The Challenges and Opportunities of Renewable Energy Source (RES) Penetration in Indonesia: Case Study of Java-Bali Power System
Abstract
:1. Introduction
2. Energy Mix Indonesia’s Electricity Supply Business Plans
2.1. Electricity Supply Business Plans
2.1.1. Power System Planning
2.1.2. Java-Bali Power System
2.1.3. System Flexibility
2.1.4. Thermal Power Plant
2.2. Renewable Energy Source (RES)
2.2.1. Renewable Energy Planning
2.2.2. PV Power Planning
2.2.3. Netload Power
3. Methodology
4. Simulation Results
4.1. Netload Analysis
4.2. Ramping Capability Analysis
4.3. Baseload Operation Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BBG | Bahan bakar gas–gas fuel |
CNG | Compressed natural gas |
CSP | Concentrated solar power |
EV | Electric vehicle |
GHG | Greenhouse gas emission |
GW | Electrical power unit used for active power–giga watt |
HSD | High speed diesel |
IPP | Independent power provider |
kV | Electrical power unit used for voltage–kilovolt |
LCoE | Levelised cost of energy |
LNG | Liquefied natural gas |
MFO | Marine fuel oil |
MW | Electrical power unit used for active power–mega watt |
NASA | The National Aeronautics and Space Administration |
PLN | Perusahaan listrik negara–national electric company |
POWER | Prediction of worldwide energy resources provided by NASA |
PPA | Power purchase agreement |
PV | Photovoltaic |
RE | Renewable energy |
RES | Renewable energy resources |
TOP | Take or pay agreement |
TSO | Transmission system operator |
UC | Unit commitment |
VRE | Variable renewable energy |
References
- Maulidia, M.; Dargusch, P.; Ashworth, P.; Ardiansyah, F. Rethinking renewable energy targets and electricity sector reform in Indonesia: A private sector perspective. Renew. Sustain. Energy Rev. 2019, 101, 231–247. [Google Scholar] [CrossRef]
- Veldhuis, A.J.; Reinders, A.H.M.E. Reviewing the potential and cost-effectiveness of grid-connected solar PV in Indonesia on a provincial level. Renew. Sustain. Energy Rev. 2013, 27, 315–324. [Google Scholar] [CrossRef]
- Anani, N.; Ibrahim, H. Adjusting the Single-Diode Model Parameters of a Photovoltaic Module with Irradiance and Temperature. Energies 2020, 13, 3226. [Google Scholar] [CrossRef]
- Wang, Q.; Chang, P.; Bai, R.; Liu, W.; Dai, J.; Tang, Y. Mitigation Strategy for Duck Curve in High Photovoltaic Penetration Power System Using Concentrating Solar Power Station. Energies 2019, 12, 3521. [Google Scholar] [CrossRef] [Green Version]
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.-H. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- PLN. Rencana Usaha Penyediaan Tenaga Listrik 2019–2028; PLN: Jakarta, Indonesia, 2019. [Google Scholar]
- Breyer, C.; Gerlach, A. Global overview on grid-parity. Prog. Photovolt. Res. Appl. 2013, 21, 121–136. [Google Scholar] [CrossRef]
- Zou, H.; Du, H.; Brown, M.A.; Mao, G. Large-scale PV power generation in China: A grid parity and techno-economic analysis. Energy 2017, 134, 256–268. [Google Scholar] [CrossRef]
- Orioli, A.; Gangi, A.D. Six-years-long effects of the Italian policies for photovoltaics on the grid parity of grid-connected photovoltaic systems installed in urban contexts. Energy 2017, 130, 55–75. [Google Scholar] [CrossRef]
- Fairuz, R.; Setiawan, E.A.; Hernanda, I. Mapping and Analysis of Initial cost Against Levelized Cost of Energy for Residential PV Rooftoop in Indonesia. E3S Web Conf. 2018, 67, 01024. [Google Scholar] [CrossRef]
- Hakam, D.F.; Arif, L.; Fahrudin, T. Sustainable energy production in Sumatra power system. In Proceedings of the 2012 International Conference on Power Engineering and Renewable Energy (ICPERE), Bali, Indonesia, 3–5 July 2012; pp. 1–4. [Google Scholar]
- Hakam, D.F.; Asekomeh, A.O. Gas Monetisation Intricacies: Evidence from Indonesia. Int. J. Energy Econ. Policy 2018, 8, 9. [Google Scholar]
- Cheng, D.; Mather, B.A.; Seguin, R.; Hambrick, J.; Broadwater, R.P. Photovoltaic (PV) Impact Assessment for Very High Penetration Levels. IEEE J. Photovolt. 2016, 6, 295–300. [Google Scholar] [CrossRef]
- Liu, Y.; Bebic, J.; Kroposki, B.; Bedout, J.; de Ren, W. Distribution System Voltage Performance Analysis for High-Penetration PV. In Proceedings of the 2008 IEEE Energy 2030 Conference, Atlanta, GA, USA, 17–18 November 2008; pp. 1–8. [Google Scholar]
- Vita, V.; Alimardan, T.; Ekonomou, L. The Impact of Distributed Generation in the Distribution Networks’ Voltage Profile and Energy Losses. In Proceedings of the 2015 IEEE European Modelling Symposium (EMS), Madrid, Spain, 6–8 October 2015; pp. 260–265. [Google Scholar]
- Tielens, P.; Van Hertem, D. Grid Inertia and Frequency Control in Power Systems with High Penetration of Renewables. In Proceedings of the Young Researchers Symposium in Electrical Power Engineering, Delft, The Netherlands, 16–17 April 2012. [Google Scholar]
- Wang, Y.; Silva, V.; Lopez-Botet-Zulueta, M. Impact of high penetration of variable renewable generation on frequency dynamics in the continental Europe interconnected system. IET Renew. Power Gener. 2016, 10, 10–16. [Google Scholar] [CrossRef]
- Mortazavi, H.; Mehrjerdi, H.; Saad, M.; Lefebvre, S.; Asber, D.; Lenoir, L. A Monitoring Technique for Reversed Power Flow Detection with High PV Penetration Level. IEEE Trans. Smart Grid 2015, 6, 2221–2232. [Google Scholar] [CrossRef]
- Hasheminamin, M.; Agelidis, V.G.; Salehi, V.; Teodorescu, R.; Hredzak, B. Index-Based Assessment of Voltage Rise and Reverse Power Flow Phenomena in a Distribution Feeder under High PV Penetration. IEEE J. Photovolt. 2015, 5, 1158–1168. [Google Scholar] [CrossRef]
- Al Ghaithi, H.M.; Fotis, G.P.; Vita, V. Techno-Economic Assessment of Hybrid Energy Off-Grid System—A Case Study for Masirah Island in Oman. Int. J. Power Energy Res. 2017, 1, 103–116. [Google Scholar] [CrossRef]
- Denholm, P.; O’Connell, M.; Brinkman, G.; Jorgenson, J. Overgeneration from Solar Energy in California. A Field Guide to the Duck Chart; Technical Report; National Renewable Energy Laboratory: Denver West Parkway, CO, USA, 2015.
- Feng, J.; Yang, J.; Wang, H.; Ji, H.; Okoye, M.O.; Cui, J.; Ge, W.; Hu, B.; Wang, G. Optimal Dispatch of High-Penetration Renewable Energy Integrated Power System Based on Flexible Resources. Energies 2020, 13, 3456. [Google Scholar] [CrossRef]
- Howlader, H.O.R.; Adewuyi, O.B.; Hong, Y.-Y.; Mandal, P.; Mohamed Hemeida, A.; Senjyu, T. Energy Storage System Analysis Review for Optimal Unit Commitment. Energies 2019, 13, 158. [Google Scholar] [CrossRef] [Green Version]
- Palmintier, B.; Webster, M. Impact of unit commitment constraints on generation expansion planning with renewables. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–7. [Google Scholar]
- Ma, O.; Alkadi, N.; Cappers, P.; Denholm, P.; Dudley, J.; Goli, S.; Hummon, M.; Kiliccote, S.; MacDonald, J.; Matson, N.; et al. Demand Response for Ancillary Services. IEEE Trans. Smart Grid 2013, 4, 1988–1995. [Google Scholar] [CrossRef]
- Tonkoski, R.; Lopes, L.A.C.; El-Fouly, T.H.M. Coordinated Active Power Curtailment of Grid Connected PV Inverters for Overvoltage Prevention. IEEE Trans. Sustain. Energy 2011, 2, 139–147. [Google Scholar] [CrossRef]
- Li, J.; Yi, C.; Gao, S. Prospect of new pumped-storage power station. Glob. Energy Interconnect. 2019, 2, 235–243. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped hydro energy storage system: A technological review. Renew. Sustain. Energy Rev. 2015, 44, 586–598. [Google Scholar] [CrossRef]
- Sortomme, E.; El-Sharkawi, M.A. Optimal Scheduling of Vehicle-to-Grid Energy and Ancillary Services. IEEE Trans. Smart Grid 2012, 3, 351–359. [Google Scholar] [CrossRef]
- Moya, F.D.; Torres-Moreno, J.L.; Álvarez, J.D. Optimal Model for Energy Management Strategy in Smart Building with Energy Storage Systems and Electric Vehicles. Energies 2020, 13, 3605. [Google Scholar] [CrossRef]
- Castillo, A.; Gayme, D.F. Grid-scale energy storage applications in renewable energy integration: A survey. Energy Convers. Manag. 2014, 87, 885–894. [Google Scholar] [CrossRef]
- Esteban, M.; Portugal-Pereira, J.; Mclellan, B.C.; Bricker, J.; Farzaneh, H.; Djalilova, N.; Ishihara, K.N.; Takagi, H.; Roeber, V. 100% renewable energy system in Japan: Smoothening and ancillary services. Appl. Energy 2018, 224, 698–707. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Karimi-Ghartemani, M. Addressing Abrupt PV Disturbances, and Mitigating Net Load Profile’s Ramp and Peak Demands, Using Distributed Storage Devices. Energies 2020, 13, 1024. [Google Scholar] [CrossRef] [Green Version]
- Rachmatullah, C.; Aye, L.; Fuller, R.J. Scenario planning for the electricity generation in Indonesia. Energy Policy 2007, 35, 2352–2359. [Google Scholar] [CrossRef]
- Hakam, D.F. Mitigating the risk of market power abuse in electricity sector restructuring: Evidence from Indonesia. Util. Policy 2019, 56, 181–191. [Google Scholar] [CrossRef]
- Hakam, D.F. Nodal Pricing: The Theory and Evidence of Indonesia Power System. Int. J. Energy Econ. Policy 2018, 8, 135–147. [Google Scholar]
- Pramono, E.Y.; Isnandar, S. Criteria for integration of intermittent renewable energy to the Java Bali Grid. In Proceedings of the 2017 International Conference on High Voltage Engineering and Power Systems (ICHVEPS), Sanur, Indonesia, 2–5 October 2017; pp. 91–94. [Google Scholar]
- McNeil, M.A.; Karali, N.; Letschert, V. Forecasting Indonesia’s electricity load through 2030 and peak demand reductions from appliance and lighting efficiency. Energy Sustain. Dev. 2019, 49, 65–77. [Google Scholar] [CrossRef]
- IRENA. Innovation Landscape Brief: Flexibility in Conventional Power Plants; International Renewable Energy Agency: Abu, Dhabi, 2019; ISBN 978-92-9260-148-5. [Google Scholar]
- Zhao, Y.; Wang, C.; Liu, M.; Chong, D.; Yan, J. Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation. Appl. Energy 2018, 212, 1295–1309. [Google Scholar] [CrossRef]
- Gonzalez-Salazar, M.A.; Kirsten, T.; Prchlik, L. Review of the operational flexibility and emissions of gas- and coal-fired power plants in a future with growing renewables. Renew. Sustain. Energy Rev. 2018, 82, 1497–1513. [Google Scholar] [CrossRef]
- Labouret, A.; Villoz, M.; Bal, J.L.; Hamand, J. Solar Photovoltaic Energy; Energy Engineering Series; Institution of Engineering and Technology: Herts, UK, 2010; ISBN 978-1-84919-154-8. [Google Scholar]
- REN21. Renewables 2020 Global Status Report; REN21 Secretariat: Paris, France, 2020; ISBN 978-3-948393-00-7. [Google Scholar]
- Wang, F.; Li, K.; Wang, X.; Jiang, L.; Ren, J.; Mi, Z.; Shafie-khah, M.; Catalão, J. A Distributed PV System Capacity Estimation Approach Based on Support Vector Machine with Customer Net Load Curve Features. Energies 2018, 11, 1750. [Google Scholar] [CrossRef] [Green Version]
- Richter, M.; Oeljeklaus, G.; Görner, K. Improving the load flexibility of coal-fired power plants by the integration of a thermal energy storage. Appl. Energy 2019, 236, 607–621. [Google Scholar] [CrossRef]
- den Bergh, K.V.; Delarue, E. Cycling of conventional power plants: Technical limits and actual costs. Energy Convers. Manag. 2015, 97, 70–77. [Google Scholar] [CrossRef]
- Lannoye, E.; Flynn, D.; O’Malley, M. Evaluation of Power System Flexibility. IEEE Trans. Power Syst. 2012, 27, 922–931. [Google Scholar] [CrossRef]
- Ulbig, A.; Andersson, G. Analyzing operational flexibility of electric power systems. Int. J. Electr. Power Energy Syst. 2015, 72, 155–164. [Google Scholar] [CrossRef]
- Nosair, H.; Bouffard, F. Flexibility Envelopes for Power System Operational Planning. IEEE Trans. Sustain. Energy 2015, 6, 800–809. [Google Scholar] [CrossRef] [Green Version]
Years | Residential | Commercial | Public | Industrial |
---|---|---|---|---|
2019 | 13,584 | 2628 | 1410 | 74 |
2020 | 47,657 | 2763 | 1500 | 77 |
2021 | 48,038 | 2915 | 1597 | 80 |
2022 | 48,442 | 3069 | 1703 | 84 |
2023 | 48,835 | 3224 | 1816 | 87 |
2024 | 49,205 | 3382 | 1936 | 91 |
2025 | 49,582 | 3541 | 2065 | 95 |
2026 | 49,919 | 3711 | 2207 | 99 |
2027 | 50,245 | 3901 | 2361 | 104 |
2028 | 50,561 | 4091 | 2526 | 109 |
Power Plant Technology | Minimum Load (% Full Load) | Ramping Rate (% Full Load/Minutes) | Hot Start Up Time (Hours) |
---|---|---|---|
Hydro Reservoir | 5 | 15 | 0.1 |
Simple Cycle Gas Turbine | 15 | 20 | 0.16 |
Geothermal | 15 | 5 | 1.5 |
Gas Turbine Combined Cycle | 20 | 8 | 2 |
Concentrated Solar Power | 25 | 6 | 2.5 |
Steam Plants (gas, oil) | 30 | 7 | 3 |
Coal Power | 30 | 6 | 3 |
Bionergy | 50 | 8 | 3 |
Lignite | 50 | 4 | 6 |
Nuclear | 50 | 2 | 24 |
Years | Capacity (MW) |
---|---|
2019 | 315 |
2020 | 4827 |
2021 | 2000 |
2022 | 924 |
2023 | 2000 |
2024 | 1660 |
2025 | 660 |
2026 | 1000 |
2027 | 660 |
2028 | 0 |
Total | 14,046 |
Energy | Potency | Utilisation |
---|---|---|
Geothermal | 29,544 MW | 4.9% |
Hydropower | 75,091 MW | 6.4% |
Mini-micro hydropower | 19,385 MW | 1.0% |
Bioenergy | 32,654 MW | 5.1% |
Solar power | 207,898 MW (4.8 kWh/m2/day) | 0.04% |
Wind power | 60,647 MW (≥4 m/s) | 0.01% |
Ocean | 17,989 MW | 0.002% |
Years | Capacity (MW) |
---|---|
2019 | 63 |
2020 | 78 |
2021 | 219 |
2022 | 129 |
2023 | 160 |
2024 | 4 |
2025 | 250 |
2026 | - |
2027 | 2 |
2028 | 2 |
Total | 908 |
Subsystem | Region | Potential Capacity (MW) |
---|---|---|
West Java | Saguling | 220 |
Bekasi | 600 | |
Cirata | 145 | |
Bogor | 1 | |
Cianjur | 4 | |
Jatiluhur | 100 | |
Jatigede | 100 | |
Indramayu | 10 | |
Subang | 150 | |
Central Java | Tegal | 220 |
Gajahmungkur | 100 | |
Kedung Ombo | 100 | |
Pemalang | 40 | |
East Java | Tuban | 140 |
Karangkates | 100 | |
Pasuruan | 40 | |
Bali | West Bali | 50 |
East Bali | 50 |
Case Study | Scenario |
---|---|
I | Significant load growth with a high PV penetration level |
II | Slow load growth with a low PV penetration level |
III | Significant load growth with a low PV penetration level |
IV | Slow load growth with a high PV penetration level |
Years | Ramp Rate (MW/hours) |
---|---|
2019 | 781.27–969.76 |
2020 | 832.81–1044.70 |
2021 | 897.98–1140.69 |
2022 | 959.27–1234.50 |
2023 | 1051.48–1368.39 |
2024 | 1159.94–1522.70 |
2025 | 1254.98–1657.05 |
2026 | 1352.53–1794.56 |
2027 | 1452.71–1941.94 |
2028 | 1555.61–2097.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tambunan, H.B.; Hakam, D.F.; Prahastono, I.; Pharmatrisanti, A.; Purnomoadi, A.P.; Aisyah, S.; Wicaksono, Y.; Sandy, I.G.R. The Challenges and Opportunities of Renewable Energy Source (RES) Penetration in Indonesia: Case Study of Java-Bali Power System. Energies 2020, 13, 5903. https://doi.org/10.3390/en13225903
Tambunan HB, Hakam DF, Prahastono I, Pharmatrisanti A, Purnomoadi AP, Aisyah S, Wicaksono Y, Sandy IGR. The Challenges and Opportunities of Renewable Energy Source (RES) Penetration in Indonesia: Case Study of Java-Bali Power System. Energies. 2020; 13(22):5903. https://doi.org/10.3390/en13225903
Chicago/Turabian StyleTambunan, Handrea Bernando, Dzikri Firmansyah Hakam, Iswan Prahastono, Anita Pharmatrisanti, Andreas Putro Purnomoadi, Siti Aisyah, Yonny Wicaksono, and I Gede Ryan Sandy. 2020. "The Challenges and Opportunities of Renewable Energy Source (RES) Penetration in Indonesia: Case Study of Java-Bali Power System" Energies 13, no. 22: 5903. https://doi.org/10.3390/en13225903
APA StyleTambunan, H. B., Hakam, D. F., Prahastono, I., Pharmatrisanti, A., Purnomoadi, A. P., Aisyah, S., Wicaksono, Y., & Sandy, I. G. R. (2020). The Challenges and Opportunities of Renewable Energy Source (RES) Penetration in Indonesia: Case Study of Java-Bali Power System. Energies, 13(22), 5903. https://doi.org/10.3390/en13225903