A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources
Abstract
:1. Introduction
2. Structure of Smart Grids
2.1. Definitions
2.2. Smart Grid Technologies
2.3. Characteristics of Smart Grids
- Integrable Distributed Resources (DER) that include sustainable energy sources.
- Should perform dynamic optimization of grid operation continuously.
- Should have digitized information and control technologies to enhance the reliability and efficiency of the electric network.
- Should have Demand Side Response (DSR) programs and demand-side resources.
- Integrable smart appliances.
- Are fortified against cyber threats.
- Should have advanced storage devices and peak-shaving technologies, including hybrid and plug-in electric vehicles.
2.4. Benefits of Smart Grid Transformation
- Improve the reliability and quality of the power grid.
- Optimize the operation of existed assets to avert the future expansion of backup plants.
- Enhance the overall system efficiency.
- Improve system resiliency.
- Facilitate the incorporation of Distributed Resources.
- Enable predictive maintenance and self-healing capacities.
- Lower greenhouse gaseous emissions.
- Increase consumers’ assortments.
- Increase the opportunities to enhance system security.
3. Smart Grid Predominant Components
3.1. Distributed Generation
3.2. Reliability Assessment of DGs in Modern Grids
- The availability of the DG: Distributed generation units are exposed to failures that might restrict their functionality. Therefore, reliability models should consider the availability of DGs under different contingency scenarios. Such models require probabilistic approaches to deal with such a kind of stochasticity.
- The operating mode of DGs (Islanded and grid-connected): In Islanded mode, the lack of appropriated control, protection capabilities, and communication infrastructure limits this kind of operation [126]. However, numerous studies have been proposed to address the reliability assessment of the distribution network to facilitate the transformation toward the intelligently managed grid. Whereas in grid-connected mode, DGs are installed close to the load centers to improve the reliability of the system by partially relieving the centralized units during heavy loading conditions. It is, therefore, necessary to quantify the power exchange between the feeders under the presence of DGs. A summary of the prevailing techniques within the layout of microgrids is highlighted in Table 4 and Table 5.
3.3. Demand Response
3.3.1. Reliability of Demand Response
- Reliability-based (Incentive-based) Programs: in this program, a set of demand curtailment signals are sent to the participants in the form of voluntary requests or mandatory commands.
- Rate-based Programs: the prices are set beforehand over a period. Consumers are obliged to pay higher rates during peaking instants and lower prices during off-peak periods. This program is seen as a Time-of-Use (TOU) structure.
- Demand Reduction Bids: in this program, the participating consumers submit their bids to the demand aggregator or the independent system operator (ISO) offering their available capacity to be curtailed.
3.3.2. Applications of Demand Response
3.4. Energy Storage Technologies
4. Data Management
4.1. Energy Data Management in Smart Grids
4.1.1. Data Collection
4.1.2. Data Preprocessing
4.1.3. Data Integration
4.1.4. Data Storage
4.1.5. Data Mining and Data Analytics
4.1.6. Data Visualization
4.1.7. Online Decision-Making
4.1.8. Data Management Challenges in Smart Grids
4.2. Cyber Security of Smart Grids
5. Pricing Mechanisms in Smart Grids
5.1. Dynamic Pricing Mechanisms
5.2. Time-of-Use
5.3. Real-Time Pricing Method
5.4. Critical Peak Pricing
5.5. Day-Ahead Pricing
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nosratabadi, S.M.; Hooshmand, R.-A.; Gholipour, E. A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems. Renew. Sustain. Energy Rev. 2017, 67, 341–363. [Google Scholar] [CrossRef]
- Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Cañizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt, O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in Microgrid Control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [Google Scholar] [CrossRef]
- Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the art in research on microgrids: A review. IEEE Access 2015, 3, 890–925. [Google Scholar] [CrossRef]
- Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.-W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renew. Sustain. Energy Rev. 2013, 24, 387–405. [Google Scholar] [CrossRef]
- Arunkumari, T.; Indragandhi, V. An overview of high voltage conversion ratio DC-DC converter configurations used in DC micro-grid architectures. Renew. Sustain. Energy Rev. 2017, 77, 670–687. [Google Scholar] [CrossRef]
- Arbab-Zavar, B.; Palacios-Garcia, E.; Vasquez, J.; Guerrero, J. Smart inverters for microgrid applications: A review. Energies 2019, 12, 840. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Callanan, R.; Das, M.K.; Ryu, S.-H.; Agarwal, A.K.; Palmour, J.W. SiC power devices for microgrids. IEEE Trans. Power Electron. 2010, 25, 2889–2896. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Chen, Z.; Kjaer, S.B. Power electronics as efficient interface in dispersed power generation systems. IEEE Trans. Power Electron. 2004, 19, 1184–1194. [Google Scholar] [CrossRef]
- Zhong, Q.-C.; Weiss, G. Synchronverters: Inverters that mimic synchronous generators. IEEE Trans. Ind. Electron. 2011, 58, 1259–1267. [Google Scholar] [CrossRef]
- El-hawary, M.E. The Smart Grid—State-of-the-art and Future Trends. Electr. Power Compon. Syst. 2014, 42, 239–250. [Google Scholar] [CrossRef]
- Independence Energy. Security act of 2007. Publiclaw 110-140. 110th Congr. Congr. Rec. 2007, 153, 110–140. [Google Scholar]
- Bryson, J.; Gallagher, P.D. NIST framework and roadmap for smart grid interoperability standards. Natl. Inst. Stand. Technol. NIST US Dep. Commer. 2012, 227. [Google Scholar]
- Betis, G.; Cassandras, C.G.; Nucci, C.A. Smart cities [Scanning the Issue]. Proc. IEEE 2018, 106, 513–517. [Google Scholar] [CrossRef]
- Bi, S.; Zhang, Y.J.A. Graph-based cyber security analysis of state estimation in smart power grid. IEEE Commun. Mag. 2017, 55, 176–183. [Google Scholar] [CrossRef]
- Tuballa, M.L.; Abundo, M.L. A review of the development of smart grid technologies. Renew. Sustain. Energy Rev. 2016, 59, 710–725. [Google Scholar] [CrossRef]
- Siddiqui, O. Energy Savings and Carbon Emissions Reductions Enabled by a Smart Grid; Electric Power Research Institute EPRI: Palo Alto, CA, USA, 2008; p. 64. [Google Scholar]
- DECC. Smarter Grids: The Opportunity; Department of Energy & Climate Change: London, UK, 2009; p. 18.
- Ardito, L.; Procaccianti, G.; Menga, G.; Morisio, M. Smart grid technologies in Europe: An overview. Energies 2013, 6, 251–281. [Google Scholar] [CrossRef] [Green Version]
- Farhangi, H. The path of the smart grid. IEEE Power Energy Mag. 2010, 8, 18–28. [Google Scholar] [CrossRef]
- Cunjiang, Y.; Huaxun, Z.; Lei, Z. Architecture design for smart grid. Energy Procedia 2012, 17, 1524–1528. [Google Scholar] [CrossRef] [Green Version]
- Irfan, M.; Iqbal, J.; Iqbal, A.; Iqbal, Z.; Riaz, R.A.; Mehmood, A. Opportunities and challenges in control of smart grids—Pakistani perspective. Renew. Sustain. Energy Rev. 2017, 71, 652–674. [Google Scholar] [CrossRef]
- Momoh, J.A. Smart grid design for efficient and flexible power networks operation and control. In Proceedings of the 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, WA, USA, 15–18 March 2009; pp. 1–8. [Google Scholar]
- Massoud Amin, S. Smart grid: Overview, issues and opportunities. Advances and challenges in sensing, modeling, simulation, optimization and control. Eur. J. Control 2011, 17, 547–567. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Chen, L. Recent advances on smart grid technology and renewable energy integration. Sci. China Technol. Sci. 2013, 56, 3040–3048. [Google Scholar] [CrossRef]
- Pirak, C.; Sangsuwan, T.; Buayairaksa, S. Recent advances in communication technologies for smart grid application: A review. In Proceedings of the 2014 International Electrical Engineering Congress (iEECON), Chonburi, Thailand, 19–21 March 2014; pp. 1–4. [Google Scholar]
- Xu, Z.; Xue, Y.; Wong, K.P. Recent advancements on smart grids in China. Electr. Power Compon. Syst. 2014, 42, 251–261. [Google Scholar] [CrossRef]
- Gharavi, H.; Ghafurian, R. Smart grid: The electric energy system of the future [Scanning the Issue]. Proc. IEEE 2011, 99, 917–921. [Google Scholar] [CrossRef]
- Mei, S.; Chen, L. Research focuses and advance technologies of smart grid in recent years. Chin. Sci. Bull. 2012, 57, 2879–2886. [Google Scholar] [CrossRef] [Green Version]
- Ismagilova, E.; Hughes, L.; Dwivedi, Y.K.; Raman, K.R. Smart cities: Advances in research—An information systems perspective. Int. J. Inf. Manag. 2019, 47, 88–100. [Google Scholar] [CrossRef]
- Hossain, M.R.; Oo, A.M.T.; Ali, A.B.M.S. Smart Grid. In Smart Grids: Opportunities, Developments, and Trends; Ali, A.B.M.S., Ed.; Green Energy and Technology; Springer: London, UK, 2013; pp. 23–44. ISBN 978-1-4471-5210-1. [Google Scholar]
- Tariq, F.; Dooley, L.S. Smart Grid communication and networking technologies: Recent developments and future challenges. In Smart Grids: Opportunities, Developments, and Trends; Ali, A.B.M.S., Ed.; Green Energy and Technology; Springer: London, UK, 2013; pp. 199–213. ISBN 978-1-4471-5210-1. [Google Scholar]
- Zahran, M. Smart grid technology, vision, management and control. WSEAS Trans. J. 2013, 12, 12. [Google Scholar]
- Nambiar, R.; Shroff, R.; Handy, S. Smart cities: Challenges and opportunities. In Proceedings of the 2018 10th International Conference on Communication Systems Networks (COMSNETS), Bengaluru, India, 3–7 January 2018; pp. 243–250. [Google Scholar]
- Babu, N.R. Smart Grid Systems: Modeling and Control; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- 1854-2019—IEEE Standards Association Guide for Smart Distribution Applications Guide; IEEE Standards: Piscataway, NJ, USA, 2019; pp. 1–65. [CrossRef]
- Warren, C.A. 1366-2012—IEEE Guide for Electric Power Distribution Reliability Indices; IEEE Standards Association: Piscataway, NJ, USA, 2012. [Google Scholar]
- 1250-2018—IEEE Guide for Identifying and Improving Voltage Quality in Power Systems; IEEE Standards Association: Piscataway, NJ, USA, 2018. [CrossRef]
- IEEE Standards Committee IEEE Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation with the Electric Power System (EPS), End-Use Applications, and Loads. Inst. Electr. Electron. Eng. 2011.
- IEEE Standards Association IEEE Guide for Synchronization, Calibration, Testing, and Installation of Phasor Measurement Units (PMUs) for Power System Protection and Contro. IEEE Stand. C 2013, 37.
- C37231-2006--IEEE Standards Committee IEEE Recommended Practice for Microprocessor-Based Protection Equipment Firmware Control; IEEE Standards Association: Piscataway, NJ, USA, 2007; pp. 1–25. [CrossRef]
- IEEE Standards Committee IEEE Standard for Common Format for Naming Time Sequence Data Files (COMNAME); IEEE Std C37232-2011 Revis; IEEE Standards Association: Piscataway, NJ, USA, 2011; pp. 1–25. [CrossRef]
- IEEE Standards Committee IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications. IEEE PC37238D212 2017, 1–40.
- Sato, T.; Kammen, D.M.; Duan, B.; Macuha, M.; Zhou, Z.; Wu, J.; Tariq, M.; Asfaw, S.A. Smart Grid Standards: Specifications, Requirements, and Technologies; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 978-1-118-65369-2. [Google Scholar]
- 19012-2013—Standard for Low Frequency (less than 500 kHz) Narrow Band Power Line Communications for Smart Grid Applications; IEEE Standards Association: Piscataway, NJ, USA, 2013; pp. 1–269. [CrossRef]
- Camacho, E.F.; Samad, T.; Garcia-Sanz, M.; Hiskens, I. Control for renewable energy and smart grids. Impact Control Technol. Control Syst. Soc. 2011, 69–88. [Google Scholar]
- Samarakoon, K.; Ekanayake, J.; Jenkins, N. Investigation of domestic load control to provide primary frequency response using smart meters. IEEE Trans. Smart Grid 2012, 3, 282–292. [Google Scholar] [CrossRef]
- Samarakoon, K.; Ekanayake, J. Demand side primary frequency response support through smart meter control. In Proceedings of the 2009 44th International Universities Power Engineering Conference (UPEC), Glasgow, UK, 1–4 September 2009; pp. 1–5. [Google Scholar]
- Yu, S.; Chau, T.K.; Fernando, T.; Savkin, A.V.; Iu, H.H.-C. Novel quasi-decentralized SMC-based frequency and voltage stability enhancement strategies using valve position control and FACTS device. IEEE Access 2017, 5, 946–955. [Google Scholar] [CrossRef]
- Shi, Y.; Tuan, H.D.; Duong, T.Q.; Poor, H.V.; Savkin, A.V. PMU placement optimization for efficient state estimation in smart grid. IEEE J. Sel. Areas Commun. 2020, 38, 71–83. [Google Scholar] [CrossRef]
- Gharani Khajeh, K.; Bashar, E.; Mahboub Rad, A.; Gharehpetian, G.B. Integrated model considering effects of zero injection buses and conventional measurements on optimal PMU placement. IEEE Trans. Smart Grid 2015, 8, 1006–1013. [Google Scholar] [CrossRef]
- Esmaili, M.; Gharani, K.; Shayanfar, H.A. Redundant observability PMU placement in the presence of flow measurements considering contingencies. IEEE Trans. Power Syst. 2013, 28, 3765–3773. [Google Scholar] [CrossRef]
- Ou, T.-C.; Tsao, T.-P.; Hong, C.-M.; Chen, C.-H. Hybrid control system for automatic voltage regulator in smart grid. In Proceedings of the 2013 International Conference on Machine Learning and Cybernetics, Tianjin, China, 14–17 July 2013; Volume 3, pp. 1103–1108. [Google Scholar]
- Sridhar, S.; Govindarasu, M. Model-based attack detection and mitigation for automatic generation control. IEEE Trans. Smart Grid 2014, 5, 580–591. [Google Scholar] [CrossRef]
- Schneider Electric. GIS-Based Design for Effective Smart Grid Strategies; Schneider Electric Inc.: Fort Collins, CO, USA, 2012. [Google Scholar]
- Environmental Systems Research Institute (ESRI). Enterprise GIS and the Smart Electric Grid; ESRI: Redlands, CA, USA, 2009; p. 11. [Google Scholar]
- Dirkman, J. Best Practices for Creating Your Smart Grid Network Model; Schneider Electric Inc.: Fort Collins, CO, USA, 2013. [Google Scholar]
- Keyhani, A.; Chatterjee, A. Automatic generation control structure for smart power grids. IEEE Trans. Smart Grid 2012, 3, 1310–1316. [Google Scholar] [CrossRef]
- Rahman, F.; Rehman, S.; Abdul-Majeed, M.A. Overview of energy storage systems for storing electricity from renewable energy sources in Saudi Arabia. Renew. Sustain. Energy Rev. 2012, 16, 274–283. [Google Scholar] [CrossRef]
- Ipakchi, A.; Albuyeh, F. Grid of the future. IEEE Power Energy Mag. 2009, 7, 52–62. [Google Scholar] [CrossRef]
- Nafi, N.S.; Ahmed, K.; Gregory, M.A.; Datta, M. A survey of smart grid architectures, applications, benefits and standardization. J. Netw. Comput. Appl. 2016, 76, 23–36. [Google Scholar] [CrossRef]
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart grid—The new and improved power grid: A survey. IEEE Commun. Surv. Tutor. 2012, 14, 944–980. [Google Scholar] [CrossRef]
- Keeping, S. Carbon Emission Reductions by the Implementation of a Smart Grid; NOJA Power: Murarrie, Queensland, Australia, 2013. [Google Scholar]
- Chandan, A.; Potdar, V.; Nandi, C. Smart Cities; Springer International Publishing AG: Cham, Switzerland, 2018; ISBN 978-3-319-76668-3. [Google Scholar]
- Wade, N.S.; Taylor, P.C.; Lang, P.D.; Jones, P.R. Evaluating the benefits of an electrical energy storage system in a future smart grid. Energy Policy 2010, 38, 7180–7188. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Ni, Y.; Sun, S.; Yao, M.Q. Survey on smart grid and relevant key technologies. South. Power Syst. Technol. 2010, 4, 1–7. [Google Scholar]
- Borlase, S. Smart Grids: Infrastructure, Technology, and Solutions; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Xie, K.; Liu, Y.; Zhu, Z.; Yu, E. The vision of future smart grid. Electr. Power 2008, 6. [Google Scholar]
- Hamilton, B.; Summy, M. Benefits of the smart grid [in my view]. IEEE Power Energy Mag. 2011, 9, 102–104. [Google Scholar] [CrossRef]
- Moslehi, K.; Kumar, R. A reliability perspective of the smart grid. IEEE Trans. Smart Grid 2010, 1, 57–64. [Google Scholar] [CrossRef]
- Mehigan, L.; Deane, J.P.; Gallachóir, B.P.Ó.; Bertsch, V. A review of the role of distributed generation (DG) in future electricity systems. Energy 2018, 163, 822–836. [Google Scholar] [CrossRef]
- Allan, G.; Eromenko, I.; Gilmartin, M.; Kockar, I.; McGregor, P. The economics of distributed energy generation: A literature review. Renew. Sustain. Energy Rev. 2015, 42, 543–556. [Google Scholar] [CrossRef] [Green Version]
- Vahl, F.P.; Rüther, R.; Casarotto Filho, N. The influence of distributed generation penetration levels on energy markets. Energy Policy 2013, 62, 226–235. [Google Scholar] [CrossRef]
- Kakran, S.; Chanana, S. Smart operations of smart grids integrated with distributed generation: A review. Renew. Sustain. Energy Rev. 2018, 81, 524–535. [Google Scholar] [CrossRef]
- Abdmouleh, Z.; Gastli, A.; Ben-Brahim, L.; Haouari, M.; Al-Emadi, N.A. Review of optimization techniques applied for the integration of distributed generation from renewable energy sources. Renew. Energy 2017, 113, 266–280. [Google Scholar] [CrossRef]
- Paliwal, P.; Patidar, N.P.; Nema, R.K. Planning of grid integrated distributed generators: A review of technology, objectives and techniques. Renew. Sustain. Energy Rev. 2014, 40, 557–570. [Google Scholar] [CrossRef]
- Ackermann, T.; Andersson, G.; Söder, L. Distributed generation: A definition. Electr. Power Syst. Res. 2001, 57, 195–204. [Google Scholar] [CrossRef]
- Distributed Energy Resources; North American Electric Reliability Corporation (NERC): Atlanta, GA, USA, 2017; p. 50.
- Bayod-Rújula, A.A. Future development of the electricity systems with distributed generation. Energy 2009, 34, 377–383. [Google Scholar] [CrossRef]
- Chmutina, K.; Goodier, C.I. Alternative future energy pathways: Assessment of the potential of innovative decentralised energy systems in the UK. Energy Policy 2014, 66, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Adil, A.M.; Ko, Y. Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy. Renew. Sustain. Energy Rev. 2016, 57, 1025–1037. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, J. A review on distributed generation planning. Renew. Sustain. Energy Rev. 2017, 76, 529–544. [Google Scholar] [CrossRef]
- Kim, W.-W.; Park, J.-K.; Yoon, Y.-T.; Kim, M.-K. Transmission expansion planning under uncertainty for investment options with various lead-times. Energies 2018, 11, 2429. [Google Scholar] [CrossRef] [Green Version]
- Howell, S.; Rezgui, Y.; Hippolyte, J.-L.; Jayan, B.; Li, H. Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources. Renew. Sustain. Energy Rev. 2017, 77, 193–214. [Google Scholar] [CrossRef]
- Oliva, H.S. Residential energy efficiency and distributed generation—Natural partners or competition? Renew. Sustain. Energy Rev. 2017, 76, 932–940. [Google Scholar] [CrossRef]
- Pepermans, G.; Driesen, J.; Haeseldonckx, D.; Belmans, R.; D’haeseleer, W. Distributed generation: Definition, benefits and issues. Energy Policy 2005, 33, 787–798. [Google Scholar] [CrossRef]
- William, E.L.; Luke, J.R.; Liam, D.W.; Colin, F.A.; Anthony, R.S. An economic evaluation of the potential for distributed energy in Australia. Energy Policy 2012, 51, 277–289. [Google Scholar] [CrossRef]
- Rouhani, A.; Hosseini, S.H.; Raoofat, M. Composite generation and transmission expansion planning considering distributed generation. Int. J. Electr. Power Energy Syst. 2014, 62, 792–805. [Google Scholar] [CrossRef]
- Khalid, M.; Ahmadi, A.; Savkin, A.V.; Agelidis, V.G. Minimizing the energy cost for microgrids integrated with renewable energy resources and conventional generation using controlled battery energy storage. Renew. Energy 2016, 97, 646–655. [Google Scholar] [CrossRef]
- Huda, A.S.N.; Živanović, R. Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools. Renew. Sustain. Energy Rev. 2017, 76, 974–988. [Google Scholar] [CrossRef]
- Kiani Rad, H.; Moravej, Z. Coordinated transmission substations and sub-transmission networks expansion planning incorporating distributed generation. Energy 2017, 120, 996–1011. [Google Scholar] [CrossRef]
- Moghimi, H.; Ahmadi, A.; Aghaei, J.; Rabiee, A. Stochastic techno-economic operation of power systems in the presence of distributed energy resources. Int. J. Electr. Power Energy Syst. 2013, 45, 477–488. [Google Scholar] [CrossRef]
- Jain, S.; Kalambe, S.; Agnihotri, G.; Mishra, A. Distributed generation deployment: State-of-the-art of distribution system planning in sustainable era. Renew. Sustain. Energy Rev. 2017, 77, 363–385. [Google Scholar] [CrossRef]
- Zhuo, W.; Savkin, A.V.; Meng, K. Decentralized optimal control of a microgrid with solar PV, BESS and thermostatically controlled loads. Energies 2019, 12, 2111. [Google Scholar] [CrossRef] [Green Version]
- Labis, P.E.; Visande, R.G.; Pallugna, R.C.; Caliao, N.D. The contribution of renewable distributed generation in mitigating carbon dioxide emissions. Renew. Sustain. Energy Rev. 2011, 15, 4891–4896. [Google Scholar] [CrossRef]
- Morstyn, T.; Savkin, A.V.; Hredzak, B.; Tuan, H.D. Scalable energy management for low voltage microgrids using multi-agent storage system aggregation. IEEE Trans. Power Syst. 2018, 33, 1614–1623. [Google Scholar] [CrossRef]
- Pesaran, M.H.A.; Huy, P.D.; Ramachandaramurthy, V.K. A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms. Renew. Sustain. Energy Rev. 2017, 75, 293–312. [Google Scholar] [CrossRef]
- Khalid, M. An optimal operation of wind energy storage system for frequency control based on model predictive control. Renew. Energy 2012, 48, 127–132. [Google Scholar] [CrossRef]
- L’Abbate, A.; Fulli, G.; Starr, F.; European Commission. Distributed Power Generation in Europe: Technical Issues for Further Integration; EUR 23234 EN-2007; European Commission: Brussels, Belgium, 2007. [Google Scholar]
- Carley, S. Distributed generation: An empirical analysis of primary motivators. Energy Policy 2009, 37, 1648–1659. [Google Scholar] [CrossRef]
- Heo, J.-H.; Kim, M.-K.; Park, G.-P.; Yoon, Y.T.; Park, J.K.; Lee, S.-S.; Kim, D.-H. A reliability-centered approach to an optimal maintenance strategy in transmission systems using a genetic algorithm. IEEE Trans. Power Deliv. 2011, 26, 2171–2179. [Google Scholar] [CrossRef]
- Khatamianfar, A.; Khalid, M.; Savkin, A.V.; Agelidis, V.G. Improving wind farm dispatch in the Australian electricity market with battery energy storage using model predictive control. IEEE Trans. Sustain. Energy 2013, 4, 745–755. [Google Scholar] [CrossRef]
- Khalid, M.; AlMuhaini, M.; Aguilera, R.P.; Savkin, A.V. Method for planning a wind–solar–battery hybrid power plant with optimal generation-demand matching. IET Renew. Power Gener. 2018, 12, 1800–1806. [Google Scholar] [CrossRef] [Green Version]
- Khalid, M. Wind power economic dispatch—Impact of radial basis functional networks and battery energy storage. IEEE Access 2019, 7, 36819–36832. [Google Scholar] [CrossRef]
- Morstyn, T.; Hredzak, B.; Agelidis, V.G. Control strategies for microgrids with distributed energy storage systems: An overview. IEEE Trans. Smart Grid 2018, 9, 3652–3666. [Google Scholar] [CrossRef] [Green Version]
- Saad, W.; Han, Z.; Poor, H.; Basar, T. Game-theoretic methods for the smart grid: An overview of microgrid systems, demand-side management, and smart grid communications. IEEE Signal Process. Mag. 2012, 29, 86–105. [Google Scholar] [CrossRef]
- Morstyn, T.; Demetriades, G.D.; Agelidis, V.G. Unified distributed control for DC microgrid operating modes. IEEE Trans. Power Syst. 2015, 31, 802–812. [Google Scholar] [CrossRef]
- Global DER Deployment Forecast Database; Navigant Research: Boulder, CO, USA, 2017; p. 40.
- Distributed Energy Resources: Technical Considerations for the Bulk Power System; Federal Energy Regulatory Commission (FERC): Washington, DC, USA, 2018; p. 47.
- Han, J.; Ouyang, L.; Xu, Y.; Zeng, R.; Kang, S.; Zhang, G. Current status of distributed energy system in China. Renew. Sustain. Energy Rev. 2016, 55, 288–297. [Google Scholar] [CrossRef]
- Albasrawi, M.N.; Jarus, N.; Joshi, K.A.; Sarvestani, S.S. Analysis of reliability and resilience for smart grids. In Proceedings of the 2014 IEEE 38th Annual Computer Software and Applications Conference, Vasteras, Sweden, 21–25 July 2014; pp. 529–534. [Google Scholar]
- Xu, S.; Qian, Y.; Hu, R.Q. On reliability of smart grid neighborhood area networks. IEEE Access 2015, 3, 2352–2365. [Google Scholar] [CrossRef]
- Bose, A. Models and techniques for the reliability analysis of the smart grid. In Proceedings of the IEEE PES General Meeting, Providence, RI, USA, 25–29 July 2010; pp. 1–5. [Google Scholar]
- Ilie, I.; Hernando-Gil, I.; Collin, A.J.; Acosta, J.L.; Djokic, S.Z. Reliability performance assessment in smart grids with demand-side management. In Proceedings of the 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, Manchester, UK, 5–7 December 2011; pp. 1–7. [Google Scholar]
- Karki, R.; Billinton, R.; Verma, A.K. Reliability Modeling and Analysis of Smart Power Systems; Springer India Private Limited: New Delhi, India, 2014; ISBN 978-81-322-1798-5. [Google Scholar]
- Moslehi, K.; Kumar, R. Smart Grid—A reliability perspective. In Proceedings of the 2010 Innovative Smart Grid Technologies (ISGT), Gothenburg, Sweden, 19–21 January 2010; pp. 1–8. [Google Scholar]
- Marashi, K.; Sarvestani, S.S. Towards comprehensive modeling of reliability for smart grids: Requirements and challenges. In Proceedings of the 2014 IEEE 15th International Symposium on High-Assurance Systems Engineering, Miami Beach, FL, USA, 9–11 January 2014; pp. 105–112. [Google Scholar]
- Liu, Y.; Deng, L.; Gao, N.; Sun, X. A reliability assessment method of cyber physical distribution system. Energy Procedia 2019, 158, 2915–2921. [Google Scholar] [CrossRef]
- Kazemi, S. Reliability Evaluation of Smart Distribution Grids; Aalto University, School of Electrical Engineering: Espoo, Finland, 2011. [Google Scholar]
- Chren, S.; Rossi, B.; Bühnova, B.; Pitner, T. Reliability data for smart grids: Where the real data can be found. In Proceedings of the 2018 Smart City Symposium Prague (SCSP), Prague, Czech Republic, 24–25 May 2018; pp. 1–6. [Google Scholar]
- Aravinthan, V.; Balachandran, T.; Ben-Idris, M.; Fei, W.; Heidari-Kapourchali, M.; Hettiarachchige-Don, A.; Jiang, J.N.; Lei, H.; Liu, C.-C.; Mitra, J.; et al. Reliability modeling considerations for emerging cyber-physical power systems. In Proceedings of the 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID, USA, 24–28 June 2018; pp. 1–7. [Google Scholar]
- Wadi, M.; Baysal, M.; Shobole, A.; Tur, M.R. Reliability evaluation in smart grids via modified monte carlo simulation method. In Proceedings of the 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 14–17 October 2018; pp. 841–845. [Google Scholar]
- Kornatka, M. Distribution of SAIDI and SAIFI indices and the saturation of the MV network with remotely controlled switches. In Proceedings of the 2017 18th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Prague, Czech Republic, 17–19 May 2017; pp. 1–4. [Google Scholar]
- Brown, R. Electric Power Distribution Reliability, Second Edition; Power Engineering (Willis); CRC Press: Boca Raton, FL, USA, 2008; Volume 20081087, ISBN 978-0-8493-7567-5. [Google Scholar]
- Billinton, R. Distribution system reliability indices. IEEE Trans. Power Deliv. 1989, 4, 561–568. [Google Scholar] [CrossRef]
- EPRI. Electric Power System Resiliency: Challenges and Opportunities; Electric Power Research Institute: Palo Alto, CA, USA, 2016; p. 56. [Google Scholar]
- Escalera, A.; Hayes, B.; Prodanović, M. A survey of reliability assessment techniques for modern distribution networks. Renew. Sustain. Energy Rev. 2018, 91, 344–357. [Google Scholar] [CrossRef]
- Allan, R.N.; Billinton, R. Reliability Evaluation of Power Systems; Springer: Boston, MA, USA, 1996; ISBN 978-0-306-45259-8. [Google Scholar]
- Dialynas, E.N.; Allan, R.N. Local generating facilities in the reliability evaluation of power distribution systems. IEEE Trans. Power Syst. 1986, 1, 62–67. [Google Scholar] [CrossRef]
- Bae, I.; Kim, J. Reliability Evaluation of Distributed Generation Based on Operation Mode. IEEE Trans. Power Syst. 2007, 22, 785–790. [Google Scholar] [CrossRef]
- Billinton, R. Reliability benefit analysis of adding WTG to a distribution system. IEEE Trans. Energy Convers. 2001, 16, 134–139. [Google Scholar] [CrossRef]
- Wang, P.; Billinton, R. Time-sequential simulation technique for rural distribution system reliability cost/worth evaluation including wind generation as alternative supply. Transm. Distrib. IEEE Proc. Gener. 2001, 148, 355–360. [Google Scholar] [CrossRef]
- Atwa, Y.M.; El-Saadany, E.F. Reliability evaluation for distribution system with renewable distributed generation during islanded mode of operation. IEEE Trans. Power Syst. 2009, 24, 572–581. [Google Scholar] [CrossRef]
- Conti, S.; Rizzo, S.A. Monte carlo simulation by using a systematic approach to assess distribution system reliability considering intentional islanding. IEEE Trans. Power Deliv. 2015, 30, 64–73. [Google Scholar] [CrossRef]
- Celli, G.; Ghiani, E.; Pilo, F.; Soma, G.G. Reliability assessment in smart distribution networks. Electr. Power Syst. Res. 2013, 104, 164–175. [Google Scholar] [CrossRef]
- Guo, H.; Levi, V.; Buhari, M. Reliability assessment of smart distribution networks. In Proceedings of the 2015 IEEE Innovative Smart Grid Technologies—Asia (ISGT ASIA), Bangkok, Thailand, 3–6 November 2015; pp. 1–6. [Google Scholar]
- Fotuhi-Firuzabad, M.; Rajabi-Ghahnavie, A. An analytical method to consider DG impacts on distribution system reliability. In Proceedings of the 2005 IEEE/PES Transmission Distribution Conference Exposition: Asia and Pacific, Dalian, China, 18 August 2005; pp. 1–6. [Google Scholar]
- Conti, S.; Nicolosi, R.; Rizzo, S.A. Generalized systematic approach to assess distribution system reliability with renewable distributed generators and microgrids. IEEE Trans. Power Deliv. 2012, 27, 261–270. [Google Scholar] [CrossRef]
- Al-Muhaini, M.; Heydt, G.T. Evaluating future power distribution system reliability including distributed generation. IEEE Trans. Power Deliv. 2013, 28, 2264–2272. [Google Scholar] [CrossRef]
- Conti, S.; Rizzo, S.A. Modelling of microgrid-renewable generators accounting for power-output correlation. IEEE Trans. Power Deliv. 2013, 28, 2124–2133. [Google Scholar] [CrossRef]
- Zou, K.; Agalgaonkar, A.P.; Muttaqi, K.M.; Perera, S. An analytical approach for reliability evaluation of distribution systems containing dispatchable and nondispatchable renewable DG units. IEEE Trans. Smart Grid 2014, 5, 2657–2665. [Google Scholar] [CrossRef]
- Chen, C.; Wu, W.; Zhang, B.; Singh, C. An analytical adequacy evaluation method for distribution networks considering protection strategies and distributed generators. IEEE Trans. Power Deliv. 2015, 30, 1392–1400. [Google Scholar] [CrossRef]
- Conti, S.; Faraci, G.; La Corte, A.; Nicolosi, R.; Rizzo, S.A.; Schembra, G. Effect of islanding and telecontrolled switches on distribution system reliability considering load and green-energy fluctuations. Appl. Sci. 2016, 6, 138. [Google Scholar] [CrossRef]
- De Castro, C.L.C.; Rodrigues, A.B.; Silva, M.G. Reliability evaluation of radial distribution systems considering voltage drop constraints in the restoration process. In Proceedings of the 2004 International Conference on Probabilistic Methods Applied to Power Systems, Ames, IA, USA, 12–16 September 2004; pp. 106–111. [Google Scholar]
- Neto, A.C.; Da Silva, M.G.; Rodrigues, A.B. Impact of distributed generation on reliability evaluation of radial distribution systems under network constraints. In Proceedings of the 2006 International Conference on Probabilistic Methods Applied to Power Systems, Stockholm, Sweden, 11–15 June 2006; pp. 1–6. [Google Scholar]
- Da Silva, A.M.L.; Nascimento, L.C.; Da Rosa, M.A.; Issicaba, D.; Lopes, J.A.P. Distributed energy resources impact on distribution system reliability under load transfer restrictions. IEEE Trans. Smart Grid 2012, 3, 2048–2055. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, M.A.; Agalgaonkar, A.P.; Muttaqi, K.M. Assessment of energy supply and continuity of service in distribution network with renewable distributed generation. Appl. Energy 2014, 113, 1015–1026. [Google Scholar] [CrossRef]
- Michael, L.; Aslam, O.; Foster, B.; Kathan, D.; Kwok, J.; Medearis, L.; Palmer, R.; Sporborg, P.; Tita, M. Assessment of demand response and advanced metering. Fed. Energy Regul. Comm. Tech Rep 2013. [Google Scholar]
- Yan, X.; Ozturk, Y.; Hu, Z.; Song, Y. A review on price-driven residential demand response. Renew. Sustain. Energy Rev. 2018, 96, 411–419. [Google Scholar] [CrossRef]
- Gelazanskas, L.; Gamage, K.A.A. Demand side management in smart grid: A review and proposals for future direction. Sustain. Cities Soc. 2014, 11, 22–30. [Google Scholar] [CrossRef]
- Strüker, J.; Dinther, C. Demand response in smart grids: Research opportunities for the IS discipline. In Proceedings of the Americas conference on Information Systems (AMCIS), Seattle, WA, USA, 9–12 August 2012; Volume 7. [Google Scholar]
- Good, N.; Ellis, K.A.; Mancarella, P. Review and classification of barriers and enablers of demand response in the smart grid. Renew. Sustain. Energy Rev. 2017, 72, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Deng, R.; Yang, Z.; Chow, M.-Y.; Chen, J. A survey on demand response in smart grids: Mathematical models and approaches. IEEE Trans. Ind. Inform. 2015, 11, 570–582. [Google Scholar] [CrossRef]
- Zhu, Q.; Sauer, P.; Başar, T. Value of demand response in the smart grid. In Proceedings of the 2013 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 22–23 February 2013; pp. 76–82. [Google Scholar]
- Warren, P. A review of demand-side management policy in the UK. Renew. Sustain. Energy Rev. 2014, 29, 941–951. [Google Scholar] [CrossRef]
- Wu, Y.-K.; Tang, K.-T. Frequency support by demand response—Review and analysis. Energy Procedia 2019, 156, 327–331. [Google Scholar] [CrossRef]
- Albadi, M.H.; El-Saadany, E.F. Demand response in electricity markets: An overview. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–5. [Google Scholar]
- Mohagheghi, S.; Yang, F.; Falahati, B. Impact of demand response on distribution system reliability. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–7. [Google Scholar]
- Syrri, A.L.A.; Mancarella, P. Reliability and risk assessment of post-contingency demand response in smart distribution networks. Sustain. Energy Grids Netw. 2016, 7, 1–12. [Google Scholar] [CrossRef]
- Xie, H.; Bie, Z.; Hua, B.; Li, G. Reliability assessment of distribution power systems considering the TOU pricing. In Proceedings of the 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013), Xi’an, China, 23–25 October 2013; pp. 1–4. [Google Scholar]
- Zeng, B.; Wu, G.; Wang, J.; Zhang, J.; Zeng, M. Impact of behavior-driven demand response on supply adequacy in smart distribution systems. Appl. Energy 2017, 202, 125–137. [Google Scholar] [CrossRef]
- Safdarian, A.; Degefa, M.Z.; Lehtonen, M.; Fotuhi-Firuzabad, M. Distribution network reliability improvements in presence of demand response. Transm. Distrib. IET Gener. 2014, 8, 2027–2035. [Google Scholar] [CrossRef]
- Syrri, A.L.A.; Mancarella, P. Reliability evaluation of demand response to increase distribution network utilisation. In Proceedings of the 2014 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Durham, UK, 7–10 July 2014; pp. 1–6. [Google Scholar]
- Drysdale, B.; Wu, J.; Jenkins, N. Flexible demand in the GB domestic electricity sector in 2030. Appl. Energy 2015, 139, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Mu, Y.; Jia, H.; Wu, J.; Jiang, T.; Yu, X. Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system. Appl. Energy 2016, 194, 386–398. [Google Scholar] [CrossRef]
- Cheng, M.; Sami, S.S.; Wu, J. Benefits of using virtual energy storage system for power system frequency response. Appl. Energy 2017, 194, 376–385. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Wu, J.; Ekanayake, J.; Coleman, T.; Hung, W.; Jenkins, N. Primary frequency response in the great britain power system from dynamically controlled refrigerators. In Proceedings of the 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013, Institution of Engineering and Technology, Stockholm, Sweden, 10–13 June 2013; p. 507. [Google Scholar]
- Short, J.A.; Infield, D.G.; Freris, L.L. Stabilization of grid frequency through dynamic demand control. IEEE Trans. Power Syst. 2007, 22, 1284–1293. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Wu, J.; Galsworthy, S.J.; Ugalde-Loo, C.E.; Gargov, N.; Hung, W.W.; Jenkins, N. Power system frequency response from the control of bitumen tanks. IEEE Trans. Power Syst. 2016, 31, 1769–1778. [Google Scholar] [CrossRef]
- Elamari, K.; Lopes, L.A.C.; Tonkoski, R. Using Electric Water Heaters (EWHs) for Power Balancing and Frequency Control in PV-Diesel Hybrid Mini-Grids. In Proceedings of the World Renewable Energy Congress—Sweden, Linköping, Sweden, 8–13 May 2011; pp. 842–850. [Google Scholar]
- Tokudome, M.; Tanaka, K.; Senjyu, T.; Yona, A.; Funabashi, T.; Kim, C.-H. Frequency and voltage control of small power systems by decentralized controllable loads. In Proceedings of the 2009 International Conference on Power Electronics and Drive Systems (PEDS), Taipei, Taiwan, 2–5 November 2009; pp. 666–671. [Google Scholar]
- Cheng, M.; Wu, J.; Galsworthy, S.; Jenkins, N.; Hung, W. Availability of load to provide frequency response in the great Britain power system. In Proceedings of the 2014 Power Systems Computation Conference, Wroclaw, Poland, 18–22 August 2014; pp. 1–7. [Google Scholar]
- Yao, Y.; Zhang, P.; Wang, Y. A two-layer control method for thermostatically controlled loads to provide fast frequency regulation. Proc. Chin. Soc. Electr. Eng. 2018, 38, 4987–4998. [Google Scholar] [CrossRef]
- Yan, S.; Wang, M.-H.; Yang, T.-B.; Hui, S.Y.R. Instantaneous frequency regulation of microgrids via power shedding of smart load and power limiting of renewable generation. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016. [Google Scholar]
- Pourmousavi, S.A.; Nehrir, M.H. Real-time central demand response for primary frequency regulation in microgrids. IEEE Trans. Smart Grid 2012, 3, 1988–1996. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Z.; Song, Y.; Wang, J.; Xie, X. Vehicle-to-grid control for supplementary frequency regulation considering charging demands. IEEE Trans. Power Syst. 2015, 30, 3110–3119. [Google Scholar] [CrossRef]
- Faisal, M.; Hannan, M.A.; Ker, P.J.; Hussain, A.; Mansor, M.B.; Blaabjerg, F. Review of energy storage system technologies in microgrid applications: Issues and challenges. IEEE Access 2018, 6, 35143–35164. [Google Scholar] [CrossRef]
- Mwasilu, F.; Justo, J.J.; Kim, E.-K.; Do, T.D.; Jung, J.-W. Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renew. Sustain. Energy Rev. 2014, 34, 501–516. [Google Scholar] [CrossRef]
- Zhang, W.; Qiu, M.; Lai, X. Application of energy storage technologies in power grids. Power Syst. Technol. 2008, 7, 3–9. [Google Scholar]
- Carpinelli, G.; Celli, G.; Mocci, S.; Mottola, F.; Pilo, F.; Proto, D. Optimal integration of distributed energy storage devices in smart grids. IEEE Trans. Smart Grid 2013, 4, 985–995. [Google Scholar] [CrossRef]
- Akinyele, D.O.; Rayudu, R.K. Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assess. 2014, 8, 74–91. [Google Scholar] [CrossRef]
- Guney, M.S.; Tepe, Y. Classification and assessment of energy storage systems. Renew. Sustain. Energy Rev. 2017, 75, 1187–1197. [Google Scholar] [CrossRef]
- Khodadoost Arani, A.A.B.; Gharehpetian, G.; Abedi, M. Review on energy storage systems control methods in microgrids. Int. J. Electr. Power Energy Syst. 2019, 107, 745–757. [Google Scholar] [CrossRef]
- Khalid, M. A review on the selected applications of battery-supercapacitor hybrid energy storage systems for microgrids. Energies 2019, 12, 4559. [Google Scholar] [CrossRef] [Green Version]
- Bragard, M.; Soltau, N.; Thomas, S.; Doncker, R.W.D. The balance of renewable sources and user demands in grids: Power electronics for modular battery energy storage systems. IEEE Trans. Power Electron. 2010, 25, 3049–3056. [Google Scholar] [CrossRef]
- Griffiths, B.W. Reducing emissions from consumer energy storage using retail rate design. Energy Policy 2019, 129, 481–490. [Google Scholar] [CrossRef]
- Terlouw, T.; AlSkaif, T.; Bauer, C.; Van Sark, W. Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies. Appl. Energy 2019, 239, 356–372. [Google Scholar] [CrossRef]
- Anderson, K.; Rajagopal, R.; Gamal, A.E. Coordination of distributed energy storage under spatial and temporal data asymmetry. IEEE Trans. Smart Grid 2019, 10, 1184–1194. [Google Scholar] [CrossRef]
- Sadat, S.A.; Dai, R.; Charkhgard, H. Bi-objective mixed integer program for energy storage sharing considering storage lifetime maintenance. In Proceedings of the IEEE Power and Energy Society General Meeting, Portland, OR, USA, 5–10 August 2018. [Google Scholar]
- Lee, H.C.; Kim, H.; Yoon, Y.T. Optimal ESS investment strategies for energy arbitrage by market structures and participants. J. Electr. Eng. Technol. 2018, 13, 51–59. [Google Scholar] [CrossRef]
- Chapaloglou, S.; Nesiadis, A.; Iliadis, P.; Atsonios, K.; Nikolopoulos, N.; Grammelis, P.; Yiakopoulos, C.; Antoniadis, I.; Kakaras, E. Smart energy management algorithm for load smoothing and peak shaving based on load forecasting of an island’s power system. Appl. Energy 2019, 627–642. [Google Scholar] [CrossRef]
- Taylor, Z.; Akhavan-Hejazi, H.; Cortez, E.; Alvarez, L.; Ula, S.; Barth, M.; Mohsenian-Rad, H. Customer-side SCADA-assisted large battery operation optimization for distribution feeder peak load shaving. IEEE Trans. Smart Grid 2019, 10, 992–1004. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zhang, Y.; Ma, Y.; Zhou, M.; Yang, X. Reliability evaluation of power systems in the presence of energy storage system as demand management resource. Int. J. Electr. Power Energy Syst. 2019, 110, 1–10. [Google Scholar] [CrossRef]
- Akram, U.; Khalid, M. A coordinated frequency regulation framework based on hybrid battery-ultracapacitor energy storage technologies. IEEE Access 2018, 6, 7310–7320. [Google Scholar] [CrossRef]
- Canevese, S.; Gatti, A.; Micolano, E.; Pellegrino, L.; Rapizza, M. Battery energy storage systems for frequency regulation: Simplified aging evaluation. In Proceedings of the 6th International Conference on Clean Electrical Power (ICCEP), Santa Margherita Ligure, Italy, 7–29 June 2017; pp. 291–297. [Google Scholar]
- Fang, J.; Tang, Y.; Li, H.; Li, X. A Battery/ultracapacitor hybrid energy storage system for implementing the power management of virtual synchronous generators. IEEE Trans. Power Electron. 2018, 33, 2820–2824. [Google Scholar] [CrossRef]
- Kumar, K.N.; Vijayakumar, K.; Kalpesh, C. Virtual energy storage capacity estimation using ANN-based kWh modelling of refrigerators. IET Smart Grid 2018, 1, 31–39. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Loh, P.C.; Lee, T.; Chandorkar, M. Advanced control architectures for intelligent microgrids—Part II: Power quality, energy storage, and AC/DC microgrids. IEEE Trans. Ind. Electron. 2013, 60, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- Díaz-González, F.; Sumper, A.; Gomis-Bellmunt, O.; Villafáfila-Robles, R. A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 2012, 16, 2154–2171. [Google Scholar] [CrossRef]
- Khan, K.A.; Khalid, M. Hybrid energy storage system for voltage stability in a DC microgrid using a modified control strategy. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; pp. 2760–2765. [Google Scholar]
- Li, Y.; Yang, Z.; Li, G.; Zhao, D.; Tian, W. Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation uncertainties. IEEE Trans. Ind. Electron. 2018, 66, 1565–1575. [Google Scholar] [CrossRef] [Green Version]
- Morstyn, T.; Hredzak, B.; Agelidis, V.G. Communication delay robustness for multi-agent state of charge balancing between distributed AC microgrid storage systems. In Proceedings of the 2015 IEEE Conference on Control Applications (CCA), Sydney, Australia, 21–23 September 2015; pp. 181–186. [Google Scholar]
- Feltes, J.W.; Grande-Moran, C. Black start studies for system restoration. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–8. [Google Scholar]
- Khalid, M.; Savkin, A.V. A model predictive control approach to the problem of wind power smoothing with controlled battery storage. Renew. Energy 2010, 35, 1520–1526. [Google Scholar] [CrossRef]
- Saez-de-Ibarra, A.; Milo, A.; Gaztañaga, H.; Etxeberria-Otadui, I.; Rodríguez, P.; Bacha, S.; Debusschere, V. Analysis and comparison of battery energy storage technologies for grid applications. In Proceedings of the 2013 IEEE Grenoble Conference, Grenoble, France, 16–20 June 2013; pp. 1–6. [Google Scholar]
- Leou, R.-C. An economic analysis model for the energy storage system applied to a distribution substation. Int. J. Electr. Power Energy Syst. 2012, 34, 132–137. [Google Scholar] [CrossRef]
- Hill, C.A.; Such, M.C.; Chen, D.; Gonzalez, J.; Grady, W.M. Battery energy storage for enabling integration of distributed solar power generation. IEEE Trans. Smart Grid 2012, 3, 850–857. [Google Scholar] [CrossRef]
- Morstyn, T.; Hredzak, B.; Agelidis, V.G. Cooperative multi-agent control of heterogeneous storage devices distributed in a DC microgrid. IEEE Trans. Power Syst. 2016, 31, 2974–2986. [Google Scholar] [CrossRef]
- Morstyn, T.; Savkin, A.V.; Hredzak, B.; Agelidis, V.G. Multi-agent sliding mode control for state of charge balancing between battery energy storage systems distributed in a DC Microgrid. IEEE Trans. Smart Grid 2018, 9, 4735–4743. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Dragicevic, T.; Plaza, M.G.; Andrade, F.; Vasquez, J.C.; Guerrero, J.M. Multiagent based distributed control for state-of-charge balance of distributed energy storage in DC microgrids. In Proceedings of the IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 29 October–1 November 2014; pp. 2180–2184. [Google Scholar]
- Mohd, A.; Ortjohann, E.; Schmelter, A.; Hamsic, N.; Morton, D. Challenges in integrating distributed Energy storage systems into future smart grid. In Proceedings of the 2008 IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June–2 July 2008; pp. 1627–1632. [Google Scholar]
- Zhou, Y.; Li, X. Vehicle to grid technology: A review. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015; pp. 9031–9036. [Google Scholar]
- Wenzel, G.; Negrete-Pincetic, M.; Olivares, D.E.; MacDonald, J.; Callaway, D.S. Real-time charging strategies for an electric vehicle aggregator to provide ancillary services. IEEE Trans. Smart Grid 2018, 9, 5141–5151. [Google Scholar] [CrossRef] [Green Version]
- Aldik, A.; Al-Awami, A.T.; Sortomme, E.; Muqbel, A.M.; Shahidehpour, M. A planning model for electric vehicle aggregators providing ancillary services. IEEE Access 2018, 6, 70685–70697. [Google Scholar] [CrossRef]
- Cheng, M.; Sami, S.S.; Wu, J. Virtual energy storage system for smart grids. Proc. Energy Procedia 2016, 88, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Raghunathan, V.; Raghunathan, A. Design and management of battery-supercapacitor hybrid electrical energy storage systems for regulation services. IEEE Trans. Multi-Scale Comput. Syst. 2017, 3, 12–24. [Google Scholar] [CrossRef]
- Lucas, A.; Chondrogiannis, S. Smart grid energy storage controller for frequency regulation and peak shaving, using a vanadium redox flow battery. Int. J. Electr. Power Energy Syst. 2016, 80, 26–36. [Google Scholar] [CrossRef]
- Morstyn, T.; Hredzak, B.; Agelidis, V.G. Distributed cooperative control of microgrid storage. IEEE Trans. Power Syst. 2015, 30, 2780–2789. [Google Scholar] [CrossRef]
- Wang, R.; Wang, D.; Jia, H.; Yang, Z.; Qi, Y.; Fan, M.; Sheng, W.; Hou, L. A coordination control strategy of battery and virtual energy storage to smooth the micro-grid tie-line power fluctuations. Zhongguo Dianji Gongcheng XuebaoProceedings Chin. Soc. Electr. Eng. 2015, 35, 5124–5134. [Google Scholar] [CrossRef]
- Palizban, O.; Kauhaniemi, K. Energy storage systems in modern grids—Matrix of technologies and applications. J. Energy Storage 2016, 6, 248–259. [Google Scholar] [CrossRef]
- Rohit, A.K.; Devi, K.P.; Rangnekar, S. An overview of energy storage and its importance in Indian renewable energy sector: Part I—Technologies and Comparison. J. Energy Storage 2017, 13, 10–23. [Google Scholar] [CrossRef]
- Alotaibi, I. A Hybridized SMES/BESS Optimal Storage System. Master’s, Thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, 2018. [Google Scholar]
- Avendano-Mora, M.; Camm, E.H. Financial assessment of battery energy storage systems for frequency regulation service. In Proceedings of the 2015 IEEE Power Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
- Potdar, V.; Chandan, A.; Batool, S.; Patel, N. Big energy data management for smart grids—Issues, challenges and recent developments. Smart Cities 2018, 177–205. [Google Scholar] [CrossRef]
- Ahsan, U.; Bais, A. Distributed big data management in smart grid. In Proceedings of the 2017 26th Wireless and Optical Communication Conference (WOCC), Newark, NJ, USA, 7–8 April 2017; pp. 1–6. [Google Scholar]
- Daki, H.; Hannani, A.E.; Aqqal, A.; Haidine, A.; Dahbi, A. Big Data management in smart grid: Concepts, requirements and implementation. J. Big Data 2017, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Diamantoulakis, P.D.; Kapinas, V.M.; Karagiannidis, G.K. Big data analytics for dynamic energy management in smart grids. Big Data Res. 2015, 2, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart grid technologies: Communication technologies and standards. IEEE Trans. Ind. Inform. 2011, 7, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Fu, C.; Yang, S. Big data driven smart energy management: From big data to big insights. Renew. Sustain. Energy Rev. 2016, 56, 215–225. [Google Scholar] [CrossRef]
- Zaballos, A.; Vallejo, A.; Selga, J.M. Heterogeneous communication architecture for the smart grid. IEEE Netw. 2011, 25, 30–37. [Google Scholar] [CrossRef]
- Yin, J.; Kulkarni, A.; Purohit, S.; Gorton, I.; Akyol, B. Scalable real time data management for smart grid. In Proceedings of the Middleware 2011 Industry Track Workshop, Lisbon, Portugal, 7–11 December 2011; p. 1. [Google Scholar]
- Hashem, I.A.T.; Chang, V.; Anuar, N.B.; Adewole, K.; Yaqoob, I.; Gani, A.; Ahmed, E.; Chiroma, H. The role of big data in smart city. Int. J. Inf. Manag. 2016, 36, 748–758. [Google Scholar] [CrossRef] [Green Version]
- Vojdani, A. Smart integration. IEEE Power Energy Mag. 2008, 6, 71–79. [Google Scholar] [CrossRef]
- He, X.; Ai, Q.; Qiu, R.C.; Huang, W.; Piao, L.; Liu, H. A big data architecture design for smart grids based on random matrix theory. IEEE Trans. Smart Grid 2017, 8, 674–686. [Google Scholar] [CrossRef]
- Stimmel, C.L. Big Data Analytics Strategies for the Smart Grid; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Gharaibeh, A.; Salahuddin, M.A.; Hussini, S.J.; Khreishah, A.; Khalil, I.; Guizani, M.; Al-Fuqaha, A. Smart cities: A survey on data management, security, and enabling technologies. IEEE Commun. Surv. Tutor. 2017, 19, 2456–2501. [Google Scholar] [CrossRef]
- Uludag, S.; Lui, K.; Ren, W.; Nahrstedt, K. Secure and scalable data collection with time minimization in the smart grid. IEEE Trans. Smart Grid 2016, 7, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Australian Bureau of Statistics Dwelling Type (2017) Greater Sydney. In Id Popul Experts; Available online: http://profile.id.com.au/australia/dwellings?WebID=250 (accessed on 21 January 2019).
- Huang, H.; Savkin, A.V. An energy efficient approach for data collection in wireless sensor networks using public transportation vehicles. AEU Int. J. Electron. Commun. 2017, 75, 108–118. [Google Scholar] [CrossRef]
- Li, X.; Lv, Z.; Hu, J.; Zhang, B.; Shi, L.; Feng, S. XEarth: A 3D GIS platform for managing massive city information. In Proceedings of the 2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), Shenzhen, China, 12–14 June 2015; pp. 1–6. [Google Scholar]
- Domínguez, J.; Amador, J. Geographical information systems applied in the field of renewable energy sources. Comput. Ind. Eng. 2007, 52, 322–326. [Google Scholar] [CrossRef]
- Huang, H.; Savkin, A.V. Viable path planning for data collection robots in a sensing field with obstacles. Comput. Commun. 2017, 111, 84–96. [Google Scholar] [CrossRef]
- Liu, N.; Chen, J.; Zhu, L.; Zhang, J.; He, Y. A key management scheme for secure communications of advanced metering infrastructure in smart grid. IEEE Trans. Ind. Electron. 2013, 60, 4746–4756. [Google Scholar] [CrossRef]
- Uludag, S.; Zeadally, S.; Badra, M. Techniques, taxonomy, and challenges of privacy protection in the smart grid. In Privacy in a Digital, Networked World; Zeadally, S., Badra, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 343–390. ISBN 978-3-319-08469-5. [Google Scholar]
- Fouda, M.M.; Fadlullah, Z.M.; Kato, N.; Lu, R.; Shen, X.S. A lightweight message authentication scheme for smart grid communications. IEEE Trans. Smart Grid 2011, 2, 675–685. [Google Scholar] [CrossRef] [Green Version]
- Bekara, C.; Luckenbach, T.; Bekara, K. A Privacy Preserving and Secure Authentication Protocol for the Advanced Metering Infrastructure with Non-Repudiation Service. In Proceedings of the The Second International Conference on Smart Grids, St. Maarten, The Netherlands, 25–29 March 2012; p. 9. [Google Scholar]
- Abbasinezhad-Mood, D.; Nikooghadam, M. An ultra-lightweight and secure scheme for communications of smart meters and neighborhood gateways by utilization of an ARM Cortex-M microcontroller. IEEE Trans. Smart Grid 2018, 9, 6194–6205. [Google Scholar] [CrossRef]
- Kim, Y.; Kolesnikov, V.; Kim, H.; Thottan, M. SSTP: A scalable and secure transport protocol for smart grid data collection. In Proceedings of the 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels, Belgium, 17–20 October 2011; pp. 161–166. [Google Scholar]
- Saputro, N.; Akkaya, K. Investigation of smart meter data reporting strategies for optimized performance in smart grid AMI networks. IEEE Internet Things J. 2017, 4, 894–904. [Google Scholar] [CrossRef]
- Cody, R. Cody’s Data Cleaning Techniques Using SAS. In Cody’s Data Cleaning Techniques Using SAS, 3rd ed.; SAS Institute Inc.: Cary, NC, USA, 2017; p. 23. ISBN 978-1-63526-069-4. [Google Scholar]
- Chu, X.; Ilyas, I.F. Qualitative data cleaning. Proc. VLDB Endow. 2016, 9, 1605–1608. [Google Scholar] [CrossRef]
- Sagiroglu, S.; Terzi, R.; Canbay, Y.; Colak, I. Big data issues in smart grid systems. In Proceedings of the 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, 20–23 November 2016; pp. 1007–1012. [Google Scholar]
- Dellino, G.; Laudadio, T.; Mari, R.; Mastronardi, N.; Meloni, C.; Vergura, S. Energy production forecasting in a PV plant using transfer function models. In Proceedings of the 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy, 10–13 June 2015; pp. 1379–1383. [Google Scholar]
- Xie, S.; Chen, Z. Anomaly detection and redundancy elimination of big sensor data in internet of things. arXiv 2017, arXiv:1703.03225. [Google Scholar]
- Lee, K.; Kim, D.; Shin, I. REboost: Improving throughput in wireless networks using redundancy elimination. IEEE Commun. Lett. 2017, 21, 160–163. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, K.; Yang, S.; Wu, C. Data quality of electricity consumption data in a smart grid environment. Renew. Sustain. Energy Rev. 2017, 75, 98–105. [Google Scholar] [CrossRef]
- Aiello, M.; Pagani, G.A. The smart grid’s data generating potentials. In Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, Warsaw, Poland, 7–10 September 2014; pp. 9–16. [Google Scholar]
- Li, F.; Luo, B.; Liu, P. Secure information aggregation for smart grids using homomorphic encryption. In Proceedings of the First IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, USA, 4–6 October 2010; pp. 327–332. [Google Scholar]
- Uddin, F. Energy-Aware optimal data aggregation in smart grid wireless communication networks. IEEE Trans. Green Commun. Netw. 2017, 1, 358–371. [Google Scholar] [CrossRef]
- Groat, M.M.; Hey, W.; Forrest, S. KIPDA: K-indistinguishable privacy-preserving data aggregation in wireless sensor networks. In Proceedings of the IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 2024–2032. [Google Scholar]
- Rottondi, C.; Verticale, G.; Krauss, C. Distributed privacy-preserving aggregation of metering data in smart grids. IEEE J. Sel. Areas Commun. 2013, 31, 1342–1354. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Luo, B. Preserving data integrity for smart grid data aggregation. In Proceedings of the 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), Tainan, Taiwan, 5–8 November 2012; pp. 366–371. [Google Scholar]
- Guerrero, J.I.; García, A.; Personal, E.; Luque, J.; León, C. Heterogeneous data source integration for smart grid ecosystems based on metadata mining. Expert Syst. Appl. 2017, 79, 254–268. [Google Scholar] [CrossRef]
- Alahakoon, D.; Yu, X. Smart electricity meter data intelligence for future energy systems: A survey. IEEE Trans. Ind. Inform. 2016, 12, 425–436. [Google Scholar] [CrossRef]
- Jurado, S.; Nebot, À.; Mugica, F.; Mihaylov, M. Fuzzy inductive reasoning forecasting strategies able to cope with missing data: A smart grid application. Appl. Soft Comput. 2017, 51, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Qiu, R.C.; Antonik, P. Smart Grid using big data analytics: A random matrix theory approach. In Smart Grid using Big Data Analytics; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 1–575. ISBN 978-1-118-71677-9. [Google Scholar]
- Sigeru, O.; Sara, R. Distributed Computing and Artificial Intelligence, 14th International Conference; Springer International Publishing AG: Cham, Switzerland, 2017; ISBN 978-3-319-62409-9. [Google Scholar]
- Virgilio, R.D. Smart RDF Data Storage in Graph Databases. In Proceedings of the 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), Madrid, Spain, 14–17 May 2017; pp. 872–881. [Google Scholar]
- Bruno, S.; Dellino, G.; Scala, M.L.; Meloni, C. A microforecasting module for energy consumption in smart grids. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–6. [Google Scholar]
- Monika; Srinivasan, D.; Reindl, T. Real-time display of data from a smart-grid on geographical map using a GIS tool and its role in optimization of game theory. In Proceedings of the 2015 IEEE Innovative Smart Grid Technologies—Asia (ISGT ASIA), Bangkok, Thailand, 3–6 November 2015; pp. 1–6. [Google Scholar]
- Stefan, M.; Lopez, J.G.; Andreasen, M.H.; Olsen, R.L. Visualization techniques for electrical grid smart metering data: A survey. In Proceedings of the 2017 IEEE Third International Conference on Big Data Computing Service and Applications (BigDataService), San Francisco, CA, USA, 6–9 April 2017; pp. 165–171. [Google Scholar]
- Yu, M.; Hong, S.H. A real-time demand-response algorithm for smart grids: A stackelberg game approach. IEEE Trans. Smart Grid 2016, 7, 879–888. [Google Scholar] [CrossRef]
- Siano, P. Demand response and smart grids—A survey. Renew. Sustain. Energy Rev. 2014, 30, 461–478. [Google Scholar] [CrossRef]
- Colson, C.M.; Nehrir, M.H. Comprehensive real-time microgrid power management and control with distributed agents. IEEE Trans. Smart Grid 2013, 4, 617–627. [Google Scholar] [CrossRef]
- Ashok, A.; Hahn, A.; Govindarasu, M. Cyber-physical security of wide-area monitoring, protection and control in a smart grid environment. J. Adv. Res. 2014, 5, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Aloul, F.; Al-Ali, A.R.; Al-Dalky, R.; Al-Mardini, M.; El-Hajj, W. Smart grid security: Threats, vulnerabilities and solutions. Int. J. Smart Grid Clean Energy 2012, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ding, D.; Han, Q.-L.; Xiang, Y.; Ge, X.; Zhang, X.-M. A survey on security control and attack detection for industrial cyber-physical systems. Neurocomputing 2018, 275, 1674–1683. [Google Scholar] [CrossRef]
- Gupta, A.; Anpalagan, A.; Carvalho, G.H.; Guan, L.; Woungang, I. Prevailing and emerging cyber threats and security practices in iot-enabled smart grids: A survey. J. Netw. Comput. Appl. 2019, 132, 118–148. [Google Scholar] [CrossRef]
- Peng, C.; Sun, H.; Yang, M.; Wang, Y.-L. A survey on security communication and control for smart grids under malicious cyber attacks. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1554–1569. [Google Scholar] [CrossRef]
- Li, B. Detection of False Data Injection Attacks in Smart Grid Cyber-Physical Systems. Ph.D. Thesis, Nanyang Technological University, Singapore, 2019. [Google Scholar]
- Li, X.; Liang, X.; Lu, R.; Shen, X.; Lin, X.; Zhu, H. Securing smart grid: Cyber attacks, countermeasures, and challenges. IEEE Commun. Mag. 2012, 50, 38–45. [Google Scholar] [CrossRef]
- Wang, W.; Lu, Z. Cyber security in the smart grid: Survey and challenges. Comput. Netw. 2013, 57, 1344–1371. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Y.; Li, S.; Liang, W.; Chen, C.P. Cyber security and privacy issues in smart grids. IEEE Commun. Surv. Tutor. 2012, 14, 981–997. [Google Scholar] [CrossRef]
- Khurana, H.; Hadley, M.; Lu, N.; Frincke, D.A. Smart-grid security issues. IEEE Secur. Priv. 2010, 8, 81–85. [Google Scholar] [CrossRef]
- Liang, G.; Zhao, J.; Luo, F.; Weller, S.R.; Dong, Z.Y. A review of false data injection attacks against modern power systems. IEEE Trans. Smart Grid 2017, 8, 1630–1638. [Google Scholar] [CrossRef]
- Giraldo, J.; Sarkar, E.; Cardenas, A.A.; Maniatakos, M.; Kantarcioglu, M. Security and privacy in cyber-physical systems: A survey of surveys. IEEE Des. Test 2017, 34, 7–17. [Google Scholar] [CrossRef]
- Baig, Z.A.; Szewczyk, P.; Valli, C.; Rabadia, P.; Hannay, P.; Chernyshev, M.; Johnstone, M.; Kerai, P.; Ibrahim, A.; Sansurooah, K. Future challenges for smart cities: Cyber-security and digital forensics. Digit. Investig. 2017, 22, 3–13. [Google Scholar] [CrossRef]
- Zhang, K.; Ni, J.; Yang, K.; Liang, X.; Ren, J.; Shen, X.S. Security and privacy in smart city applications: Challenges and solutions. IEEE Commun. Mag. 2017, 55, 122–129. [Google Scholar] [CrossRef]
- Boroojeni, K.G.; Amini, M.H.; Iyengar, S.S. Smart Grids: Security and Privacy Issues; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Liang, G.; Weller, S.R.; Zhao, J.; Luo, F.; Dong, Z.Y. The 2015 ukraine blackout: Implications for false data injection attacks. IEEE Trans. Power Syst. 2017, 32, 3317–3318. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Shen, B.; Alsaadi, F.E.; Hayat, T. Recent advances on filtering and control for cyber-physical systems under security and resource constraints. J. Frankl. Inst. 2016, 11, 2451–2466. [Google Scholar] [CrossRef]
- Li, X.; Scaglione, A. Robust decentralized state estimation and tracking for power systems via network gossiping. IEEE J. Sel. Areas Commun. 2013, 31, 1184–1194. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.H.; Liu, G.P.; Dong, Z. Secure networked control systems under denial of service attacks. IFAC Proc. Vol. 2011, 44, 8908–8913. [Google Scholar] [CrossRef] [Green Version]
- Shoukry, Y.; Tabuada, P. Event-triggered state observers for sparse sensor noise/attacks. IEEE Trans. Autom. Control 2016, 61, 2079–2091. [Google Scholar] [CrossRef] [Green Version]
- Amin, S.; Schwartz, G.A.; Shankar Sastry, S. Security of interdependent and identical networked control systems. Automatica 2013, 49, 186–192. [Google Scholar] [CrossRef]
- Befekadu, G.K.; Gupta, V.; Antsaklis, P.J. Risk-sensitive control under markov modulated denial-of-service (DoS) attack strategies. IEEE Trans. Autom. Control 2015, 60, 3299–3304. [Google Scholar] [CrossRef]
- Zhang, X.-M.; Han, Q.-L.; Seuret, A.; Gouaisbaut, F. An improved reciprocally convex inequality and an augmented Lyapunov–Krasovskii functional for stability of linear systems with time-varying delay. Automatica 2017, 84, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, X.; Han, Q. Event-triggered generalized dissipativity filtering for neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 77–88. [Google Scholar] [CrossRef]
- Chenine, M.; Ullberg, J.; Nordström, L.; Wu, Y.; Ericsson, G.N. A framework for wide-area monitoring and control systems interoperability and cybersecurity analysis. IEEE Trans. Power Deliv. 2014, 29, 633–641. [Google Scholar] [CrossRef]
- Lee, P.; Clark, A.; Bushnell, L.; Poovendran, R. A passivity framework for modeling and mitigating wormhole attacks on networked control systems. IEEE Trans. Autom. Control 2014, 59, 3224–3237. [Google Scholar] [CrossRef] [Green Version]
- Ding, D.; Wang, Z.; Han, Q.; Wei, G. Security control for discrete-time stochastic nonlinear systems subject to deception attacks. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 779–789. [Google Scholar] [CrossRef]
- Ding, D.; Wang, Z.; Ho, D.W.C.; Wei, G. Observer-based event-triggering consensus control for multiagent systems with lossy sensors and cyber-attacks. IEEE Trans. Cybern. 2017, 47, 1936–1947. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Khanna, K.; Bose, R.; Panigrahi, B.K.; Joshi, A. Joint-transformation-based detection of false data injection attacks in smart grid. IEEE Trans. Ind. Inform. 2018, 14, 89–97. [Google Scholar] [CrossRef]
- Rai, A.; Ward, D.; Roy, S.; Warnick, S. Vulnerable links and secure architectures in the stabilization of networks of controlled dynamical systems. In Proceedings of the 2012 American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012; pp. 1248–1253. [Google Scholar]
- Chen, J.; Abur, A. Placement of PMUs to enable bad data detection in state estimation. IEEE Trans. Power Syst. 2006, 21, 1608–1615. [Google Scholar] [CrossRef]
- Ashok, A.; Govindarasu, M.; Ajjarapu, V. Online detection of stealthy false data injection attacks in power system state estimation. IEEE Trans. Smart Grid 2018, 9, 1636–1646. [Google Scholar] [CrossRef]
- Hao, J.; Piechocki, R.J.; Kaleshi, D.; Chin, W.H.; Fan, Z. Sparse malicious false data injection attacks and defense mechanisms in smart grids. IEEE Trans. Ind. Inform. 2015, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tommaso, A.O.D.; Favuzza, S.; Genduso, F.; Miceli, R.; Galluzzo, G.R. Development of diagnostic systems for the fault tolerant operation of Micro-Grids. In Proceedings of the SPEEDAM, Pisa, Italy, 14–16 June 2010; pp. 1645–1650. [Google Scholar]
- Kailkhura, B.; Han, Y.S.; Brahma, S.; Varshney, P.K. Distributed bayesian detection in the presence of byzantine data. IEEE Trans. Signal Process. 2015, 63, 5250–5263. [Google Scholar] [CrossRef] [Green Version]
- Kailkhura, B.; Han, Y.S.; Brahma, S.; Varshney, P.K. Asymptotic analysis of distributed bayesian detection with byzantine data. IEEE Signal Process. Lett. 2015, 22, 608–612. [Google Scholar] [CrossRef] [Green Version]
- Rawat, A.S.; Anand, P.; Chen, H.; Varshney, P.K. Collaborative spectrum sensing in the presence of byzantine attacks in cognitive radio networks. IEEE Trans. Signal Process. 2011, 59, 774–786. [Google Scholar] [CrossRef]
- Deng, R.; Xiao, G.; Lu, R. Defending against false data injection attacks on power system state estimation. IEEE Trans. Ind. Inform. 2017, 13, 198–207. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, J.; Cheng, Y.; Li, H.; Campbell, K.A.; Han, Z. Real-time detection of false data injection in smart grid networks: An adaptive CUSUM method and analysis. IEEE Syst. J. 2016, 10, 532–543. [Google Scholar] [CrossRef] [Green Version]
- Hug, G.; Giampapa, J.A. Vulnerability assessment of AC state estimation with respect to false data injection cyber-attacks. IEEE Trans. Smart Grid 2012, 3, 1362–1370. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Esmalifalak, M.; Ding, Q.; Emesih, V.A.; Han, Z. Detecting false data injection attacks on power grid by sparse optimization. IEEE Trans. Smart Grid 2014, 5, 612–621. [Google Scholar] [CrossRef]
- Manandhar, K.; Cao, X.; Hu, F.; Liu, Y. Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter. IEEE Trans. Control Netw. Syst. 2014, 1, 370–379. [Google Scholar] [CrossRef]
- Mo, Y.; Chabukswar, R.; Sinopoli, B. Detecting Integrity Attacks on SCADA Systems. IEEE Trans. Control Syst. Technol. 2014, 22, 1396–1407. [Google Scholar] [CrossRef]
- Ao, W.; Song, Y.; Wen, C. Adaptive cyber-physical system attack detection and reconstruction with application to power systems. IET Control Theory Appl. 2016, 10, 1458–1468. [Google Scholar] [CrossRef]
- Pasqualetti, F.; Dörfler, F.; Bullo, F. Attack detection and Identification in cyber-physical systems. IEEE Trans. Autom. Control 2013, 58, 2715–2729. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.-C.; Hahn, A.; Liu, C.-C. Cyber security of a power grid: State-of-the-art. Int. J. Electr. Power Energy Syst. 2018, 99, 45–56. [Google Scholar] [CrossRef]
- Ericsson, G.N. Toward a framework for managing information security for an electric power utility—CIGRÉ experiences. IEEE Trans. Power Deliv. 2007, 22, 1461–1469. [Google Scholar] [CrossRef]
- Kushner, D. The real story of stuxnet. IEEE Spectr. 2013, 50, 48–53. [Google Scholar] [CrossRef]
- Falliere, N.; Murchu, L.O.; Chien, E. W32. Stuxnet Dossier. White Pap. Symantec Corp Secur. Response 2011, 5, 69. [Google Scholar]
- Ten, C.; Liu, C.; Manimaran, G. Vulnerability assessment of cybersecurity for SCADA systems. IEEE Trans. Power Syst. 2008, 23, 1836–1846. [Google Scholar] [CrossRef]
- Namboodiri, V.; Aravinthan, V.; Mohapatra, S.N.; Karimi, B.; Jewell, W. Toward a secure wireless-based home area network for metering in smart grids. IEEE Syst. J. 2014, 8, 509–520. [Google Scholar] [CrossRef]
- Liang, X.; Li, X.; Lu, R.; Lin, X.; Shen, X. UDP: Usage-based dynamic pricing with privacy preservation for smart grid. IEEE Trans. Smart Grid 2013, 4, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.; Nikovski, D.; Muso, T.; Tsuru, K. Electricity theft detection using smart meter data. In Proceedings of the 2015 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 18–20 February 2015; pp. 1–5. [Google Scholar]
- Bishop, A.N.; Savkin, A.V. Set-valued state estimation and attack detection for uncertain descriptor systems. IEEE Signal Process. Lett. 2013, 20, 1102–1105. [Google Scholar] [CrossRef]
- Yang, Y.; McLaughlin, K.; Sezer, S.; Littler, T.; Im, E.G.; Pranggono, B.; Wang, H.F. Multiattribute SCADA-specific intrusion detection system for power networks. IEEE Trans. Power Deliv. 2014, 29, 1092–1102. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, L.; Sun, W.; II, R.C.G.; Alam, M. Distributed intrusion detection system in a multi-layer network architecture of smart grids. IEEE Trans. Smart Grid 2011, 2, 796–808. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; McLaughlin, K.; Littler, T.; Sezer, S.; Pranggono, B.; Wang, H.F. Intrusion detection system for IEC 60870-5-104 based SCADA networks. In Proceedings of the IEEE Power Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar]
- Ten, C.; Hong, J.; Liu, C. Anomaly detection for cybersecurity of the substations. IEEE Trans. Smart Grid 2011, 2, 865–873. [Google Scholar] [CrossRef]
- Hahn, A.; Govindarasu, M. Model-based intrustion detection for the smart grid (MINDS). In Proceedings of the Eighth Annual Cyber Security and Information Intelligence Research Workshop, New York, NY, USA, 8–10 January 2013; pp. 27:1–27:4. [Google Scholar]
- Hong, J.; Liu, C.; Govindarasu, M. Integrated anomaly detection for cyber security of the substations. IEEE Trans. Smart Grid 2014, 5, 1643–1653. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, H.; Gao, L.; Yuan, Y.; McLaughlin, K.; Sezer, S. Multidimensional intrusion detection system for IEC 61850-based SCADA networks. IEEE Trans. Power Deliv. 2017, 32, 1068–1078. [Google Scholar] [CrossRef] [Green Version]
- Premaratne, U.K.; Samarabandu, J.; Sidhu, T.S.; Beresh, R.; Tan, J. An intrusion detection system for IEC61850 automated substations. IEEE Trans. Power Deliv. 2010, 25, 2376–2383. [Google Scholar] [CrossRef]
- Wu, J.; Xiong, J.; Shil, P.; Shi, Y. Real time anomaly detection in wide area monitoring of smart grids. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 2–6 November 2014; pp. 197–204. [Google Scholar]
- Fan, Y.; Zhang, Z.; Trinkle, M.; Dimitrovski, A.D.; Song, J.B.; Li, H. A cross-layer defense mechanism against GPS spoofing attacks on PMUs in smart grids. IEEE Trans. Smart Grid 2015, 6, 2659–2668. [Google Scholar] [CrossRef]
- Mitchell, R.; Chen, I. Behavior-rule based intrusion detection systems for safety critical smart grid applications. IEEE Trans. Smart Grid 2013, 4, 1254–1263. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, S.; Holbert, B.; Fawaz, A.; Berthier, R.; Zonouz, S. A multi-sensor energy theft detection framework for advanced metering infrastructures. IEEE J. Sel. Areas Commun. 2013, 31, 1319–1330. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, S.; Ho, T. Leveraging strategic detection techniques for smart home pricing cyberattacks. IEEE Trans. Dependable Secure Comput. 2016, 13, 220–235. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, P.; Zhang, Y.; Chen, K. A collaborative intrusion detection mechanism against false data injection attack in advanced metering infrastructure. IEEE Trans. Smart Grid 2015, 6, 2435–2443. [Google Scholar] [CrossRef]
- Berthier, R.; Sanders, W.H. Specification-based intrusion detection for advanced metering infrastructures. In Proceedings of the IEEE 17th Pacific Rim International Symposium on Dependable Computing, Pasadena, CA, USA, 12–14 December 2011; pp. 184–193. [Google Scholar]
- Pultarova, T. Cyber security—Ukraine grid hack is wake-up call for network operators [News Briefing]. Eng. Technol. 2016, 11, 12–13. [Google Scholar] [CrossRef] [Green Version]
- Min, C.-G.; Park, J.; Hur, D.; Kim, M.-K. The economic viability of renewable portfolio standard support for offshore wind farm projects in korea. Energies 2015, 8, 9731–9750. [Google Scholar] [CrossRef] [Green Version]
- Nwaeze, E.T. Deregulation of the electric power industry: The earnings, risk, and return effects. J. Regul. Econ. 2000, 19. [Google Scholar]
- Kirschen, D.; Strbac, G. Fundamentals of Power System Economics: Kirschen/Power System Economics; John Wiley & Sons, Ltd.: Chichester, UK, 2004. [Google Scholar]
- Cory, B. Power System Restructuring and Deregulation: Trading, Performance and information Technology; John Wiley Sons: Chichester, UK, 2002; Volume 16. [Google Scholar]
- Min, C.-G.; Kim, M.-K. Impact of the complementarity between variable generation resources and load on the flexibility of the Korean power system. Energies 2017, 10, 1719. [Google Scholar] [CrossRef] [Green Version]
- Abhyankar, A.R.; Khaparde, S.A. Introduction to Deregulation in Power Industry; Indian Institute of Technology: Mumbai, India, 2013; p. 28. [Google Scholar]
- Khalid, M.; Aguilera, R.P.; Savkin, A.V.; Agelidis, V.G. A market-oriented wind power dispatch strategy using adaptive price thresholds and battery energy storage. Wind Energy 2018, 21, 242–254. [Google Scholar] [CrossRef]
- Ko, W.; Park, J.-K.; Kim, M.-K.; Heo, J.-H. A multi-energy system expansion planning method using a linearized load-energy curve: A case study in South Korea. Energies 2017, 10, 1663. [Google Scholar] [CrossRef] [Green Version]
- Balijepalli, V.S.K.M.; Pradhan, V.; Khaparde, S.A.; Shereef, R.M. Review of demand response under smart grid paradigm. In Proceedings of the ISGT2011, Kollam, Kerala, India, 1–3 December 2011; pp. 236–243. [Google Scholar]
- Cavoukian, A.; Polonetsky, J.; Wolf, C. SmartPrivacy for the Smart Grid: Embedding privacy into the design of electricity conservation. Identity Inf. Soc. 2010, 3, 275–294. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Wang, Z.; Gu, C.; Li, F.; Wu, H. A novel time-of-use tariff design based on Gaussian Mixture Model. Appl. Energy 2016, 162, 1530–1536. [Google Scholar] [CrossRef]
- Herter, K.; McAuliffe, P.; Rosenfeld, A. An exploratory analysis of California residential customer response to critical peak pricing of electricity. Energy 2007, 32, 25–34. [Google Scholar] [CrossRef]
- Khalid, A.; Javaid, N.; Mateen, A.; Ilahi, M.; Saba, T.; Rehman, A. Enhanced time-of-use electricity price rate using game theory. Electronics 2019, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Celebi, E.; Fuller, J.D. Time-of-use pricing in electricity markets under different market structures. IEEE Trans. Power Syst. 2012, 27, 1170–1181. [Google Scholar] [CrossRef]
- Ali, S.Q.; Maqbool, S.D.; Ahamed, T.P.I.; Malik, N.H. Load scheduling with maximum demand and time of use pricing for microgrids. In Proceedings of the 2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS), Trivandrum, India, 23–24 August 2013; pp. 234–238. [Google Scholar]
- Liu, H.; Mahmoudi, N.; Chen, K. Microgrids real-time pricing based on clustering techniques. Energies 2018, 11, 1388. [Google Scholar] [CrossRef] [Green Version]
- Caramanis, M.C.; Bohn, R.E.; Schweppe, F.C. Optimal spot pricing: Practice and theory. IEEE Trans. Power Appar. Syst. 1982, PAS-101, 3234–3245. [Google Scholar] [CrossRef]
- Tang, Q.; Yang, K.; Zhou, D.; Luo, Y.; Yu, F. A real-time dynamic pricing algorithm for smart grid with unstable energy providers and malicious users. IEEE Internet Things J. 2016, 3, 554–562. [Google Scholar] [CrossRef]
- Anees, A.; Chen, Y.-P.P. True real time pricing and combined power scheduling of electric appliances in residential energy management system. Appl. Energy 2016, 165, 592–600. [Google Scholar] [CrossRef]
- Farrokhifar, M.; Momayyezi, F.; Sadoogi, N.; Safari, A. Real-time based approach for intelligent building energy management using dynamic price policies. Sustain. Cities Soc. 2018, 37, 85–92. [Google Scholar] [CrossRef]
- Eissa, M.M. First time real time incentive demand response program in smart grid with “i-Energy” management system with different resources. Appl. Energy 2018, 212, 607–621. [Google Scholar] [CrossRef]
- Kim, S.; Giannakis, G.B. Real-time electricity pricing for demand response using online convex optimization. In Proceedings of the ISGT, Washington, DC, USA, 19–22 February 2014; pp. 1–5. [Google Scholar]
- Mohsenian-Rad, A.; Leon-Garcia, A. Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Trans. Smart Grid 2010, 1, 120–133. [Google Scholar] [CrossRef]
- Li, P.; Wang, H.; Zhang, B. A distributed online pricing strategy for demand response programs. IEEE Trans. Smart Grid 2019, 10, 350–360. [Google Scholar] [CrossRef] [Green Version]
- Oldewurtel, F.; Ulbig, A.; Parisio, A.; Andersson, G.; Morari, M. Reducing peak electricity demand in building climate control using real-time pricing and model predictive control. In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 1927–1932. [Google Scholar]
- Lujano-Rojas, J.M.; Monteiro, C.; Dufo-López, R.; Bernal-Agustín, J.L. Optimum residential load management strategy for real time pricing (RTP) demand response programs. Energy Policy 2012, 45, 671–679. [Google Scholar] [CrossRef]
- Zhu, H.; Gao, Y.; Hou, Y.; Wang, Z.; Feng, X. Real-time pricing considering different type of smart home appliances based on markov decision process. Int. J. Electr. Power Energy Syst. 2019, 107, 486–495. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L. Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies. Appl. Energy 2016, 175, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Park, S.C.; Jin, Y.G.; Song, H.Y.; Yoon, Y.T. Designing a critical peak pricing scheme for the profit maximization objective considering price responsiveness of customers. Energy 2015, 83, 521–531. [Google Scholar] [CrossRef]
- Kato, T.; Tokuhara, A.; Ushifusa, Y.; Sakurai, A.; Aramaki, K.; Maruyama, F. Consumer responses to critical peak pricing: Impacts of maximum electricity-saving behavior. Electr. J. 2016, 29, 12–19. [Google Scholar] [CrossRef]
- Javaid, N.; Ahmed, A.; Iqbal, S.; Ashraf, M. Day ahead real time pricing and critical peak pricing based power scheduling for smart homes with different duty cycles. Energies 2018, 11, 1464. [Google Scholar] [CrossRef] [Green Version]
- Bagher Sadati, S.M.; Moshtagh, J.; Shafie-khah, M.; Rastgou, A.; Catalão, J.P.S. Operational scheduling of a smart distribution system considering electric vehicles parking lot: A bi-level approach. Int. J. Electr. Power Energy Syst. 2019, 105, 159–178. [Google Scholar] [CrossRef]
- Zhang, Y.; Islam, M.M.; Sun, Z.; Yang, S.; Dagli, C.; Xiong, H. Optimal sizing and planning of onsite generation system for manufacturing in Critical Peaking Pricing demand response program. Int. J. Prod. Econ. 2018, 206, 261–267. [Google Scholar] [CrossRef]
- Osorio, G.J.; Shafie-Khah, M.; Soares, N.G.S.; Catalao, J.P.S. Optimal dynamic tariffs for flexible ramp market in the presence of wind power generation and demand response. In Proceedings of the IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–5. [Google Scholar]
- Doostizadeh, M.; Ghasemi, H. A day-ahead electricity pricing model based on smart metering and demand-side management. Energy 2012, 46, 221–230. [Google Scholar] [CrossRef]
- Joe-Wong, C.; Sen, S.; Ha, S.; Chiang, M. Optimized day-ahead pricing for smart grids with device-specific scheduling flexibility. IEEE J. Sel. Areas Commun. 2012, 30, 1075–1085. [Google Scholar] [CrossRef]
- Zhang, Q.; Raman, G.; Peng, J.C.-H. EV charging optimization based on day-ahead pricing incorporating consumer behavior. arXiv 2019, arXiv:190104675. [Google Scholar]
- Philipsen, R.; Morales-España, G.; De Weerdt, M.; De Vries, L. Trading power instead of energy in day-ahead electricity markets. Appl. Energy 2019, 233–234, 802–815. [Google Scholar] [CrossRef]
- Esmaeili, S.; Anvari-Moghaddam, A.; Jadid, S.; Guerrero, J.M. Optimal simultaneous day-ahead scheduling and hourly reconfiguration of distribution systems considering responsive loads. Int. J. Electr. Power Energy Syst. 2019, 104, 537–548. [Google Scholar] [CrossRef]
- Subramanian, V.; Das, T.K. A two-layer model for dynamic pricing of electricity and optimal charging of electric vehicles under price spikes. Energy 2019, 167, 1266–1277. [Google Scholar] [CrossRef]
- Kii, M.; Sakamoto, K.; Hangai, Y.; Doi, K. The effects of critical peak pricing for electricity demand management on home-based trip generation. IATSS Res. 2014, 37, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.; Eom, J.; Kim, M.G.; Rho, J.J. Demand responses of Korean commercial and industrial businesses to critical peak pricing of electricity. J. Clean. Prod. 2015, 90, 275–290. [Google Scholar] [CrossRef]
- Min, C.-G.; Kim, Y.C.; Kim, D.-H.; Kim, M.-K.; Park, J.-K. A study on coordinated generation maintenance scheduling in competitive electricity markets. J. Int. Counc. Electr. Eng. 2011, 1, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, W.; Savkin, A.V. Profit maximizing control of a microgrid with renewable generation and BESS based on a battery cycle life model and energy price forecasting. Energies 2019, 12, 2904. [Google Scholar] [CrossRef] [Green Version]
- Khalid, M.; Aguilera, R.P.; Savkin, A.V.; Agelidis, V.G. On maximizing profit of wind-battery supported power station based on wind power and energy price forecasting. Appl. Energy 2018, 211, 764–773. [Google Scholar] [CrossRef]
- Kim, M.-K. Dynamic market-clearing model in a hybrid power market using parallel processing. J. Energy Eng. 2017, 143, 04016033. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, M.; Liu, Y.; Zhang, L. Peak-off-peak load shifting: Are public willing to accept the peak and off-peak time of use electricity price? J. Clean. Prod. 2018, 199, 1066–1071. [Google Scholar] [CrossRef]
- Yang, P.; Tang, G.; Nehorai, A. A game-theoretic approach for optimal time-of-use electricity pricing. IEEE Trans. Power Syst. 2013, 28, 884–892. [Google Scholar] [CrossRef]
- Ferreira, R.d.S.; Barroso, L.A.; Lino, P.R.; Carvalho, M.M.; Valenzuela, P. Time-of-use tariff design under uncertainty in price-elasticities of electricity demand: A stochastic optimization approach. IEEE Trans. Smart Grid 2013, 4, 2285–2295. [Google Scholar] [CrossRef]
- Herter, K. Residential implementation of critical-peak pricing of electricity. Energy Policy 2007, 35, 2121–2130. [Google Scholar] [CrossRef] [Green Version]
- Nge, C.L.; Ranaweera, I.U.; Midtgård, O.-M.; Norum, L. A real-time energy management system for smart grid integrated photovoltaic generation with battery storage. Renew. Energy 2019, 130, 774–785. [Google Scholar] [CrossRef] [Green Version]
- Centolella, P. The integration of price responsive demand into regional transmission organization (RTO) wholesale power markets and system operations. Energy 2010, 35, 1568–1574. [Google Scholar] [CrossRef]
- Aalami, H.A.; Moghaddam, M.P.; Yousefi, G.R. Demand response modeling considering interruptible/curtailable loads and capacity market programs. Appl. Energy 2010, 87, 243–250. [Google Scholar] [CrossRef]
- Moghaddam, M.P.; Abdollahi, A.; Rashidinejad, M. Flexible demand response programs modeling in competitive electricity markets. Appl. Energy 2011, 88, 3257–3269. [Google Scholar] [CrossRef]
- Bruno, S.; Dellino, G.; La Scala, M.; Meloni, C. A microforecasting module for energy management in residential and tertiary buildings. Energies 2019, 12, 1006. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.-H.; Kim, M.-K.; Ryu, H.-S. Real levelized cost of energy with indirect costs and market value of variable renewables: A study of the Korean power market. Energies 2019, 12, 2459. [Google Scholar] [CrossRef] [Green Version]
Conventional Grid | Smart Grid |
---|---|
Mechanically operated | Digitized |
Unilateral | Bi-directional |
Centralized Power generation | Distributed Generation |
Radially connected | Dispersed |
Small number of sensors | Many |
Less monitoring capabilities | Highly monitored |
Manual control | Automated control |
Less security issues | Vulnerable to security issues |
Slow responsive actions | Fast response |
Category | Description and the Actors in Domain |
---|---|
Customer | Where the electricity is consumed, End-users. The sub-category includes domestics and large consumers, such as commercial and industrial loads. Actors can generate, manage, and store. |
Market | Where the assets are exchanged. The operator and participants are the actors in electricity markets. |
Service Provider | An organization that provides services pertaining to the establishment and secure operation of smart grids as per the requirements of the consumers and utilities. |
Operations | The proper operation of the power system is monitored—the managers of the flow of electricity. |
Bulk Generation | Where the delivery of bulky electricity to consumers starts, actors are the generators of electricity in bulk quantities; energy can also be stored for later distribution. |
Transmission | Where the bulky power is transferred from generation centers to distribution. Actors are the carriers of electricity and may also generate and store electricity. |
Distribution | Where Distributed Generation, Distributed Storage, transmission, and consumers’ interconnect. Actors are the entities that distribute electricity to and from customers. |
Technique | Ref. | Year | Author (s) | Objective |
---|---|---|---|---|
AVR | [52] | 2014 | Ting-Chia et al. |
|
[53] | 2010 | Morris et al. |
| |
GIS | [54] | 2012 | Schneider Electric |
|
[55] | 2009 | Esri Inc |
| |
OMS | [56] | 2013 | John Dirkman |
|
[45] | 2011 | Eduardo et al. |
| |
AGC | [53] | 2014 | Siddaharth et al. |
|
[57] | 2012 | Ali et al. |
| |
AMI | [45] | 2011 | Eduardo et al. |
|
EMS | [58] | 2012 | Rahman et al. |
|
Ref. | Technique | DG Type | Generation Model | Load Model |
---|---|---|---|---|
[128,129] | Analytical | Dispatchable | - | - |
[130,131,132] | Monte Carlo Simulation | Dispatchable Non-Dispatchable | 3 states Markov Models | Averaging |
[133] | Monte Carlo Simulation | Dispatchable Non-Dispatchable | Probabilistic approach | Probabilistic approach |
[133,134,135] | Monte Carlo Simulation | Dispatchable Non-Dispatchable | Hourly profile | Hourly profile |
[136] | Analytical | Dispatchable Non-Dispatchable | Levels of a typical day | Levels of a typical day |
[132,137,138] | Analytical | Dispatchable Non-Dispatchable | Probabilistic approach | Probabilistic approach |
[139,140,141,142] | Analytical | Dispatchable Non-Dispatchable | Segment of a year | Segment of a year |
Ref. | Technique | System Constraints | Power Flow | Transferred Capacity |
---|---|---|---|---|
[143,144] | Analytical | Voltage and load | Yes | Computed |
[145] | Monte Carlo Simulation | Loading | No | Computed |
[146] | Analytical + Monte Carlo Simulation | Loading | No | Computed |
Ref. | Technique | Operating Mode | DR Program | DR Criteria | ICT Impact |
---|---|---|---|---|---|
[161] | Analytical | Grid Connected | Incentivized | Interruption cost minimization | No |
[113] | SMCS | Grid Connected | Incentivized | Shifting less critical loads | No |
[158,162] | Analytical SMCS | Grid Connected | Incentivized | Minimizing interruption cost/payback incentives | Yes |
[159] | SMCS | Off-grid | TOU | Conflictive objectives to maximize the profits of the supplier and to minimize the payments of consumers | Yes |
[160] | SMCS | Off-grid | Incentivized | Interruption cost minimization | Yes |
Energy S. Technology | Energy Density | Power Density | Discharge Time | Lifetime | Capital Cost | Technological Maturity | |
---|---|---|---|---|---|---|---|
Wh/kg | W/kg | (Year) | $/KW | $/KWh | |||
Mechanical Energy Storage | |||||||
PHES | 0.5–1.5 | - | 1–24 h+ | 40–60 | 600–2000 | 5–100 | Matured |
CAES | 30–60 | (0.5–2.0) | 1–24 h+ | 20–40 | 400–800 | 2–50 | Developed |
Flywheel | 10–30 | 400–1500 | Millisec–15 min | 15 | 50–300 | 500–1000 | Commercial |
Electrochemical Energy Storage | |||||||
Lead Acid Battery | 30–50 | 75–300 | Sec–hrs | 5–15 | 200–300 | 120–150 | Commercial |
NiCd Battery | 50–75 | 150–300 | Sec–hrs | 10–20 | 500–1500 | 800–1500 | Commercial |
Sodium Sulfur (NaS)Battery | 150–240 | 150–230 | Sec–hrs | 10–15 | 1000–3000 | 300–500 | Commercial |
Lithium Battery (Li-ion) | 75–250 | 150–315 | Mins–hrs | 5–15 | 1200–4000 | 300–1300 | Demonstration |
VRFB | 10–30 | -- | Sec–10 h | 5–10 | 600–1500 | 50–1000 | Demonstration |
Electrical Energy Storage | |||||||
SuperCapacitor | 2.5–15 | 500–1300 | Millisec–60 Min | 20+ | 100–300 | 300–10,000 | Developed |
SMES | 0.5–5 | 500–2000 | Millisecs–sec | 20+ | 200–300 | 1000–10,000 | Demonstration |
Chemical Energy Storage | |||||||
Hydrogen Fuel Cells | 800–10,000 | 500+ | Sec–24 h+ | 5–15 | – | 6000–20,000 | Developing |
SNG | 10,000 | (0.2–2) | 1–24 h+ | 10–30 | - | - | Developing |
Thermal Energy Storage | |||||||
CSP | −43.05 | - | Mins–hrs | 30 | - | 3500–7000 | Developing |
Energy S. Technology | Power Rating | Storage Duration | Self-Discharge per Day | Cycle Life (cycles) | Round trip Efficiency (%) | Response Time | Class |
---|---|---|---|---|---|---|---|
Mechanical Energy Storage | |||||||
PHES | 100–5000 MW | Hrs–Mons | Very small | – | 65–87% | L–2 min | Long term |
CAES | 5–300 MW | Hrs–Mons | Small | - | 50–89% | 1–2 min | Long term |
Flywheel | 0–250 kW | Sec–Mins | 100% | - | 85–95% | 1–2 min | Short term |
Electrochemical Energy Storage | |||||||
Lead Acid Battery | 0–20 MW | Mins–days | 0.1–0.3% | 500–1000 | 75–80% | Seconds | Long term |
NiCd Battery | 0–40 MW | Mins–days | 0.2–0.6% | 2000–2500 | 85–90% | Seconds | Long term |
Sodium Sulfur (NaS) battery | 50 kW–8 MW | Sec–Hrs | 20% | 2500 | 80–90% | Seconds | Short term |
Lithium Battery (Li-ion) | 0–100 kW | Mins–days | 0.1–0.3% | 1000–10,000+ | 85–90% | Seconds | Long term |
VRFB | 30 kW–3 MW | Hrs–months | Small | 12,000+ | 85–90% | Seconds | Long term |
Electrical Energy Storage Systems | |||||||
Double Layer Capacitor/super Capacitor | 0–300 kW | Sec–hrs | 20–40% | 100,000+ | 90–95% | Milliseconds | Short term |
SMES | 100 kW–10 MW | Sec–hrs | 10–15% | 100,000+ | 95–98% | Millisecond | Short term |
Chemical Energy Storage Systems | |||||||
Hydrogen Fuel cell | 0–50 MW | Hrs–months | Nearly 0 | 100+ | 20–50% | Sec–Mins | Long term |
Thermal Energy Storage Systems | |||||||
CSP | 10 kW–20 MW | – | 1% | – | <60% | 10 min | Long term |
Type of Attack | Mathematical Model |
---|---|
DoS attacks | |
Reply attacks | |
Deception attacks |
Range of Protection | Domain-Based | Detection System |
---|---|---|
SCADA | Networked | [328,329,330] |
Substations | Host | [331] |
Networked | [332] | |
Integrated | [333,334,335] | |
Wide area monitoring (WAM) | Host | [274,336] |
GPS (PMU) | Host | [337] |
Distribution system | Host | [338] |
AMI | Host | [339,340,341,342] |
Ref. | Year | Aim |
---|---|---|
[356,391] | Jan 2019, May 2013 | A game-theoretic approach has been proposed to design an optimal TOU pricing by designing utility functions to reach a Nash equilibrium. |
[357] | August 2012 | The authors proposed variation inequality models to design an optimal TOU pricing policy under different market structures. The proposed study considered the variations in social welfare under different market schemes. |
[358,359] | May 2018, 2013 | The authors have investigated the impact of the existence of DER on the TOU tariffs. |
[392] | December 2013 | The authors used a stochastic optimization approach and quadratic programming to design an optimal TOU price, considering the uncertainties in demand/Generation. |
Ref. | Year | Purpose |
---|---|---|
[367] | Jan. 2019 | The authors have proposed a distributed online pricing strategy for demand-side programs under uncertainties and restricted communication links. Performing the optimization process aims to allocate the minimum operating cost for the utility considering time variant DRs. The proposed study has succeeded in reducing the gap between the online algorithm and the offline optimization process. |
[368] | Dec. 2010 | The authors used a least-square support vector machine to compute short-run tariffs by applying a model predictive control. |
[369] | Jun. 2012 | An optimal load management strategy for residential consumers that uses the communication capability of a typical smart grid was proposed in Reference [369]. The main objective was to allocate the optimal relationship between the spot price and users’ electrical appliances, including electric vehicles in a typical smart building. |
[370] | May 2018 | Markov’s decision-based multi-stage optimization algorithm has been proposed in Reference [370] to maximize the social welfare under the RTP pricing scheme. The optimization process has been divided into sub-problems; the former optimizes the problem from the consumers’ perspectives, while the latter is dedicated to the energy supplier that uses a dual-sub gradient convex optimization. |
[394] | Jan. 2019 | The authors have presented a real-time Energy Management System (EMS) that is suitable for the rooftop PV system integrated with battery storage. The EMS is grid-connected, where the price signal controls the flow of power within the system. The proposed study aims to maximize the revenue over a given cycle using Lagrange multiplier-based optimization algorithm. |
Ref. | Year | Purpose |
---|---|---|
[374] | Jun. 2018 | The authors have combined pricing framework (RTP and CPP) to allocate the optimal operation cycle for a smart home appliance based on a priority list. The proposed study has used an enhanced differential evolution (EDE) and teacher learning-based optimization (TLBO) to attain the maximum satisfaction of consumers. |
[375] | Jan. 2019 | A bi-level framework that aims to maximize the profits of a smart distribution company with electric vehicle parking lots has been proposed. The objective is to minimize the cost of energy purchased from the wholesale market for the leader (e.g., distribution company) and to maximize the profits of parking lots owner (e.g., follower) under Critical Pricing Policy. |
[376] | Dec. 2018 | A mixed-integer linear programming model to allocate the optimal size and optimal planning scheme of Onsite Generation System (OGS) under a Critical Pricing structure has been proposed by Reference [376]. The results have indicated a significant reduction in electricity cost if the OGS is appropriately sized and operated. |
[370] | May 2018 | The authors have proposed a Markov decision-based multi-stage optimization algorithm to maximize the social welfare under the RTP pricing scheme. The optimization process has been divided into sub-problems; the former optimizes the problem from the consumers’ perspectives, while the latter is dedicated to the energy supplier that uses a dual-sub gradient convex optimization. |
[377] | Jun. 2018 | A security-constrained program to schedule the supply–demand by designing an optimal pricing scheme has been proposed. The proposed study aims to find the best pricing modality for different demand-side programs (i.e., TOU, CPP, and RTP) that improves efficiency while guaranteeing the environmental restrictions. A multi-objective optimization approach has been used to minimize the ISO operational cost and the greenhouse emissions resulted from the generating units. |
Ref. | Purpose | |
---|---|---|
[380] | Jan. 2019 | The authors have used a bi-objective optimization model to achieve a minimum electricity cost and to reduce the aggregated peak demands for residential Electric Vehicles (EVs) under a day ahead pricing structure. |
[381] | Jan. 2019 | The authors have discussed the feasibility of trading electrical power as a commodity in a day-ahead electricity market instead of trading energy. The objective of this study is to overcome the coarse discretization that is commonly seen in wholesale energy markets. |
[382] | Jan. 2019 | The authors have proposed an optimal hourly configuration and day head-pricing scheme in a smart distribution system considering the operation of protective devices. The authors have used a metaheuristic-based optimization model to minimize the purchasing power from the wholesale market and distributed resources owners, cost of power loss, cost of switching actions, and the cost of implementing the demand response Programs. |
[383] | Jan. 2019 | A game-theoretic multi-stage optimization model to simultaneously determine the dynamic pricing policy for the Independent System Operator and EV parking lots has been proposed. The study aims to minimize the electricity bills of EV owners while ensuring the profitability of the ISO in a day-ahead pricing framework. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, I.; Abido, M.A.; Khalid, M.; Savkin, A.V. A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources. Energies 2020, 13, 6269. https://doi.org/10.3390/en13236269
Alotaibi I, Abido MA, Khalid M, Savkin AV. A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources. Energies. 2020; 13(23):6269. https://doi.org/10.3390/en13236269
Chicago/Turabian StyleAlotaibi, Ibrahim, Mohammed A. Abido, Muhammad Khalid, and Andrey V. Savkin. 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources" Energies 13, no. 23: 6269. https://doi.org/10.3390/en13236269