorphous Si |
C-Si | Polycrystalline Si |
CFD EM | Computer fluid dynamics Efficiency modifier |
EMS | Energy monitoring system |
FDD | Fault detection diagnosis |
HVAC | Heating, ventilation, and air-conditioning |
IAM | Incidence Angle Modifier |
KMA | Korea Meteorological Administration |
PSO | Particle swarm optimization |
RMSE | Root mean square error |
STC | Standard test condition |
TMY2 | Typical meteorological year (second version) |
References
- Alvarez-Herranz, A.; Balsalobre-Lorente, D.; Shahbaz, M.; Cantos, J.M. Energy innovation and renewable energy consumption in the correction of air pollution levels. Energy Policy 2017, 105, 386–397. [Google Scholar] [CrossRef]
- Amasyali, K.; El-Gohary, N.M. A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 2018, 81, 1192–1205. [Google Scholar] [CrossRef]
- Chel, A.; Kaushik, G. Renewable energy technologies for sustainable development of energy efficient building. Alex. Eng. J. 2018, 57, 655–669. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’adamo, I.; Gastaldi, M.; Koh, S.L. Renewable energy options for buildings: Performance evaluations of integrated photovoltaic systems. Energy Build. 2012, 55, 208–217. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sudhakar, K.; Baredar, P. Recent advancement in BIPV product technologies: A review. Energy Build. 2017, 140, 188–195. [Google Scholar] [CrossRef]
- Aelenei, L.; Pereira, R.; Gonçalves, H.; Athienitis, A. Thermal performance of a hybrid BIPV-PCM: Modeling, design and experimental investigation. Energy Procedia 2014, 48, 474–483. [Google Scholar] [CrossRef] [Green Version]
- An, H.J.; Yoon, J.H.; An, Y.S.; Heo, E. Heating and cooling performance of office buildings with a-Si BIPV windows considering operating conditions in temperate climates: The case of Korea. Sustainability 2018, 10, 4856. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.M.; Yoon, J.H.; Shin, U.C. Regional performance evaluation of PV System and BIPV in Korea. Autumn Conf. Acad. Present. 2014, 133–134. [Google Scholar]
- Othman, M.Y.; Ibrahim, A.; Jin, G.L.; Ruslan, M.H.; Sopian, K. Photovoltaic-thermal (PV/T) technology–the future energy technology. Renew. Energy 2013, 49, 171–174. [Google Scholar] [CrossRef]
- Bayrakci, M.; Choi, Y.; Brownson, J.R. Temperature dependent power modeling of photovoltaics. Energy Procedia 2014, 57, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.H.; Oh, M.H.; Kang, G.H.; Lee, J.B. Annual base performance evaluation on cell temperature and power generation of c-Si transparent spandrel BIPV Module depending on the Backside Insulation Level. J. Korean Sol. Energy Soc. 2012, 32, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.S.; Lee, H.M.; Choi, M.J.; Yoon, J.H. Performance Evaluation and Prediction of BIPV Systems under Partial Shading Conditions Using Normalized Efficiency. Energies 2019, 12, 3777. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Panda, S.K. Thermal performance of BIPV system by considering periodic nature of insolation and optimum tilt-angle of PV panel. Renew. Energy 2020, 150, 136–146. [Google Scholar] [CrossRef]
- Goncalves, J.E.; van Hooff, T.; Saelens, D. A physics-based high-resolution BIPV model for building performance simulations. Sol. Energy 2020, 204, 585–599. [Google Scholar] [CrossRef]
- Chine, W.; Mellit, A.; Lughi, V.; Malek, A.; Sulligoi, G.; Pavan, A.M. A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks. Renew. Energy 2016, 90, 501–512. [Google Scholar] [CrossRef]
- Li, S.; Joe, J.; Hu, J.; Karava, P. System identification and model-predictive control of office buildings with integrated photovoltaic-thermal collectors, radiant floor heating and active thermal storage. Sol. Energy 2015, 113, 139–157. [Google Scholar] [CrossRef]
- Agathokleous, R.A.; Kalogirou, S.A. Part I: Thermal analysis of naturally ventilated BIPV system: Experimental investigation and convective heat transfer coefficients estimation. Sol. Energy 2018, 169, 673–681. [Google Scholar] [CrossRef]
- Debbarma, M.; Sudhakar, K.; Baredar, P. Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review. Renew. Sustain. Energy Rev. 2017, 73, 1276–1288. [Google Scholar] [CrossRef] [Green Version]
- Hachana, O.; Tina, G.M.; Hemsas, K.E. PV array fault DiagnosticTechnique for BIPV systems. Energy Build. 2016, 126, 263–274. [Google Scholar] [CrossRef]
- Vuong, E.; Kamel, R.S.; Fung, A.S. Modelling and simulation of BIPV/T in EnergyPlus and TRNSYS. Energy Procedia 2015, 78, 1883–1888. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Athienitis, A.K. A study of design options for a building integrated photovoltaic/thermal (BIPV/T) system with glazed air collector and multiple inlets. Sol. Energy 2014, 104, 82–92. [Google Scholar] [CrossRef]
- Huang, C.Y.; Chen, H.J.; Chan, C.C.; Chou, C.P.; Chiang, C.M. Thermal model based power-generated prediction by using meteorological data in BIPV system. Energy Procedia 2011, 12, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.; Athienitis, A.K.; Candanedo, L.; Park, K.W.; Poissant, Y.; Collins, M. Numerical and experimental study of heat transfer in a BIPV-thermal system. Sol. Energy Eng. 2007, 129, 423–430. [Google Scholar] [CrossRef]
- Liu, B.Y.H.; Jordan, R.C. The Interrelationship and of Direct, Diffuse and Characteristic Distribution Total Solar Radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Jeon, B.K.; Kim, E.J.; Shin, Y.; Lee, K.H. Learning-based predictive building energy model using weather forecasts for optimal control of domestic energy systems. Sustainability 2019, 11, 147. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.; Beckman, A.; Mitchell, W.; Duffie, A. TRNSYS 17-A TRansient SYstems Simulation Program; Solar Energy Laboratory, University of Wisconsin: Madison, WI, USA, 2011. [Google Scholar]
- Mondol, J.D.; Yohanis, Y.G.; Norton, B. Comparison of measured and predicted long term performance of grid a connected photovoltaic system. Energy Convers. Manag. 2007, 48, 1065–1080. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Asdrubali, F. On the sky temperature models and their influence on buildings energy performance: A critical review. Energy Build. 2019, 183, 607–625. [Google Scholar] [CrossRef]
- Fernández, M.; Eguía, P.; Granada, E.; Febrero, L. Sensitivity analysis of a vertical geothermal heat exchanger dynamic simulation: Calibration and error determination. Geothermics 2017, 70, 249–259. [Google Scholar] [CrossRef]
- Tang, R.; Etzion, Y.; Meir, I.A. Estimates of clear night sky emissivity in the Negev Highlands, Israel. Energy Convers. Manag. 2004, 45, 1831–1843. [Google Scholar] [CrossRef]
- Wetter, M. GenOpt-A generic optimization program. In Proceedings of the Seventh International IBPSA Conference, Rio de Janeiro, Brazil, 13–15 August 2001; pp. 601–608. [Google Scholar]
- Bai, Q. Analysis of particle swarm optimization algorithm. Comput. Inf. Sci. 2010, 3, 180. [Google Scholar] [CrossRef] [Green Version]
Authors | Year | Purpose of Studies | Methodologies | |
---|---|---|---|---|
Exp. | Simulation | |||
S. Yadav & S.K. Panda [13] | 2020 | Finding the optimum angle | x | Mathematical model |
J.E. Goncalves et al. [14] | 2020 | Predicting power generation | x | Mathematical model |
R.A. Agathokleous et al. [17] | 2018 | Modeling and validation | x | Commercial software |
M. Debbarma et al. [18] | 2017 | Modeling | - | Mathematical model |
O. Hachana et al. [19] | 2016 | Fault detection & diagnosis | x | Mathematical model |
W. Chine et al. [15] | 2016 | Fault detection & diagnosis | x | Data-driven model |
S. Li et al. [16] | 2015 | Predictive control | x | Commercial software |
E. Vuong et al. [20] | 2015 | Model development | - | Commercial software |
L. Aelenei et al. [6] | 2014 | Model validation | x | Mathematical model |
T. Yang & A.K. Athienitis [21] | 2014 | Model validation | x | Mathematical model |
C.Y. Huang et al. [22] | 2011 | Model validation | x | Mathematical model |
L. Liao et al. [23] | 2007 | Heat distribution prediction | - | CFD |
Parameter | Value | Unit |
---|---|---|
Cover area () | 1.034 | m2 |
Cover thickness | 0.005 | m |
Channel height | 0.085 | m |
Cover thermal conductivity (1/) | 0.96 | W/m·K |
Substrate thermal resistance () | 7.052 | m·K/W |
Back insulation thermal resistance () | 1.876 | m·K/W |
Normal transmittance-absorptance () | 0.85 | - |
Cover emissivity () | 0.9 | - |
Substrate emissivity () | 0.9 | - |
Back insulation emissivity () | 0.9 | - |
Reference BIPV efficiency () | 14.1 | % |
Rated power () | 116 | W |
Maximum power point voltage () | 14.2 | V |
Open circuit voltage | 18.9 | V |
Maximum power point current () | 8.17 | A |
Short circuit current | 8.71 | A |
Efficiency modifier—temperature (EMT) | −0.00039 | °C−1 |
Efficiency modifier—solar radiation (EMR) | 0.00009 | m·K/W |
Target Variable | Reference Value | Bounds | Unit | ||
---|---|---|---|---|---|
Lower | Upper | ||||
Sky emissivity | 0.90 | 0.60 | 1.00 | - | |
Cover emissivity | 0.90 | 0.72 | 0.99 | - | |
Normal transmittance-absorptance | 0.85 | 0.68 | 0.99 | - | |
Substrate emissivity | 0.90 | 0.72 | 0.99 | - | |
Back insulation emissivity | 0.90 | 0.72 | 0.99 | - | |
Inlet flow rate of air channel | 100 | 20 | 200 | kg/h |
Design variables | Value | Unit | ||||
---|---|---|---|---|---|---|
Min. | Initial | Max. | Opt. | |||
Sky emissivity | 0.60 | 0.90 | 0.99 | 0.87 | - | |
Cover emissivity | 0.72 | 0.90 | 0.99 | 0.97 | - | |
Normal transmittance-absorptance | 0.68 | 0.85 | 0.99 | 0.68 | - | |
Inlet flow rate of air channel | 20 | 100 | 200 | 58.53 | kg/h |
Energy Production | Noncalibrated | Calibrated |
---|---|---|
Hourly average | 1.07 kWh | 0.89 kWh |
Total | 4750.27 kWh | 3941.29 kWh |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, S.-W.; Park, S.-H.; Eom, J.-Y.; Oh, M.-S.; Cho, G.-Y.; Kim, E.-J. Parameter Calibration for a TRNSYS BIPV Model Using In Situ Test Data. Energies 2020, 13, 4935. https://doi.org/10.3390/en13184935
Ha S-W, Park S-H, Eom J-Y, Oh M-S, Cho G-Y, Kim E-J. Parameter Calibration for a TRNSYS BIPV Model Using In Situ Test Data. Energies. 2020; 13(18):4935. https://doi.org/10.3390/en13184935
Chicago/Turabian StyleHa, Sang-Woo, Seung-Hoon Park, Jae-Yong Eom, Min-Suk Oh, Ga-Young Cho, and Eui-Jong Kim. 2020. "Parameter Calibration for a TRNSYS BIPV Model Using In Situ Test Data" Energies 13, no. 18: 4935. https://doi.org/10.3390/en13184935
APA StyleHa, S. -W., Park, S. -H., Eom, J. -Y., Oh, M. -S., Cho, G. -Y., & Kim, E. -J. (2020). Parameter Calibration for a TRNSYS BIPV Model Using In Situ Test Data. Energies, 13(18), 4935. https://doi.org/10.3390/en13184935