Direct and Indirect Environmental Aspects of an Electric Bus Fleet Under Service
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cluj-Napoca City’s Urban Passenger Transportation System
2.2. Research Methodology
3. Results and Discussions
3.1. Direct Emissions Reduction
3.2. Indirect Emissions Reduction
3.3. Effect of Battery Technologies
- Cycle life: LiFePO4—10,000 (80% retained capacity), NMC—10,000 (60% retained capacity);
- Recommended C-rate: LiFePO4—C/2, NMC—C/5;
- Ability to work in high-temperature environments: LiFePO4—YES (up to 120–140 °C), NMC—NO;
- Danger of thermal runaway and fire hazard: LiFePO4—NO, NMC—YES; and
- Thermal management equipment: LiFePO4—NO, NMC—YES.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sabine, G.; Michael, G.; Nicole, M.; Katarina, M. European Environmental Agency (2019) European Union Emission Inventory Report 1990–2017 under the UNECE Convention on Long-Range Transboundary Air Pollution (LRTAP); EEA Report No 08/2019; EEA: Copenhagen, Denmark, 2019; ISSN 1977–8449. [Google Scholar] [CrossRef]
- Crouse, D.L.; Goldberg, M.S.; Ross, N.; Chen, H.; Labreche, F. Postmenopausal breast cancer is associated with exposure to traffic-related air pollution in Montreal, Canada: A case-control study. Environ. Health Perspect. 2010, 118, 1578–1583. [Google Scholar] [CrossRef] [Green Version]
- Hung, L.J.; Tsai, S.; Chen, P.; Yang, Y.; Liou, S.; Yang, C. Traffic air pollution and risk of death from breast cancer in Taiwan: Fine particulate matter (PM 2.5) as a proxy marker. Aerosol Air Qual. Res. 2011, 12, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Manzetti, S. Ecotoxicity of polycyclic aromatic hydrocarbons, aromatic amines and nitroarenes from molecular properties. Environ. Chem. Lett. 2012, 10, 349–361. [Google Scholar] [CrossRef]
- Manzetti, S. Polycyclic aromatic hydrocarbons in the environment: Environmental fate and transformation. Polycycl. Aromat. Compd. 2013, 33, 311–330. [Google Scholar] [CrossRef]
- Wall, G.; Felstead, T.; Richards, A.; McDonald, M. Cleaner vehicle buses in Winchester. Transp. Policy 2008, 15, 55–68. [Google Scholar] [CrossRef]
- Garcia Sanchez, J.A.; Lopez Martinez, J.M.; Martin, J.L.; Flores Holgado, M.N.; Morales, H.A. Impact of Spanish electricity mix, over period 2008-2030, on the Life Cycle energy consumption and GHG emissions of Electric, Hybrid Diesel-Electric, Fuel Cell Hybrid and Diesel Bus of the Madrid Transportation System. Energy Convers. Manag. 2013, 74, 332–343. [Google Scholar] [CrossRef]
- Varga, B.; Mariasiu, F.; Moldovanu, D.; Iclodean, C. Electric and Plug-In Hybrid Vehicles–Advanced Simulation Methodologies; Springer: Basel, Switzerland, 2015; pp. 477–524. [Google Scholar]
- Varga, B.; Iclodean, C.; Mariasiu, F. Electric and Hybrid Buses for Urban Transport-Energy Efficiency Strategies; Springer: Basel, Switzerland, 2016; pp. 85–103. [Google Scholar]
- Kuhne, R. Electric buses–An energy efficient urban transportation means. Energy 2010, 35, 4510–4513. [Google Scholar] [CrossRef]
- Nurhadi, L.; Boren, S.; Ny, H. A sensitivity analysis of total cost of ownership for electric public bus transport system in Swedish medium size cities. Transp. Res. Procedia 2014, 3, 818–827. [Google Scholar] [CrossRef] [Green Version]
- Varga, B.; Mariasiu, F. Indirect environment-related effects of electric car vehicles use. Environ. Eng. Manag. J. 2018, 17, 1591–1597. [Google Scholar]
- Junquera, B.; Moreno, B.; Álvarez, R. Analyzing consumer attitudes towards electric vehicle purchasing intentions in Spain: Technological limitations and vehicle confidence. Technol. Forecast. Soc. Chang. 2016, 109, 6–14. [Google Scholar] [CrossRef]
- Un-Noor, F.S.; Padmanaban, L.; Mihet-Popa, M.N.; Mollah, E.; Hossain, A. Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development. Energies 2017, 10, 1217. [Google Scholar] [CrossRef] [Green Version]
- Shabbir, A.; Trask, S.E.; Dees, D.W.; Nelson, P.A.; Lu, W.; Dunlop, A.R.; Polzin, B.J.; Jansen, A.N. Cost of automotive lithium-ion batteries operating at high upper cutoff voltages. J. Power Sources 2018, 403, 56–65. [Google Scholar]
- Brand, M.; Gläser, S.; Geder, J.; Menacher, S.; Obpacher, S.; Jossen, A.; Quinger, D. Electrical safety of commercial Li-ion cells based on NMC and NCA technology compared to LFP technology. In Proceedings of the EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Barcelona, Spain, 17–20 November 2013. [Google Scholar]
- Tzeng, G.H.; Lin, C.W.; Opricovic, S. Multi-criteria analysis of alternative-fuel buses for public transportation. Energy Policy 2005, 33, 1373–1383. [Google Scholar] [CrossRef]
- Li, Y.; Bao, L.; Deng, H.; Lu, D. Promoting the Marketization of Battery-Electric-Bus (BEB) based on the Satisfaction Model. Procedia-Soc. Behav. Sci. 2013, 96, 1146–1155. [Google Scholar] [CrossRef] [Green Version]
- Mirchandani, P.; Adler, J.; Madsen, O.B.G. New logistical issues in using electric vehicle fleets with battery exchange infrastructure. Procedia-Soc. Behav. Sci. 2014, 108, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Christidis, P.; Focas, C. Factors Affecting the Uptake of Hybrid and Electric Vehicles in the European Union. Energies 2019, 12, 3414. [Google Scholar] [CrossRef] [Green Version]
- Vassileva, I.; Campillo, J. Adoption barriers for electric vehicles: Experiences from early adopters in Sweden. Energy 2017, 120, 632–641. [Google Scholar] [CrossRef]
- Stempien, J.P.; Chan, S.H. Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas. J. Power Sources 2017, 340, 347–355. [Google Scholar] [CrossRef]
- Erkkilae, K.; Nylund, N.O.; Pellikka, A.P.; Kallio, M.; Kallonen, S.; Kallio, M.; Ojamo, S.; Ruotsalainen, S.; Pietikäinen, O.; Lajunen, A. eBUS-Electric bus test platform in Finland. In Proceedings of the eBUS-Electric Bus Test Platform in Finland, EVS27 International Conference, Barcelona, Spain, 17–20 November 2013. [Google Scholar]
- Lajunen, A. Energy consumption and cost-benefit analysis of hybrid and electric city buses. Transp. Res. Part C 2014, 38, 1–15. [Google Scholar] [CrossRef]
- Vepsalainen, J.; Otto, K.; Lajunen, A.; Tammi, K. Computationally efficient model for energy demand prediction of electric city bus in varying operating conditions. Energy 2019, 169, 433–443. [Google Scholar] [CrossRef]
- Zhou, B.; Wu, Y.; Zhiu, B.; Wang, R.; Ke, W.; Zhang, S.; Hao, J. Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions. Energy 2016, 96, 603–613. [Google Scholar] [CrossRef]
- Song, Q.; Wang, Z.; Wu, Y.; Li, J.; Yu, D.; Duan, H.; Yuan, W. Could urban electric public bus really reduce the GHG emissions: A case study in Macau? J. Clean. Prod. 2018, 172, 2133–2142. [Google Scholar] [CrossRef]
- Mahmoud, M.; Garnett, R.; Ferguson, M.; Kanaroglou, P. Electric buses: A review of alternative powertrains. Renew. Sustain. Energy Rev. 2016, 62, 673–684. [Google Scholar] [CrossRef]
- Tucki, K.; Orynycz, O.; Świć, A.; Mitoraj-Wojtanek, M. The Development of Electromobility in Poland and EU States as a Tool for Management of CO2 Emissions. Energies 2019, 12, 2942. [Google Scholar] [CrossRef] [Green Version]
- Oprešnik, S.R.; Seljak, T.; Vihar, R.; Gerbec, M.; Katrašnik, T. Real-World Fuel Consumption, Fuel Cost and Exhaust Emissions of Different Bus Powertrain Technologies. Energies 2018, 11, 2160. [Google Scholar] [CrossRef] [Green Version]
- Arcentales, D.; Silva, C. Exploring the Introduction of Plug-In Hybrid Flex-Fuel Vehicles in Ecuador. Energies 2019, 12, 2244. [Google Scholar] [CrossRef] [Green Version]
- Nylund, N.O.; Erkkilä, K.K.; Lappi, M.; Ikonen, M. Transit Bus Emission Study: Comparison of Emissions from Diesel and Natural Gas Buses. Research Report PRO3/P5150/04. 2004. Available online: https://www.cti2000.it/Bionett/BioG-2004001%20Transit%20Bus%20Emission%20Study.pdf (accessed on 31 July 2019).
- Maciej, G. Comparative studies exhaust emissions of the Euro VI buses with diesel engine and spark-ignition engine CNG fuelled in real traffic conditions. In MATEC Web of Conferences (VII International Congress on Combustion Engines); EDP Sciences: Les Ulis, France, 2017; Volume 118, p. 00007. [Google Scholar]
- POST-Parliamentary Office of Science and Technology. Carbon Footprint of Electricity Generation, Report Number 268. 2006. Available online: http://www.parliament.uk/documents/post/postpn268.pdf (accessed on 20 August 2019).
- Romanian National Institute for Statistics. Statistica Energiei. Available online: http://www.insse.ro/cms/ro/content/statistica-energiei (accessed on 20 August 2019). (In Romanian)
Parameter | Value |
---|---|
Engine | Electric portal axle ZF AVE130 2 × 110 kW |
Traction battery technology | LiFePO4 technology: 58.8 kW pack nominal energy; 687.02 V nominal voltage |
NMC technology: 50.7 kW pack nominal energy; 651.20 V nominal voltage | |
Charging system | Plug-in (optional pantograph) |
Front axle | ZF independent suspension |
Rear (drive) axle | ZF portal axle with integrated electric motors |
Suspension leveling system | ECAS air suspension with lowering/raising function: lowering and raising the bus, lowering right side by 70 mm, raising by approx. 60 mm. |
Passenger capacity seated | Max. 37 + 1 (depending on door arrangement and batteries) |
Electricity Generation Sources | Energy Mix (%) | CO2 Emission Factor (gCO2eq/kWh) | Direct CO2 Emission by Fuel (gCO2/kWh) | NOX Emission Factor (gNOXeq/kWh) | Direct NOX Emission by Fuel (gNOX/kWh) |
---|---|---|---|---|---|
Coal | 17.6 | 1000 | 170 | 6 | 1.056 |
Oil | 12.9 | 650 | 83.85 | 4 | 0.516 |
Natural Gas | 35.3 | 500 | 176.5 | 1.7 | 0.6001 |
Renewable | 23.2 | 15 | 3.48 | 0.006 | 0.001392 |
Nuclear | 11 | 5 | 0.55 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varga, B.O.; Mariasiu, F.; Miclea, C.D.; Szabo, I.; Sirca, A.A.; Nicolae, V. Direct and Indirect Environmental Aspects of an Electric Bus Fleet Under Service. Energies 2020, 13, 336. https://doi.org/10.3390/en13020336
Varga BO, Mariasiu F, Miclea CD, Szabo I, Sirca AA, Nicolae V. Direct and Indirect Environmental Aspects of an Electric Bus Fleet Under Service. Energies. 2020; 13(2):336. https://doi.org/10.3390/en13020336
Chicago/Turabian StyleVarga, Bogdan Ovidiu, Florin Mariasiu, Cristian Daniel Miclea, Ioan Szabo, Anamaria Andreea Sirca, and Vlad Nicolae. 2020. "Direct and Indirect Environmental Aspects of an Electric Bus Fleet Under Service" Energies 13, no. 2: 336. https://doi.org/10.3390/en13020336
APA StyleVarga, B. O., Mariasiu, F., Miclea, C. D., Szabo, I., Sirca, A. A., & Nicolae, V. (2020). Direct and Indirect Environmental Aspects of an Electric Bus Fleet Under Service. Energies, 13(2), 336. https://doi.org/10.3390/en13020336