Experimental Studies of the Influence of Dynamic Loading on the Elastic Properties of Sandstone
Abstract
:1. Introduction
2. Determination of Static Mechanical Parameters
2.1. Sandstone Samples Preparation and Treatment
2.2. Static Testing
3. Dynamic Loading
3.1. Experimental Instrument
3.2. Experimental Procedure
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Symbols
σUCS | Uniaxial compressive strength (MPa) |
F | Force at which a sample is broken in the UCS test (N) |
Ftop | Load corresponding to the upper boundary of the specimen elastic deformation zone (N) |
Fbot | Load corresponding to the lower boundary of the specimen elastic deformation zone (N) |
Fst | Preload value (N) |
Est | Static Young’s modulus (GPa) |
Edyn | Dynamic Young’s modulus (GPa) |
Fdyn | Amplitude of dynamic force (N) |
ΔσUCS | Stress increment in the rock sample during dynamic loading (MPa) |
F | Load applied to the specimen (N) |
f | Frequency |
Δεl | Strain increment |
S | Specimen’s cross-sectional area (mm2) |
d | Specimen’s diameter (mm) |
Fmax | Peak maximum force (N) |
Fmin | Peak minimum force (N) |
l | Initial specimen’s length (m) |
Е | Young’s modulus (MPa) |
lmax | Peak value of maximum axial displacement (mm) |
lmin | Peak value of minimum axial displacement (mm) |
RS | Stress rate (MPa/sec) |
References
- Bandis, S.C.; Barton, N. Failure Modes of Deep Boreholes. In Proceedings of the 27th Symposium on Rock Mechanics, Tuscaloosa, AL, USA, 23–25 June 1986. [Google Scholar]
- Chuanliang, Y.; Deng, J.; Cheng, Y.; Li, M.; Feng, Y.; Li, X. Mechanical Properties of Gas Shale during Drilling Operations. Rock Mech. Rock Eng. 2017, 50, 1753–1765. [Google Scholar] [CrossRef]
- Lecompte, B.; Franquet, J.A.; Jacobi, D. Evaluation of Haynesville Shale Vertical Well Completions with a Mineralogy Based Approach to Reservoir Geomechanics. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 4–7 October 2009; Society of Petroleum Engineers (SPE). Volume 3. [Google Scholar] [CrossRef]
- Morsy, S.; Hetherington, C.; Sheng, J.J. Effect of low-concentration HCl on the mineralogy, physical and mechanical properties, and recovery factors of some shales. J. Unconv. Oil Gas Resour. 2015, 9, 94–102. [Google Scholar] [CrossRef]
- Valko, P.; Economides, M. Propagation of hydraulically induced fractures—A continuum damage mechanics approach. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1994, 31, 221–229. [Google Scholar] [CrossRef]
- Rybacki, E.; Meier, T.; Dresen, G. What controls the mechanical properties of shale rocks?—Part II: Brittleness. J. Pet. Sci. Eng. 2016, 144, 39–58. [Google Scholar] [CrossRef] [Green Version]
- Riabokon, E. Laboratory study on the effect of elastic wave treatment on geomechanical and capillary properties of clastic reservoirs. Neft. Khozyaystvo Oil Ind. 2020, 4, 54–57. [Google Scholar] [CrossRef]
- Riabokon, E. Methodology for forecasting the oil rate change while elastic wave propagation in the near-wellbore zone of clastic reservoirs. Neft. Khozyaystvo Oil Ind. 2020, 6, 76–79. [Google Scholar] [CrossRef]
- Far, P.B.; Hassani, A.H.; Al-Ajmi, A.M.; Heydari, H. A novel model for wellbore stability analysis during reservoir depletion. J. Nat. Gas Sci. Eng. 2016, 35, 935–943. [Google Scholar] [CrossRef]
- Trautwein, U.; Huenges, E. Poroelastic behaviour of physical properties in Rotliegend sandstones under uniaxial strain. Int. J. Rock Mech. Min. Sci. 2005, 42, 924–932. [Google Scholar] [CrossRef]
- Osorio, J.G.; Her-Yuan, C.; Teufel, L.W. Numerical Simulation of the Impact of Flow-Induced Geomechanical Response on the Productivity of Stress-Sensitive Reservoirs. In Proceedings of the SPE Symposium on Reservoir Simulation, Houston, TX, USA, 3–6 October1999. [Google Scholar] [CrossRef]
- Yi, X.; Ong, S.H.; Russell, J.E. Characterizing pore compressibility, reservoir compaction and stress path under uniaxial strain condition for nonlinear elastic rock. In Proceedings of the American Rock Mechanics Association—40th US Rock Mechanics Symposium, ALASKA ROCKS (2005): Rock Mechanics for Energy, Mineral and Infrastructure Development in the Northern Regions, Anchorage, AK, USA, 25–29 June 2005. [Google Scholar]
- Zhang, H.; Huang, L.; Yu, L.; Yang, Z. Macromechanical Properties and ITZ of Lightweight Aggregate Concrete from the Deck of Nanjing Yangtze River Bridge after 50 Years. J. Mater. Civ. Eng. 2020, 32, 05020005. [Google Scholar] [CrossRef]
- Song, P.; Hwang, S. Mechanical properties of high-strength steel fiber-reinforced concrete. Constr. Build. Mater. 2004, 18, 669–673. [Google Scholar] [CrossRef]
- Javdanian, H. Behavioral Interference of Vibrating Machines Foundations Constructed on Sandy Soils. Int. J. Eng. 2018, 31, 548–553. [Google Scholar] [CrossRef]
- Alavi, A.; Rahgozar, R.; Torkzadeh, P. The Effect of Geopolymerization on the Unconfined Compressive Strength of Stabilized Fine-grained Soils. Int. J. Eng. 2017, 30, 1673–1680. [Google Scholar] [CrossRef]
- Hassani, R.; Basirat, R. The Investigation of Subsidence Effect on Buried Pipes in 3D Space. Int. J. Eng. 2017, 30, 1182–1189. [Google Scholar] [CrossRef]
- Burton, H.E.; Freij, J.M.; Espino, D.M. Dynamic Viscoelasticity and Surface Properties of Porcine Left Anterior Descending Coronary Arteries. Cardiovasc. Eng. Technol. 2017, 8, 41–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.; Yang, K.H.; King, A. Mechanical properties of bovine pia-arachnoid complex in shear. J. Biomech. 2011, 44, 467–474. [Google Scholar] [CrossRef]
- Cognard, J.; Davies, P.; Sohier, L.; Créac’Hcadec, R. A study of the non-linear behaviour of adhesively-bonded composite assemblies. Compos. Struct. 2006, 76, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Jena, R.; Yue, C. Development of nanocomposite for rigid riser application: Diallyl bisphenol a modified Bismaleimide/epoxy interpenetrating network and its nanocomposite (NH 2-MWCNT). Compos. Sci. Technol. 2016, 124, 27–35. [Google Scholar] [CrossRef]
- Li, S.; Vaziri, V.; Kapitaniak, M.; Millett, J.M.; Wiercigroch, M. Application of Resonance Enhanced Drilling to coring. J. Pet. Sci. Eng. 2020, 188, 106866. [Google Scholar] [CrossRef]
- Chiachiarelli, F.C.; Merchán, V. Geomechanical characterization of the tight sandstones of Lajas Formation. In Proceedings of the 53rd US Rock Mechanics/Geomechanics Symposium, New York City, NY, USA, 23–26 June 2019. [Google Scholar]
- Suarez-Rivera, R.; Behrmann, L.A.; Green, S.; Burghardt, J.; Stanchits, S.; Edelman, E.; Surdi, A. Defining Three Regions Of Hydraulic Fracture Connectivity, In Unconventional Reservoirs, Help Designing Completions with Improved Long-term Productivity. In Proceedings of the SPE Annual Technical Conference and Exhibition; Society of Petroleum Engineers (SPE), New Orleans, LA, USA, 30 September–2 October 2013; Volume 7. [Google Scholar]
- Feng, Y.; Gray, K.E. Effects of Porous Properties of Rock on Near-Wellbore Hydraulic Fracture Complexity. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, TX, USA, 23–25 July 2018. [Google Scholar] [CrossRef]
- Wang, H.; Ji, B.; Lv, C.; Zhang, L.; Li, X.; Cui, C.; Yu, H.; Nie, J. The stress sensitivity of permeability in tight oil reservoirs. Energy Explor. Exploit. 2019, 37, 1364–1376. [Google Scholar] [CrossRef]
- Belhaj, H.; Vaziri, H.; Islam, M. Laboratory Investigation of Effective Stresses’ Influence on Petrophysical Properties of Sandstone Reservoirs during Depletion. J. Can. Pet. Technol. 2009, 48, 47–53. [Google Scholar] [CrossRef]
- Schutjens, P.M.T.M.; Blanton, T.L.; Martin, J.W.; Lehr, B.C.; Baaijens, M.N. Depletion-induced compaction of an overpressured reservoir sandstone: An experimental approach. In Proceedings of the SPE/ISRM Rock Mechanics in Petroleum Engineering Conference, Trondheim, Norway, 8–10 July 1998; Volume 2. [Google Scholar] [CrossRef]
- Fortin, J.; Schubnel, A.; Guéguen, Y. Elastic wave velocities and permeability evolution during compaction of Bleurswiller sandstone. Int. J. Rock Mech. Min. Sci. 2005, 42, 873–889. [Google Scholar] [CrossRef]
- Sulem, J.; Ouffroukh, H. Shear banding in drained and undrained triaxial tests on a saturated sandstone: Porosity and permeability evolution. Int. J. Rock Mech. Min. Sci. 2006, 43, 292–310. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xu, W.; Zuo, J. Compact rock material gas permeability properties. Phys. B Condens. Matter 2014, 449, 10–18. [Google Scholar] [CrossRef]
- Head, D.; Vanorio, T. Effects of changes in rock microstructures on permeability: 3-D printing investigation. Geophys. Res. Lett. 2016, 43, 7494–7502. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhao, J. A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials. Rock Mech. Rock Eng. 2014, 47, 1411–1478. [Google Scholar] [CrossRef] [Green Version]
- Peng, K.; Zhou, J.; Zou, Q.; Song, X. Effect of loading frequency on the deformation behaviours of sandstones subjected to cyclic loads and its underlying mechanism. Int. J. Fatigue 2020, 131, 105349. [Google Scholar] [CrossRef]
- Bijay, K.C.; Foroutan, M.; Ghazanfari, E. Analysis and Comparison of Measured Static and Dynamic Moduli of a Dolostone Specimen. Geotech. Spec. Publ. 2019, 2019, 484–493. [Google Scholar] [CrossRef]
- Zheng, Q.; Liu, E.; Sun, P.; Liu, M.; Yu, D. Dynamic and damage properties of artificial jointed rock samples subjected to cyclic triaxial loading at various frequencies. Int. J. Rock Mech. Min. Sci. 2020, 128, 104243. [Google Scholar] [CrossRef]
- Jafari, M.K.; Pellet, F.; Boulon, M.; Hosseini, K.A. Experimental Study of Mechanical Behaviour of Rock Joints under Cyclic Loading. Rock Mech. Rock Eng. 2004, 37, 3–23. [Google Scholar] [CrossRef]
- Bauer, A.; Bhuiyan, M.H.; Fjær, E.; Holt, R.M.; Lozovyi, S.; Pohl, M.; Szewczyk, D. Frequency-dependent wave velocities in sediments and sedimentary rocks: Laboratory measurements and evidences. Lead. Edge 2016, 35, 490–494. [Google Scholar] [CrossRef] [Green Version]
- Gong, F.; Di, B.; Zeng, L.; Wei, J.; Ding, P. Static and dynamic linear compressibility of dry artificial and natural shales under confining pressure. J. Pet. Sci. Eng. 2020, 192, 107242. [Google Scholar] [CrossRef]
- Gordon, R.B.; Davis, L.A. Velocity and attenuation of seismic waves in imperfectly elastic rock. J. Geophys. Res. Space Phys. 1968, 73, 3917–3935. [Google Scholar] [CrossRef]
- Spencer, J.W. Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion. J. Geophys. Res. Space Phys. 1981, 86, 1803–1812. [Google Scholar] [CrossRef]
- Pimienta, L.; Fortin, J.; Gueguen, Y. Bulk modulus dispersion and attenuation in sandstones. Geophysics 2015, 80, D111–D127. [Google Scholar] [CrossRef]
- Batzle, M.L.; Han, D.-H.; Hofmann, R. Fluid mobility and frequency-dependent seismic velocity—Direct measurements. Geophysics 2006, 71, N1–N9. [Google Scholar] [CrossRef] [Green Version]
- Tisato, N.; Madonna, C. Attenuation at low seismic frequencies in partially saturated rocks: Measurements and description of a new apparatus. J. Appl. Geophys. 2012, 86, 44–53. [Google Scholar] [CrossRef]
- Lozovyi, S.; Bauer, A. From Static to Dynamic Stiffness of Shales: Frequency and Stress Dependence. Rock Mech. Rock Eng. 2019, 52, 5085–5098. [Google Scholar] [CrossRef]
- Szewczyk, D.; Bauer, A.; Holt, R.M. A new laboratory apparatus for the measurement of seismic dispersion under deviatoric stress conditions. Geophys. Prospect. 2016, 64, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Mikhaltsevitch, V.; Lebedev, M.; Gurevich, B. A Laboratory Study of the Elastic and Anelastic Properties of the Sandstone Flooded with Supercritical CO2 at Seismic Frequencies. Energy Procedia 2014, 63, 4289–4296. [Google Scholar] [CrossRef] [Green Version]
- McKavanagh, B.; Stacey, F. Mechanical hysteresis in rocks at low strain amplitudes and seismic frequencies. Phys. Earth Planet. Inter. 1974, 8, 246–250. [Google Scholar] [CrossRef]
- Lakes, R. Introduction: Phenomena. In Viscoelastic Materials; Cambridge University Press (CUP): Cambridge, UK, 2010; pp. 1–13. [Google Scholar] [CrossRef]
- Wiercigroch, M.; Kovacs, S.; Zhong, S.; Costa, D.; Vaziri, V.; Kapitaniak, M.; Pavlovskaia, E. Versatile mass excited impact oscillator. Nonlinear Dyn. 2019, 99, 323–339. [Google Scholar] [CrossRef] [Green Version]
- Zaitsev, D.V.; Kochanov, A.N.; Toktogulov, S.Z.; Panfilov, P.E. The influence of the scale effect and heterogeneity of rocks in determining their strength properties. Mt. Inf. Anal. Bull. 2016, 208–215. [Google Scholar] [CrossRef] [Green Version]
- ASTM D4543. Standard Practices for Preparing Rock Core Specimens and Determining Dimensional and Shape Tolerances; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar] [CrossRef]
- Bieniawski, Z.T.; Hawkes, I. Suggested methods for determining tensile strength of rock materials. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1978, 15, 99–103. [Google Scholar]
- Hawkins, A.B. Aspects of rock strength. Bull. Int. Assoc. Eng. Geol. 1998, 57, 17–30. [Google Scholar] [CrossRef]
- Darlington, W.J.; Ranjith, P.G.; Choi, X. The Effect of Specimen Size on Strength and Other Properties in Laboratory Testing of Rock and Rock-Like Cementitious Brittle Materials. Rock Mech. Rock Eng. 2011, 44, 513–529. [Google Scholar] [CrossRef]
- Dyke, C.G.; Dobereiner, L. Evaluating the strength and deformability of sandstones. Q. J. Eng. Geol. Hydrogeol. 1991, 24, 123–134. [Google Scholar] [CrossRef]
- Fjaer, E.; Stroisz, A.M.; Holt, R.M. Elastic Dispersion Derived from a Combination of Static and Dynamic Measurements. Rock Mech. Rock Eng. 2013, 46, 611–618. [Google Scholar] [CrossRef]
- Cui, J.; Wang, S.; Wang, S.; Li, G.; Wang, P.; Liang, C. The Effects of Strain Rates on Mechanical Properties and Failure Behavior of Long Glass Fiber Reinforced Thermoplastic Composites. Polymers 2019, 11, 2019. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A. The Effect of Stress Rate and Temperature on the Strength of Basalt and Granite. Geophysics 1968, 33, 501–510. [Google Scholar] [CrossRef]
Sample Diameter, mm | Max. Load, kN | UCS, MPa |
---|---|---|
7.5 | 1.6 | 36.25 |
9.2 | 2.87 | 39.68 |
11.5 | 3.91 | 42.05 |
24.7 | 26.12 | 54.53 |
Amplitude of Fdyn, N | Frequency f, Hz | |||||
---|---|---|---|---|---|---|
15 | 20 | 25 | 30 | 35 | 40 | |
50 | 1 * | 2 | 3 | 4 | 5 | 6 |
100 | 7 | 8 | 9 | 10 | 11 | 12 |
150 | 13 | 14 | 15 | 16 | 17 | 18 |
200 | 19 | 20 | 21 | 22 | 23 | 24 |
250 | 25 | 26 | 27 | 28 | 29 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzev, M.; Kozhevnikov, E.; Turbakov, M.; Riabokon, E.; Poplygin, V. Experimental Studies of the Influence of Dynamic Loading on the Elastic Properties of Sandstone. Energies 2020, 13, 6195. https://doi.org/10.3390/en13236195
Guzev M, Kozhevnikov E, Turbakov M, Riabokon E, Poplygin V. Experimental Studies of the Influence of Dynamic Loading on the Elastic Properties of Sandstone. Energies. 2020; 13(23):6195. https://doi.org/10.3390/en13236195
Chicago/Turabian StyleGuzev, Mikhail, Evgenii Kozhevnikov, Mikhail Turbakov, Evgenii Riabokon, and Vladimir Poplygin. 2020. "Experimental Studies of the Influence of Dynamic Loading on the Elastic Properties of Sandstone" Energies 13, no. 23: 6195. https://doi.org/10.3390/en13236195
APA StyleGuzev, M., Kozhevnikov, E., Turbakov, M., Riabokon, E., & Poplygin, V. (2020). Experimental Studies of the Influence of Dynamic Loading on the Elastic Properties of Sandstone. Energies, 13(23), 6195. https://doi.org/10.3390/en13236195