Methods to Optimize Carbon Footprint of Buildings in Regenerative Architectural Design with the Use of Machine Learning, Convolutional Neural Network, and Parametric Design
Abstract
:1. Introduction
1.1. Regenerative Design
1.2. Architectural Design Process
1.3. Artificial Intelligence in the Architectural Design Process
2. Materials and Methods
3. Results
3.1. Case Study 01 Details
3.2. Testing Machine Learning Approach—Study 01
3.3. Improving the Tool for Different Building Shapes—Study 02
3.4. Using the Trained Model from Study 02 in the Design Process
3.5. Convolutional Neural Networks—A Machine Learning Approach to Image Analysis
3.6. Adding the Urban Layout Dimension—Study 03
3.7. Model Performance and Results Discussion—Study 03
3.8. Testing the Model in a Design Situation—Study 03
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations Environment Programme. Building and Climate Change: Summary of Deicing-Makers; United Nations Environment Programme: Washington, DC, USA, 2009. [Google Scholar]
- Wiedmann, T.; Minx, J. A Definition of ‘Carbon Footprint’. In Ecological Economics Research Trends; Pertsova, C.C., Ed.; Nova Science Publishers Inc: New York, NY, USA, 2008; pp. 1–11. [Google Scholar]
- CENELEC Management Centre. EN 15978:2011 Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Method; CENELEC Management Centre: Brussels, Belgium, 2011. [Google Scholar]
- Ryńska, E.; Klimowicz, J.; Kowal, S.; Łyżwa, K.; Pierzchalski, M.; Rekosz, W. Smart Energy Solutions as an Indispensable Multi-Criteria Input for a Coherent Urban Planning and Building Design Process—Two Case Studies for Smart Office Buildings in Warsaw Downtown Area. Energies 2020, 13, 3757. [Google Scholar] [CrossRef]
- Hollberg, A. A Parametric Method for Building Design Optimization Based on Life Cycle Assessment; Bauhaus-Universitätsverlag: Weimar, Germany, 2016. [Google Scholar]
- Núñez-Cacho, P.; Górecki, J.; Molina-Moreno, V.; Corpas-Iglesias, F.A. What gets measured, gets done: Development of a circular economy measurement scale for building industry. Sustainability 2018, 10, 2340. [Google Scholar] [CrossRef] [Green Version]
- Naboni, E.; Natanian, J.; Brizzi, G.; Florio, P.; Chokhachian, A.; Galanos, T.; Rastogi, P. A digital workflow to quantify regenerative urban design in the context of a changing climate. Renew. Sustain. Energy Rev. 2019, 113. [Google Scholar] [CrossRef]
- Mang, P.; Haggard, B. Regenerative Development & Design: A Framework for Evolving Sustainability; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- DeKay, M. Integral Sustainable Design; Taylor & Francis Ltd: London, UK, 2011. [Google Scholar]
- Wahl, D.C. Designing Regenerative Cultures; Triarchy Press: Dorset, UK, 2016. [Google Scholar]
- Grochulska-Salak, M.; ZInowiec-Cieplik, K. The Regenerative model of the City in view of Climatic Changes. In Redefining Cities in View of Climatic Changes; Warsaw University of Technology: Warsaw, Poland, 2019; pp. 135–136. [Google Scholar]
- Boyd, P.C. Designing to Reduce Construction Costs. J. Constr. Div. 1976, 102, 587–592. [Google Scholar]
- Ryńska, E. Zintegrowany Proces Projektowania Prośrodowiskowego. Projektant a Środowisko; Warsaw University of Technology: Warsaw, Poland, 2012. [Google Scholar]
- Cudzik, J.; Radziszewski, K. Artificial Intelligence Aided Architectural Design. In Computing for a Better Tomorrow; Kępczyńska-Walczak Anetta, B.S., Ed.; Łódź Unviersity of Technology: Łódź, Poland, 2018; pp. 77–84. [Google Scholar]
- Słyk, J. Źródła Architektury Informacyjnej; Warsaw University of Technology: Warsaw, Poland, 2012. [Google Scholar]
- Burkov, A. The Hundred-Page Machine Learning Book; Kindle Direct Publishing: Seattle, WA, USA, 2019. [Google Scholar]
- Belém, C.; Santos, L.; Leitão, A. On the Impact of Machine Learning Architecture without Architects. In Proceedings of the Hello, Culture! 18th International Conference, CAAD Futures, Daejeon, Korea, 26–28 June 2019. [Google Scholar]
- Ípek, E.; McKee, S.; Singh, K.; Caruana, R.; Supinski, B.; Schulz, M. Efficient architectural design space exploration via predictive modeling. ACM Trans. Archit. Code Optim. 2008, 4. [Google Scholar] [CrossRef]
- Chaillou, S. AI + Architecture/Towards a New Approach; Harvard University: Harvard, MA, USA, 2019. [Google Scholar]
- Galanos, T. Machine-Learned Regenerative Design. In Regenerative Design in Digital Practice; Naboni, E., Havinga, L., Eds.; Eurac Research: Bolzano, Italy, 2019; pp. 95–99. [Google Scholar]
- Seyedzadeh, S.; Rahimian, F.; Glesk, I.; Roper, M. Machine learning for estimation of building energy consumption and performance: A review. Vis. Eng. 2018. [Google Scholar] [CrossRef]
- Newton, D. Generative Deep Learning in Architectural Design. Technol. Archit. Des. 2019, 3, 176–189. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, B.; Myers, R.J.; Sykes, J.; Voss, E.; Cousins-Jenvey, B.; Fawcett, W.; Richardson, S.; Kermani, A.; Pomponi, F. Machine Learning for Sustainable Structures: A Call for Data. Structures 2018, 19, 1–4. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- EnergyPlus. Weather Data by Location—Warszawa Okecie 123750 (IMGW). Available online: https://energyplus.net/weather-location/europe_wmo_region_6/POL//POL_Warszawa.Okecie.123750_IMGW (accessed on 1 December 2019).
- Bundesministerium des Innern für Bau und Heimat. ÖKOBAUDAT Datenbank. Available online: https://www.oekobaudat.de/ (accessed on 1 December 2019).
- ITB. ITB EPD Program. Available online: https://www.itb.pl/epd.html (accessed on 1 December 2019).
- Polski Komitet Normalizacyjny. PN-ISO 9836:1997 Performance Standards in Building—Definition and Calculation of Area and Space Indicators; Polski Komitet Normalizacyjny: Warsaw, Poland, 1997. [Google Scholar]
- Bonnet, R.; Hallouin, T.; Lasvaux, S.; Sibiude, G. Simplified and reproducible building Life Cycle Assessment: Validation tests on a case study compared to a detailed LCA with different user’s profiles. In Proceedings of the World SB14 Barcelona Conference, Barcelona, Spain, 28–30 October 2014; pp. 276–283. [Google Scholar]
- Płoszaj-Mazurek, M. Machine Learning-Aided Architectural Design for Carbon Footprint Reduction. Build. Sci. 2020, 276, 35–39. [Google Scholar] [CrossRef]
- Otovic, A.; Negendahl, K.; Bjerregaard Jensen, L. Expansion in Number of Parameters: Simulation of Energy and Indoor Climate in Combination with LCA. In Proceedings of the ASHRAE Annual Conference, St. Louis, MO, USA, 25–29 June 2016. [Google Scholar]
- Roudsari, M.S.; Pak, M.; Smith, A. Ladybug: A Parametric Environmental Plugin for Grasshopper to Help Designers Create an Environmentally-Conscious Design. In Proceedings of the 13th Conference of International Building Performance Simulation Association, Chambery, France, 25–28 August 2013; pp. 3129–3135. [Google Scholar]
- Veolia. Environmental Impact. 2018. Available online: https://energiadlawarszawy.pl/wp-content/uploads/sites/4/2019/04/wplyw_na_srodowisko_2018-1.pdf (accessed on 1 December 2019).
- KOBiZE. Emission Factors. 2018. Available online: https://www.kobize.pl/uploads/materialy/materialy_do_pobrania/wskazniki_emisyjnosci/Wskazniki_emisyjnosci_2018.pdf (accessed on 1 December 2019).
- Rozporządzenia Ministra Infrastruktury z dnia 12 Kwietnia 2002 r. w Sprawie Warunków Technicznych, Jakim Powinny Odpowiadać Budynki i Ich Usytuowanie; Warsaw, Poland 2002. Available online: https://www.polcen.com.pl/pliki/Prezentacja%20zmian_m.pdf (accessed on 1 December 2019).
External Wall Composition | |
Layer | Thickness |
Finish–Plaster | 2 cm |
Insulation–Mineral Wool | 13 cm–103 cm |
Structure–Brick 90% Reinforced Concrete 10% | 20 cm |
Interior–Plaster | 2 cm |
Roof Composition | |
Layer | Thickness |
Insulation–Mineral Wool | 18 cm–98 cm |
Structure–Reinforced Concrete | 15 cm |
Ground Floor Composition | |
Layer | Thickness |
Finish–Wood | 2 cm |
Plywood | 2 cm |
Insulation | 10 cm–90 cm |
Slab on Grade–Reinforced Concrete | 15 cm |
Building Component | Uc (max) [W/(m2·K)] |
---|---|
External Wall | 0.20 |
Roof | 0.15 |
Slab on Grade | 0.3 |
Window | 0.9 |
Parameter Name |
---|
Wall Area |
Ground Floor Area |
Roof Area |
Height |
Window Area South |
Window Area North |
Window Area West |
Window Area East |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Płoszaj-Mazurek, M.; Ryńska, E.; Grochulska-Salak, M. Methods to Optimize Carbon Footprint of Buildings in Regenerative Architectural Design with the Use of Machine Learning, Convolutional Neural Network, and Parametric Design. Energies 2020, 13, 5289. https://doi.org/10.3390/en13205289
Płoszaj-Mazurek M, Ryńska E, Grochulska-Salak M. Methods to Optimize Carbon Footprint of Buildings in Regenerative Architectural Design with the Use of Machine Learning, Convolutional Neural Network, and Parametric Design. Energies. 2020; 13(20):5289. https://doi.org/10.3390/en13205289
Chicago/Turabian StylePłoszaj-Mazurek, Mateusz, Elżbieta Ryńska, and Magdalena Grochulska-Salak. 2020. "Methods to Optimize Carbon Footprint of Buildings in Regenerative Architectural Design with the Use of Machine Learning, Convolutional Neural Network, and Parametric Design" Energies 13, no. 20: 5289. https://doi.org/10.3390/en13205289
APA StylePłoszaj-Mazurek, M., Ryńska, E., & Grochulska-Salak, M. (2020). Methods to Optimize Carbon Footprint of Buildings in Regenerative Architectural Design with the Use of Machine Learning, Convolutional Neural Network, and Parametric Design. Energies, 13(20), 5289. https://doi.org/10.3390/en13205289