Durability of Alternative Metal Oxide Supports for Application at a Proton-Exchange Membrane Fuel Cell Cathode—Comparison of Antimony- and Niobium-Doped Tin Oxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Pt/ATO and Pt/NTO
2.2. Accelerated Stress Test—EU Harmonised Test Protocols for PEMFC MEA Testing in Single Cell Configuration for Automotive Applications
2.2.1. Preparation of Membrane Electrode Assemblies (MEAs) with Pt/ATO and Pt/NTO
2.2.2. Description of the Accelerated Stress Test
2.3. Test in Planar Fuel Cell Configuration
2.3.1. Preparation of MEAs with Pt/ATO and Pt/NTO
2.3.2. Description of the Test
2.3.3. Postmortem Characterization of MEA
3. Results and Discussion
3.1. Accelerated Stress Test—“EU Harmonised Test Protocols for PEMFC MEA Testing in Single Cell Configuration for Automotive Applications”
3.2. Test in Planar Fuel Cell Configuration
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guilminot, E.; Corcella, A.; Charlot, F.; Maillard, F.; Chatenet, M. Detection of Ptz+ ions and Pt nanoparticles inside the membrane of a used PEM fuel cell. J. Electrochem. Soc. 2007, 154, B96–B105. [Google Scholar] [CrossRef]
- Dubau, L.; Castanheira, L.; Berthomé, G.; Maillard, F. An identical-location transmission electron microscopy study on the degradation of Pt/C nanoparticles under oxidizing, reducing and neutral atmosphere. Electrochim. Acta 2013, 110, 273–281. [Google Scholar] [CrossRef]
- Nikkuni, F.R.; Vion-Dury, B.; Dubau, L.; Maillard, F.; Ticianelli, E.A.; Chatenet, M. The role of water in the degradation of Pt3Co/C nanoparticles: An identical location transmission electron microscopy study in polymer electrolyte environment. Appl. Catal. B 2014, 156–157, 301–306. [Google Scholar] [CrossRef]
- Dubau, L.; Maillard, F.; Chatenet, M.; André, J.; Rossinot, E. Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation. Electrochim. Acta 2010, 56, 776–783. [Google Scholar] [CrossRef]
- Dubau, L.; Maillard, F.; Chatenet, M.; Guétaz, L.; André, J.; Rossinot, E. Durability of Pt3CoC cathodes in a 16 Cell PEMFC stack: Macro/microstructural changes and degradation mechanisms. J. Electrochem. Soc. 2010, 157, B1887–B1895. [Google Scholar] [CrossRef]
- Dubau, L.; Durst, J.; Maillard, F.; Chatenet, M.; Guétaz, L.; André, J.; Rossinot, E. Further insights into the durability of Pt3Co/C electrocatalysts: Formation of Pt "hollow" nanoparticles induced by the Kirkendall effect. Electrochim. Acta 2011, 56, 10658–10667. [Google Scholar] [CrossRef]
- Dubau, L.; Lopez-Haro, M.; Castanheira, L.; Durst, J.; Chatenet, M.; Bayle-Guillemaud, P.; Guétaz, L.; Caqué, N.; Rossinot, E.; Maillard, F. Probing the structure, the composition and the ORR activity of Pt3Co/C nanocrystallites during a 3422 h PEMFC ageing test. Appl. Catal. B 2013, 142–143, 801–808. [Google Scholar] [CrossRef]
- Iojoiu, C.; Guilminot, E.; Maillard, F.; Chatenet, M.; Sanchez, J.Y.; Claude, E.; Rossinot, E. Membrane and active layer degradation following PEMFC steady-state operation. J. Electrochem. Soc. 2007, 154, B1115–B1120. [Google Scholar] [CrossRef]
- Roen, L.M.; Paik, C.H.; Jarvi, T.D. Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem. Solid State Lett. 2004, 7, A19–A22. [Google Scholar] [CrossRef]
- Stevens, D.A.; Hicks, M.T.; Haugen, G.M.; Dahn, J.R. Ex situ and in situ stability studies of PEMFC catalysts. J. Electrochem. Soc. 2005, 152, A2309–A2315. [Google Scholar] [CrossRef]
- Linse, N.; Gubler, L.; Scherer, G.G.; Wokaun, A. The effect of platinum on carbon corrosion behavior in polymer electrolyte fuel cells. Electrochim. Acta 2011, 56, 7541–7549. [Google Scholar] [CrossRef]
- Artyushkova, K.; Pylypenko, S.; Dowlapalli, M.; Atanassov, P. Structure-to-property relationships in fuel cell catalyst supports: Correlation of surface chemistry and morphology with oxidation resistance of carbon blacks. J. Power Sources 2012, 214, 303–313. [Google Scholar] [CrossRef]
- Durst, J.; Lamibrac, A.; Charlot, F.; Dillet, J.; Castanheira, L.F.; Maranzana, G.; Dubau, L.; Maillard, F.; Chatenet, M.; Lottin, O. Degradation heterogeneities induced by repetitive start/stop events in proton exchange membrane fuel cell: Inlet vs. outlet and channel vs. land. Appl. Catal. B 2013, 138–139, 416–426. [Google Scholar] [CrossRef]
- Zhao, Z.; Castanheira, L.; Dubau, L.; Berthomé, G.; Crisci, A.; Maillard, F. Carbon corrosion and platinum nanoparticles ripening under open circuit potential conditions. J. Power Sources 2013, 230, 236–243. [Google Scholar] [CrossRef]
- Castanheira, L.; Dubau, L.; Mermoux, M.; Berthomé, G.; Caqué, N.; Rossinot, E.; Chatenet, M.; Maillard, F. Carbon corrosion in proton-exchange membrane fuel cells: From model experiments to real-life operation in membrane electrode assemblies. ACS Catal. 2014, 4, 2258–2267. [Google Scholar] [CrossRef]
- Dubau, L.; Castanheira, L.; Chatenet, M.; Maillard, F.; Dillet, J.; Maranzana, G.; Abbou, S.; Lottin, O.; De Moor, G.; El Kaddouri, A.; et al. Carbon corrosion induced by membrane failure: The weak link of PEMFC long-term performance. Int. J. Hydrogen Energy 2014, 39, 21902–21914. [Google Scholar] [CrossRef]
- Castanheira, L.; Silva, W.O.; Lima, F.H.B.; Crisci, A.; Dubau, L.; Maillard, F. Carbon corrosion in proton-exchange membrane fuel cells: Effect of the carbon structure, the degradation protocol, and the gas atmosphere. ACS Catal. 2015, 5, 2184–2194. [Google Scholar] [CrossRef]
- Appleby, A.J. Corrosion in low and high temperature fuel cells—An overview. Corrosion 1987, 43, 398–408. [Google Scholar] [CrossRef]
- Maass, S.; Finsterwalder, F.; Frank, G.; Hartmann, R.; Merten, C. Carbon support oxidation in PEM fuel cell cathodes. J. Power Sources 2008, 176, 444–451. [Google Scholar] [CrossRef]
- Binder, H.; Kohling, A.; Richter, K.; Sandstede, G. Über die anodische oxydation von aktivkohlen in wässrigen elektrolyten. Electrochim. Acta 1964, 9, 255–274. [Google Scholar] [CrossRef]
- McBreen, J.; Olender, H.; Srinivasan, S.; Kordesch, K.V. Carbon supports for phosphoric acid fuel cell electrocatalysts: Alternative materials and methods of evaluation. J. Appl. Electrochem. 1981, 11, 787–796. [Google Scholar] [CrossRef]
- Antonucci, P.L.; Romeo, F.; Minutoli, O.; Alderucci, E.; Giordano, N. Electrochemical corrosion behavior of carbon black in phosphoric acid. Carbon 1988, 26, 197–203. [Google Scholar] [CrossRef]
- Gallagher, K.G.; Fuller, T.F. Kinetic model of the electrochemical oxidation of graphitic carbon in acidic environments. Phys. Chem. Chem. Phys. 2009, 11, 11557–11567. [Google Scholar] [CrossRef]
- Maillard, F.; Bonnefont, A.; Micoud, F. An EC-FTIR study on the catalytic role of Pt in carbon corrosion. Electrochem. Comun. 2011, 13, 1109–1111. [Google Scholar] [CrossRef]
- Shukla, A.K.; Hamnett, A.; Roy, A.; Barman, S.R.; Sarma, D.D.; Alderucci, V.; Pino, L.; Giordano, N. An X-ray photoelectron spectroscopic study on platinised carbons with varying functional-group characteristics. J. Electroanal. Chem. 1993, 352, 337–343. [Google Scholar] [CrossRef]
- Shukla, A.K.; Ravikumar, M.K.; Roy, A.; Barman, S.R.; Sarma, D.D.; Arico, A.S.; Antonucci, V.; Pino, L.; Giordano, N. Electrooxidation of methanol in sulfuric-acid electrolyte on platinized-carbon electrodes with several functional-group characteristics. J. Electrochem. Soc. 1994, 141, 1517–1522. [Google Scholar] [CrossRef]
- Antonucci, P.L.; Alderucci, V.; Giordano, N.; Cocke, D.L.; Kim, H. On the role of surface functional-groups in Pt carbon interaction. J. Appl. Electrochem. 1994, 24, 58–65. [Google Scholar] [CrossRef]
- Alderucci, V.; Pino, L.; Antonucci, P.L.; Roh, W.; Cho, J.; Kim, H.; Cocke, D.L.; Antonucci, V. XPS study of surface oxidation of carbon-supported Pt catalysts. Mater. Chem. Phys. 1995, 41, 9–14. [Google Scholar] [CrossRef]
- Coloma, F.; Sepulveda-Escribano, A.; Fierro, J.L.G.; Rodriguez-Reinoso, F. Crotonaldehyde hydrogenation over bimetallic Pt—Sn catalysts supported on pregraphitized carbon black. Effect of the preparation method. Appl. Catal. A 1996, 148, 63–80. [Google Scholar] [CrossRef]
- Lim, K.H.; Lee, W.H.; Jeong, Y.; Kim, H. Analysis of carbon corrosion in anode under fuel starvation using on-line mass spectrometry in polymer electrolyte membrane fuel cells. J. Electrochem. Soc. 2017, 164, F1580–F1586. [Google Scholar] [CrossRef]
- Mittermeier, T.; Weiß, A.; Hasché, F.; Hübner, G.; Gasteiger, H.A. PEM fuel cell start-up/shut-down losses vs temperature for non-graphitized and graphitized cathode carbon supports. J. Electrochem. Soc. 2017, 164, F127–F137. [Google Scholar] [CrossRef]
- Kangasniemi, K.H.; Condit, D.A.; Jarvi, T.D. Characterization of Vulcan electrochemically oxidized under simulated PEM fuel cell conditions. J. Electrochem. Soc. 2004, 151, E125–E132. [Google Scholar] [CrossRef]
- Zhao, Z.; Dubau, L.; Maillard, F. Evidences of the migration of Pt crystallites on high surface area carbon supports in the presence of reducing molecules. J. Power Sources 2012, 217, 449–458. [Google Scholar] [CrossRef]
- Willsau, J.; Heitbaum, J. The influence of Pt-activation on the corrosion of carbon in gas diffusion electrodes—A DEMS study. J. Electroanal. Chem. Interfacial Electrochem. 1984, 161, 93–101. [Google Scholar] [CrossRef]
- Lafforgue, C.; Maillard, F.; Martin, V.; Dubau, L.; Chatenet, M. Degradation of carbon-supported platinum-group-metal electrocatalysts in alkaline media studied by in situ Fourier transform infrared spectroscopy and identical-location transmission electron microscopy. ACS Catal. 2019, 9, 5613–5622. [Google Scholar] [CrossRef] [Green Version]
- Lamibrac, A.; Maranzana, G.; Dillet, J.; Lottin, O.; Didierjean, S.; Durst, J.; Dubau, L.; Maillard, F.; Chatenet, M. Local degradations resulting from repeated start-ups and shutdowns in proton exchange membrane fuel cell (PEMFC). Energy Procedia 2012, 29, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Dillet, J.; Spernjak, D.; Lamibrac, A.; Maranzana, G.; Mukundan, R.; Fairweather, J.; Didierjean, S.; Borup, R.L.; Lottin, O. Impact of flow rates and electrode specifications on degradations during repeated startups and shutdowns in polymer-electrolyte membrane fuel cells. J. Power Sources 2014, 250, 68–79. [Google Scholar] [CrossRef]
- Sasaki, K.; Takasaki, F.; Noda, Z.; Hayashi, S.; Shiratori, Y.; Ito, K. Alternative electrocatalyst support materials for polymer electrolyte fuel cells. ECS Trans. 2010, 33, 473–482. [Google Scholar]
- Hartmann, W. Elektrische Untersuchungen an oxydischen Halbleitern. Z. Phys. 1936, 102, 709–733. [Google Scholar] [CrossRef]
- Schäfer, H.; Bergner, D.; Gruehn, R. Beiträge zur Chemie der Elemente Niob und Tantal. LXXI. Die thermodynamische Stabilität der sieben zwischen 2,00 und 2,50 O/Nb existierenden Phasen. Z. Anorg. Allg. Chem. 1969, 365, 31–50. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Takasaki, F.; Matsuie, S.; Takabatake, Y.; Noda, Z.; Hayashi, A.; Shiratori, Y.; Ito, K.; Sasaki, K. Carbon-free Pt electrocatalysts supported on SnO2 for polymer electrolyte fuel cells: Electrocatalytic activity and durability. J. Electrochem. Soc. 2011, 158, B1270–B1275. [Google Scholar] [CrossRef]
- Takabatake, Y.; Noda, Z.; Lyth, S.M.; Hayashi, A.; Sasaki, K. Cycle durability of metal oxide supports for PEFC electrocatalysts. Int. J. Hydrogen Energy 2014, 39, 5074–5082. [Google Scholar] [CrossRef]
- Masao, A.; Noda, S.; Takasaki, F.; Ito, K.; Sasaki, K. Carbon-free Pt electrocatalysts supported on SnO2 for polymer electrolyte fuel cells. Electrochem. Solid State Lett. 2009, 12, B119–B122. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Ganesan, P.; Park, S.; Popov, B.N. Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J. Am. Chem. Soc. 2009, 131, 13898–13899. [Google Scholar] [CrossRef]
- Lee, K.S.; Park, I.S.; Cho, Y.H.; Jung, D.S.; Jung, N.; Park, H.Y.; Sung, Y.E. Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells. J. Catal. 2008, 258, 143–152. [Google Scholar] [CrossRef]
- Bauer, A.; Chevallier, L.; Hui, R.; Cavaliere, S.; Zhang, J.; Jones, D.; Rozière, J. Synthesis and characterization of Nb-TiO2 mesoporous microsphere and nanofiber supported Pt catalysts for high temperature PEM fuel cells. Electrochim. Acta 2012, 77, 1–7. [Google Scholar] [CrossRef]
- Chevallier, L.; Bauer, A.; Cavaliere, S.; Hui, R.; Rozière, J.; Jones, D.J. Mesoporous nanostructured Nb-doped titanium dioxide microsphere catalyst supports for PEM fuel cell electrodes. ACS Appl. Mater. Interfaces 2012, 4, 1752–1759. [Google Scholar] [CrossRef]
- Kakinuma, K.; Chino, Y.; Senoo, Y.; Uchida, M.; Kamino, T.; Uchida, H.; Deki, S.; Watanabe, M. Characterization of Pt catalysts on Nb-doped and Sb-doped SnO2-δ support materials with aggregated structure by rotating disk electrode and fuel cell measurements. Electrochim. Acta 2013, 110, 316–324. [Google Scholar] [CrossRef]
- Liu, Y.; Mustain, W.E. High stability, high activity Pt/ITO oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2013, 135, 530–533. [Google Scholar] [CrossRef]
- Fabbri, E.; Rabis, A.; Kötz, R.; Schmidt, T.J. Pt nanoparticles supported on Sb-doped SnO2 porous structures: Developments and issues. Phys. Chem. Chem. Phys. 2014, 16, 13672–13681. [Google Scholar] [CrossRef] [PubMed]
- Senoo, Y.; Taniguchi, K.; Kakinuma, K.; Uchida, M.; Uchida, H.; Deki, S.; Watanabe, M. Cathodic performance and high potential durability of Ta-SnO2-δ-supported Pt catalysts for PEFC cathodes. Electrochem. Commun. 2015, 51, 37–40. [Google Scholar] [CrossRef]
- Cavaliere, S.; Jiménez-Morales, I.; Ercolano, G.; Savych, I.; Jones, D.; Rozière, J. Highly Stable PEMFC electrodes based on electrospun antimony-doped SnO2. ChemElectroChem 2015, 2, 1966–1973. [Google Scholar] [CrossRef] [Green Version]
- Savych, I.; Subianto, S.; Nabil, Y.; Cavaliere, S.; Jones, D.; Rozière, J. Negligible degradation upon in situ voltage cycling of a PEMFC using an electrospun niobium-doped tin oxide supported Pt cathode. Phys. Chem. Chem. Phys. 2015, 17, 16970–16976. [Google Scholar] [CrossRef] [Green Version]
- Cognard, G.; Ozouf, G.; Beauger, C.; Jiménez-Morales, I.; Cavaliere, S.; Jones, D.; Rozière, J.; Chatenet, M.; Maillard, F. Pt nanoparticles supported on niobium-doped tin dioxide: Impact of the support morphology on Pt utilization and electrocatalytic activity. Electrocatalysis 2017, 8, 51–58. [Google Scholar] [CrossRef]
- Cognard, G.; Ozouf, G.; Beauger, C.; Berthomé, G.; Riassetto, D.; Dubau, L.; Chattot, R.; Chatenet, M.; Maillard, F. Benefits and limitations of Pt nanoparticles supported on highly porous antimony-doped tin dioxide aerogel as alternative cathode material for proton-exchange membrane fuel cells. Appl. Catal. B 2017, 201, 381–390. [Google Scholar] [CrossRef]
- Cognard, G.; Ozouf, G.; Beauger, C.; Dubau, L.; López-Haro, M.; Chatenet, M.; Maillard, F. Insights into the stability of Pt nanoparticles supported on antimony-doped tin oxide in different potential ranges. Electrochim. Acta 2017, 245, 993–1004. [Google Scholar] [CrossRef]
- Ozouf, G.; Cognard, G.; Maillard, F.; Guétaz, L.; Chatenet, M.; Heitzmann, M.; Jacques, P.A.; Beauger, C. Sb-doped SnO2 aerogels based catalysts for proton exchange membrane fuel cells: Pt deposition routes, electrocatalytic activity and durability. J. Electrochem. Soc. 2018, 165, F3036–F3044. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Morales, I.; Cavaliere, S.; Dupont, M.; Jones, D.J.; Rozière, J. On the stability of antimony doped tin oxide supports in proton exchange membrane fuel cell and water electrolysers. Sustain. Energy Fuels 2019, 3, 1526–1535. [Google Scholar] [CrossRef]
- Geiger, S.; Kasian, O.; Mingers, A.M.; Mayrhofer, K.J.J.; Cherevko, S. Stability limits of tin-based electrocatalyst supports. Sci. Rep. UK 2017, 7, 4595. [Google Scholar] [CrossRef]
- Kakinuma, K.; Kim, I.-T.; Senoo, Y.; Yano, H.; Watanabe, M.; Uchida, M. Electrochemical oxidation of hydrolyzed poly oxymethylene-dimethyl ether by PtRu catalysts on Nb-doped SnO2−δ supports for direct oxidation fuel cells. ACS Appl. Mater. Interfaces 2014, 6, 22138–22145. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, S.; Subianto, S.; Savych, I.; Tillard, M.; Jones, D.J.; Rozière, J. Dopant-driven nanostructured loose-tube SnO2 architectures: Alternative electrocatalyst supports for proton exchange membrane fuel cells. J. Phys. Chem. C 2013, 117, 18298–18307. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.J.; Jiménez Morales, I.; Cavaliere, S.; Zajac, J.; Jones, D.J.; Rozière, J.; Kaluža, L.; Gulková, D.; Odgaard, M. Development of tailored high-performance and durable electrocatalysts for advanced PEM fuel cells. Int. J. Hydrogen Energy 2017, 42, 7166–7176. [Google Scholar] [CrossRef] [Green Version]
- Tsotridis, G.; Pilenga, A.; De Marco, G.; Malkow, T. EU Harmonised Test Protocols for PEMFC MEA Testing in Single Cell Configuration for Automotive Applications; Publications Office of the European Union: Luxembourg, 2015.
- Jiménez-Morales, I.; Cavaliere, S.; Jones, D.; Rozière, J. Strong metal-support interaction improves activity and stability of Pt electrocatalysts on doped metal oxides. Phys. Chem. Chem. Phys. 2018, 20, 8765–8772. [Google Scholar] [CrossRef] [PubMed]
- Dou, M.; Hou, M.; Liang, D.; Lu, W.; Shao, Z.; Yi, B. SnO2 nanocluster supported Pt catalyst with high stability for proton exchange membrane fuel cells. Electrochim. Acta 2013, 92, 468–473. [Google Scholar] [CrossRef]
- Kakinuma, K.; Uchida, M.; Kamino, T.; Uchida, H.; Watanabe, M. Synthesis and electrochemical characterization of Pt catalyst supported on Sn0.96Sb0.04O2−δ with a network structure. Electrochim. Acta 2011, 56, 2881–2887. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; National Association of Corrosion Engineers: Houston, TX, USA, 1974. [Google Scholar]
- Ferreira, P.J.; la O’, G.J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H.A. Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells. J. Electrochem. Soc. 2005, 152, A2256–A2271. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Gasteiger, H.A.; Hayakawa, K.; Tada, T.; Shao-Horn, Y. Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: Nanometer-scale compositional and morphological changes. J. Electrochem. Soc. 2010, 157, A82–A97. [Google Scholar] [CrossRef] [Green Version]
- Dubau, L.; Castanheira, L.; Maillard, F.; Chatenet, M.; Lottin, O.; Maranzana, G.; Dillet, J.; Lamibrac, A.; Perrin, J.-C.; Moukheiber, E.; et al. A review of PEM fuel cell durability: Materials degradation, local heterogeneities of aging and possible mitigation strategies. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 540–560. [Google Scholar] [CrossRef]
- Dubau, L.; Durst, J.; Guétaz, L.; Maillard, F.; Chatenet, M.; André, J.; Rossinot, E. Evidences of through-plane heterogeneities of ageing in a proton-exchange membrane fuel cell. ECS Electrochem. Lett. 2012, 1, F13–F15. [Google Scholar] [CrossRef]
- Dubau, L.; Durst, J.; Maillard, F.; Chatenet, M.; André, J.; Rossinot, E. Heterogeneities of aging within a PEMFC MEA. Fuel Cells 2012, 12, 188–198. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubau, L.; Maillard, F.; Chatenet, M.; Cavaliere, S.; Jiménez-Morales, I.; Mosdale, A.; Mosdale, R. Durability of Alternative Metal Oxide Supports for Application at a Proton-Exchange Membrane Fuel Cell Cathode—Comparison of Antimony- and Niobium-Doped Tin Oxide. Energies 2020, 13, 403. https://doi.org/10.3390/en13020403
Dubau L, Maillard F, Chatenet M, Cavaliere S, Jiménez-Morales I, Mosdale A, Mosdale R. Durability of Alternative Metal Oxide Supports for Application at a Proton-Exchange Membrane Fuel Cell Cathode—Comparison of Antimony- and Niobium-Doped Tin Oxide. Energies. 2020; 13(2):403. https://doi.org/10.3390/en13020403
Chicago/Turabian StyleDubau, Laetitia, Frédéric Maillard, Marian Chatenet, Sara Cavaliere, Ignacio Jiménez-Morales, Annette Mosdale, and Renaut Mosdale. 2020. "Durability of Alternative Metal Oxide Supports for Application at a Proton-Exchange Membrane Fuel Cell Cathode—Comparison of Antimony- and Niobium-Doped Tin Oxide" Energies 13, no. 2: 403. https://doi.org/10.3390/en13020403
APA StyleDubau, L., Maillard, F., Chatenet, M., Cavaliere, S., Jiménez-Morales, I., Mosdale, A., & Mosdale, R. (2020). Durability of Alternative Metal Oxide Supports for Application at a Proton-Exchange Membrane Fuel Cell Cathode—Comparison of Antimony- and Niobium-Doped Tin Oxide. Energies, 13(2), 403. https://doi.org/10.3390/en13020403