Emission Measurement of Buses Fueled with Biodiesel Blends during On-Road Testing
Abstract
:1. Introduction
2. Methods
2.1. Biodiesel Blends
2.2. On-Road Testing
2.2.1. Experimental Design: Bus and On-Road Test Cycle
2.2.2. Portable Emission Measurement System
- The AVL Gas PEMS is which is composed of NDIR and NDUV gas analysers for measuring carbon oxides (CO, CO) and nitrogen oxides (NO, NO), respectively.
- The AVL PN PEMS is which consists of the modified particle detector Partector from Naneos working by DC. The PN counter is preceded by a VPR that is composed of a two stage dilution with an evaporation tube and catalytic stripper (300 ) between the primary and secondary dilution [24]. The VPR is connected to the tailpipe with a short heated line (≤1 m) at 150 to avoid corrosion and the condensation of NO and hydrocarbons.
- The AVL EFM which gives a direct measurement of the instantaneous exhaust flow rate by using a pressure differential device (pitot tube). The EFM has a pipe size of four inches and measures flow rates between 30 / and 2140 / at 100 .
- The Dearborn Protocol Adapter DPA 5 of DG Technologies which allows for record engine parameters such as the engine temperature and the vehicle and engine speeds via the OBD interface.
- A Garmin GPS which provides vehicle localization, altitude, and ground speed.
- An ambient sensor measuring ambient temperature and relative humidity.
- the GPS and ECU velocity
- the ECU throttle position and CO measurement
- the CO measurement and exhaust mass flow measurement
- the ECU throttle position and particle number measurement
2.2.3. Uncertainty Quantification
- , drift-corrected fraction of gas measured by the PEMS,
- , the exhaust mass flow rate,
- and , the drift-corrected fraction of CO and CO measured by the PEMS,
- , the absolute humidity,
- , the trip distance computed from the ECU vehicle speed,
- , the ambient temperature (for NOx emissions only).
2.2.4. Quality Assurance: Trip Validity SORT
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2BS | Biomass Biofuel Sustainability voluntary scheme |
CI | Compression Ignition |
DC | Diffusion Charging |
DPF | Diesel Particulate Filter |
ECU | Engine Control Unit |
EFM | Exhaust Flow Meter |
FAME | Fatty Acid Methyl Ester |
FID | Flame Iniozation Detector |
FSN | Filter Smoke Number |
GHG | Greenhouse Gas |
GPS | Global Positioning System |
HC | Hydrocarbon |
ISCC | International Sustainability and Carbon Certification |
NDIR | Nondispersive Infrared |
NDUV | Nondispersive Ultraviolet |
OBD | On-Board Diagnostics |
PEMS | Portable Emission Measurement System |
PN | Particle number |
RDE | Real Driving Emissions |
RME | Rapeseed Methyl Ester |
SCR | Selective Catalytic Reduction |
SORT | Standardised On-Road Test cycle |
UCOME | Used Cooking Oil Methyl Ester |
UITP | International Association of Public Transport |
VPR | Volatile Particle Remover |
WTT | Well-to-Tank |
WWHD | Worldwide Harmonized Heavy Duty |
Appendix A. Dry-to-Wet Correction Factor
Appendix B. NOx Correction Factor for Ambient Conditions
References
- European Parliament and Council of European Union. Directive (EU) 2018/2001 on the Promotion of the Use of Energy from Renewable Sources. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32018L2001&from=EN#d1e40-82-1 (accessed on 26 September 2020).
- Abomohra, A.E.F.; Elsayed, M.; Esakkimuthu, S.; El-Sheekh, M.; Hanelt, D. Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives. Prog. Energy Combust. Sci. 2020, 81, 100868. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Gupta, J.G.; Dhar, A. Potential and challenges for large-scale application of biodiesel in automotive sector. Prog. Energy Combust. Sci. 2017, 61, 113–149. [Google Scholar] [CrossRef]
- Farobie, O.; Matsumura, Y. State of the art of biodiesel production under supercritical conditions. Prog. Energy Combust. Sci. 2017, 63, 173–203. [Google Scholar] [CrossRef]
- Knothe, G.; Razon, L.F. Biodiesel fuels. Prog. Energy Combust. Sci. 2017, 58, 36–59. [Google Scholar] [CrossRef]
- Société Régionale Wallonne du Transport (SRWT). Rapport D’activité 2018. Available online: http://rapportannuel.letec.be/otw/#le-tec-en-chiffres (accessed on 15 July 2019).
- Lijn, D. Jaarverslag 2018. Available online: https://static.delijn.be/Images/jaarverslag%202018_totaal_tcm3-22501.pdf (accessed on 15 July 2019).
- Société des Transports Intercommunaux de Bruxelles (STIB-MIVB). Statistiques 2018. Available online: http://www.stib-mivb.be/irj/go/km/docs/WEBSITE_RES/Attachments/Corporate/Statistiques/2018/STIB_RA2018_Statistiques_EN_HD.pdf (accessed on 15 July 2019).
- Lapuerta, M.; Armas, O.; Rodríguez-Fernández, J. Effect of biodiesel fuels on diesel engine emissions. Prog. Energy Combust. Sci. 2008, 34, 198–223. [Google Scholar] [CrossRef]
- Heidari, S.; Najjar, R.; Burnens, G.; Awad, S.; Tazerout, M. Experimental Investigation of Emission, Combustion, and Energy Performance of a Novel Diesel/Colza Oil Fuel Microemulsion in a Direct-Injection Diesel Engine. Energy Fuels 2018, 32, 10923–10932. [Google Scholar] [CrossRef]
- Ashikhmin, A.; Piskunov, M.; Yanovsky, V.; Yan, W.M. Properties and Phase Behavior of Water-in-Diesel Microemulsion Fuels Stabilized by Nonionic Surfactants in Combination with Aliphatic Alcohol. Energy Fuels 2020, 34, 2135–2142. [Google Scholar] [CrossRef]
- Ashihmin, A.; Piskunov, M.; Roisman, I.; Yanovsky, V. Thermal stability control of the water-in-diesel microemulsion fuel produced by using a nonionic surfactant combined with aliphatic alcohols. J. Dispers. Sci. Technol. 2020, 41, 771–778. [Google Scholar] [CrossRef]
- Attaphong, C.; Sabatini, D.A. Phase Behaviors of Vegetable Oil-Based Microemulsion Fuels: The Effects of Temperatures, Surfactants, Oils, and Water in Ethanol. Energy Fuels 2013, 27, 6773–6780. [Google Scholar] [CrossRef]
- Chandra, R.; Kumar, R. Fuel Properties of Some Stable Alcohol–Diesel Microemulsions for Their Use in Compression Ignition Engines. Energy Fuels 2007, 21, 3410–3414. [Google Scholar] [CrossRef]
- Giakoumis, E.G.; Rakopoulos, C.D.; Dimaratos, A.M.; Rakopoulos, D.C. Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends. Prog. Energy Combust. Sci. 2012, 38, 691–715. [Google Scholar] [CrossRef]
- Sun, J.; Caton, J.A.; Jacobs, T.J. Oxides of nitrogen emissions from biodiesel-fueled diesel engines. Prog. Energy Combust. Sci. 2010, 36, 677–695. [Google Scholar] [CrossRef]
- Rajaeifara, M.A.; Tabatabaeib, M.; Aghbashloe, M.; Nizamif, A.S.; Heidrichg, O. Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies. Renew. Sustain. Energy Rev. 2019, 111, 276–292. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions; Draft Technical Report, EPA420-P-02-001; National Service Center for Environmental Publications (NSCEP): Cincinnati, OH, USA, 2002.
- Anderson, L. Effects of Biodiesel Fuels Use on Vehicle Emissions. J. Sustain. Energy Environ. 2012, 3, 35–47. [Google Scholar]
- Hoekman, S.K.; Gertler, A.; Broch, A.; Robbins, C. Investigation of Biodistillates as Potential Blendstocks for Transportation Fuels; Crc project no. avfl-17; Coordinating Research Council, Inc.: Alpharetta, GA, USA, 2009. [Google Scholar]
- Merkisz, J.; Fuc, P.; Lijewski, P.; Kozak, M. Rapeseed Oil Methyl Esters (RME) as Fuel for Urban Transport. Technical Report. 2016. Available online: https://www.intechopen.com/books/alternative-fuels-technical-and-environmental-conditions/rapeseed-oil-methyl-esters-rme-as-fuel-for-urban-transport (accessed on 31 August 2020).
- Cargill. Bioro Biodiesel Refinery Plant—Certified Sustainable Biodiesel Supply. Available online: https://www.cargill.com/agriculture/bioro-biodiesel-refinery (accessed on 19 November 2019).
- Martin, C.; Wagenknecht, T. UITP Project ‘SORT’ Standardised On-Road Test Cycles; UITP: Brussels, Belgium, 2014. [Google Scholar]
- Giechaskiel, B.; Riccobono, F.; Mendoza-Villafuerte, P.; Grigoratos, T. Particle Number (PN)—Portable Emissions Measurement Systems (PEMS); Technical Report; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar] [CrossRef]
- European Parliament and Council of European Union. Regulation No 49 of the Economic Commission for Europe of the United Nations (UN/ECE). 2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A42013X0624%2801%29 (accessed on 26 September 2020).
- GmbH, A.V.L. User’s Guide AVL CONCERTO M.O.V.E. V4.3 up to v4.8; Technical Report; AVL: Graz, Austria, 2016. [Google Scholar]
- Pochet, M.; Jeanmart, H.; Contino, F. Uncertainty Propagation of Internal Combustion Engine Experiments: From Raw Measurements to Post-Processed Uncertainties. Int. J. Engine Res. 2019, 21, 1709–1737. [Google Scholar] [CrossRef]
- GmbH, A.V.L. AVL M.O.V.E. Gas PEMS iS Product Guide; Technical Report, AT6103E Rev. 05; AVL: Graz, Austria, 2017. [Google Scholar]
- GmbH, A.L. AVL M.O.V.E. EFM—Exhaust Flow Meter Product Guide; Technical Report, AT6674E Rev. 00; AVL: Graz, Austria, 2015. [Google Scholar]
- Gmbh, N.P.S. Partector 2 Aerosol Dosimeter Operation Manual; Technical Report; Naneos Particle Solutions: Windisch, Switzerland, 2018. [Google Scholar]
- Labs, S. I2C Humidity and Temperature Sensor. Available online: https://www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf (accessed on 20 December 2019).
- Mizushima, N.; Murata, Y.; Suzuki, H.; Ishii, H.; Goto, Y.; Kawano, D. Effect of Biodiesel on NOx Reduction Performance of Urea-SCR System. SAE Int. J. Fuels Lubr. 2010, 3, 1012–1020. [Google Scholar] [CrossRef]
- McCormick, R.; Alvarez, J.; Graboski, M. NOx Solutions for Biodiesel; Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2003. [Google Scholar]
- RecOil. Assessment of Best Practices in UCO Processing and Biodiesel Distribution. D4.3—Guide on UCO Processing and Biodiesel Distribution Methods; Technical University of Crete: Chania, Greece, 2013. [Google Scholar]
- Williams, A.; McCormick, R.L.; Hayes, R.R.; Ireland, J.; Fang, H.L. Effect of Biodiesel Blends on Diesel Particulate Filter Performance. SAE Trans. 2006, 115, 563–573. [Google Scholar]
GHG Emissions [] | GHG Reduction Compared to B0 [%] | |
---|---|---|
B7 Rape seed biodiesel | 91.3 | 3.6 |
B30 Rape seed biodiesel | 80.0 | 15.6 |
B30 Waste cooking oil biodiesel | 68.7 | 26.4 |
B100 Rape seed biodiesel | 45.5 | 52 |
B100 Waste cooking oil biodiesel | 11.2 | 88 |
Method | Unit | B30 RME | B30 UCOME | |
---|---|---|---|---|
Carbon content | ASTM D5291 | molar % | 83.5 | 83.5 |
Hydrogen content | ASTM D5291 | molar % | 13.65 | 13.66 |
Oxygen content | Calculated | molar % | 2.85 | 2.84 |
Nitrogen content | ASTM D4629 | / | 20 | 19 |
Sulfur content (UVF) | EN ISO 20846 | / | 5.9 | 7.3 |
Net Heat of Combustion | ASTM D240 | / | 41.320 | 41.314 |
Engine Type | CI, 4-Stroke |
---|---|
Displacement | 9186 |
Number of cylinders | 6, in line |
Maximum power | 228 at 2200 rpm |
Maximum torque | 1275 at 1700 rpm |
Gearbox type | Automatic |
Emission standard | Euro V EEV |
Year of registration | 2011 |
Mileage | 396,592 km |
Empty weight | 11,050 kg |
SORT 1 | SORT 2 | |
---|---|---|
Commercial speed [/] | 12.1 | 18 |
Stop time [%] | 39.7 | 33.4 |
Stop duration [s] | 20 | 20 |
Total distance [] | 520 | 920 |
Acceleration trapeze 1 [/] | 1.03 | 1.03 |
Acceleration trapeze 2 [/] | 0.77 | 0.62 |
Acceleration trapeze 3 [/] | 0.62 | 0.57 |
Deceleration all trapezes [/] | 0.8 | 0.8 |
Accuracy | Measurement Range | |
---|---|---|
EFM | ±2.5% of reading or ±0.5% F.S. | 30–2140 / at 100 |
NDIR CO | ±30 ppm abs. | 0–1499 ppm |
±2% rel. | 1500–49,999 ppm | |
NDIR CO | ±0.06 vol.% abs. | 0–9.99 vol.% |
±0.5% F.S. | 10–20 vol.% | |
NDUV NO | ±2% rel. or ±0.2% F.S. | 0–5000 ppm |
NDUV NO | ±2% rel. or ±0.2% F.S. | 0–2500 ppm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cassiers, S.; Boveroux, F.; Martin, C.; Maes, R.; Martens, K.; Bergmans, B.; Idczak, F.; Jeanmart, H.; Contino, F. Emission Measurement of Buses Fueled with Biodiesel Blends during On-Road Testing. Energies 2020, 13, 5267. https://doi.org/10.3390/en13205267
Cassiers S, Boveroux F, Martin C, Maes R, Martens K, Bergmans B, Idczak F, Jeanmart H, Contino F. Emission Measurement of Buses Fueled with Biodiesel Blends during On-Road Testing. Energies. 2020; 13(20):5267. https://doi.org/10.3390/en13205267
Chicago/Turabian StyleCassiers, Séverine, François Boveroux, Christophe Martin, Rafael Maes, Kris Martens, Benjamin Bergmans, François Idczak, Hervé Jeanmart, and Francesco Contino. 2020. "Emission Measurement of Buses Fueled with Biodiesel Blends during On-Road Testing" Energies 13, no. 20: 5267. https://doi.org/10.3390/en13205267
APA StyleCassiers, S., Boveroux, F., Martin, C., Maes, R., Martens, K., Bergmans, B., Idczak, F., Jeanmart, H., & Contino, F. (2020). Emission Measurement of Buses Fueled with Biodiesel Blends during On-Road Testing. Energies, 13(20), 5267. https://doi.org/10.3390/en13205267