Enrichment of Li–Ga–Zr–Hf and Se–Mo–Cr–V–As–Pb Assemblages in the No. 11 Superhigh Organic Sulfur Coal from the Sangshuping Coal Mine, Weibei Coalfield, Shaanxi, North China
Abstract
:1. Introduction
2. Geological Settings
3. Sampling and Analytical Methods
4. Results
4.1. Coal Characteristics
4.2. Coal Geochemistry
4.2.1. Major and Trace Element Concentrations
4.2.2. Modes of Occurrence of Elements
Aluminosilicate Affinities
Sulfide Affinities
Carbonate Affinities
5. Discussion
5.1. Sediment Provenance
5.2. Influence of Seawater
5.3. Influence of Hydrothermal Solutions
5.4. Lithium Enrichment
5.5. Genesis of High Organic Sulfur
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Wang, X. Potentially useful elements (Al, Fe, Ga, Ge, U) in coal gangue: A case study in Weibei coal mining area, Shaanxi Province, northwestern China. Environ. Sci. Pollut. Res. 2018, 25, 11893–11904. [Google Scholar] [CrossRef]
- Wang, X.; Dai, S.; Ren, D.; Yang, J. Mineralogy and geochemistry of Al-hydroxide/oxyhydroxide mineral-bearing coals of Late Paleozoic age from the Weibei coalfield, southeastern Ordos Basin, North China. Appl. Geochem. 2011, 26, 1086–1096. [Google Scholar] [CrossRef]
- Qin, G.; Cao, D.; Wei, Y.; Wang, A.; Liu, J. Mineralogy and Geochemistry of the No. 5−2 High-Sulfur Coal from the Dongpo Mine, Weibei Coalfield, Shaanxi, North China, with Emphasis on Anomalies of Gallium and Lithium. Minerals 2019, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Mi, J.; Ren, J.; Wang, J.C.; Bao, W.R.; Xie, K.C. Ultrasonic and Microwave Desulfurization of Coal in Tetrachloroethylene. Energy Sources Part A Recovery Util. Environ. Eff. 2007, 29, 1261–1268. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Wang, S.T.; Tan, C.; Li, Y.H. Desulfurization Effect of High-Sulfur Weibei Coal of Assisted by Microwave Irradiation and Ultrasonic Wave. Adv. Mater. Res. 2014, 1070, 501–504. [Google Scholar] [CrossRef]
- Luo, K.; Wang, W.; Yao, G.; Duanmu, H.; Mi, J.; Zhang, H. Sulfur content of permo-carboniferous coal and its geneses in Hancheng mine. J. Xi’an Univ. Sci. Technol. 2000, 20, 289–292, 298, (In Chinese with English Abstract). [Google Scholar]
- Lu, X. Characteristics of environmental geochemistry of Se in Coals of Shaanxi province. J. Shaanxi Norm. Univ. (Natl. Sci. Ed.) 2003, 31, 107–112, (In Chinese with English Abstract). [Google Scholar]
- Damste, J.A.S.; White, C.M.; Green, J.B.; de Leeuw, J.W. Organosulfur compounds in sulfur-rich Raša coal. Energy Fuels 1999, 13, 728–738. [Google Scholar] [CrossRef]
- Querol, X.; Cabrera, L.; Pickel, W.; López-Soler, A.; Hagemann, H.W.; Fernández-Turiel, J.L. Geological controls on the coal quality of the Mequinenza subbituminous coal deposit, northeast Spain. Int. J. Coal Geol. 1996, 29, 67–91. [Google Scholar] [CrossRef]
- Smith, J.W.; Batts, B.D. The distribution and isotopic composition of sulfur in coal. Geochim. Cosmochim. Acta 1974, 38, 121–133. [Google Scholar] [CrossRef]
- Ward, C.R.; Li, Z.; Gurba, L.W. Variations in elemental composition of macerals with vitrinite reflectance and organic sulphur in the Greta Coal Measures, New South Wales, Australia. Int. J. Coal Geol. 2007, 69, 205–219. [Google Scholar] [CrossRef]
- Chou, C.-L. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal. Geol. 2012, 100, 1–13. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Zhou, Y.; Chou, C.-L.; Wang, X.; Zhao, L.; Zhu, X. Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. Chem. Geol. 2008, 255, 182–194. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U–Se–Mo–Re–V in coals preserved within marinecarbonate successions: Geochemical and mineralogical datafrom the Late Permian Guiding Coalfield, Guizhou, China. Miner. Deposita 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Dai, S.; Xie, P.; Jia, S.; Ward, C.R.; Hower, J.C.; Yan, X.; French, D. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geol. Rev. 2017, 80, 1–17. [Google Scholar] [CrossRef]
- Dai, S.; Xie, P.; Ward, C.R.; Yan, X.; Guo, W.; French, D.; Graham, I.T. Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan Coalfield, Guangxi, China. Ore Geol. Rev. 2017, 88, 235–250. [Google Scholar] [CrossRef]
- Lei, J.; Ren, D.; Tang, Y.; Chu, X.; Zhao, R. Sulfur-accumulating model of superhigh organosulfur coal from Guiding, China. Chin. Sci. Bull. 1994, 39, 1817–1821. [Google Scholar]
- Shao, L.; Jones, T.; Gayer, R.; Dai, S.; Li, S.; Jiang, Y.; Zhang, P. Petrology and geochemistry of the high-sulphur coals from the Upper Permian carbonate coal measures in the Heshan coalfield, southern China. Int. J. Coal Geol. 2003, 55, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Zeng, R.; Zhuang, X.; Koukouzas, N.; Xu, W. Characterization of trace elements in sulphur-rich Late Permian coals in the Heshan coal field, Guangxi, South China. Int. J. Coal Geol. 2005, 61, 87–95. [Google Scholar] [CrossRef]
- Tang, Y.; He, X.; Cheng, A.; Li, W.; Deng, X.; Wei, Q.; Li, L. Occurrence and sedimentary control of sulfur in coals of China. J. China Coal Soc. 2015, 40, 1977–1988. [Google Scholar]
- Dai, S.; Zhang, W.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Song, W.; Wang, X.; Li, X.; Zhao, L.; Kang, H.; et al. Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan Coalfield, southern China. Int. J. Coal Geol. 2013, 109–110, 77–100. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, W.; Ward, C.R.; Seredin, V.V.; Hower, J.C.; Li, X.; Song, W.; Wang, X.; Kang, H.; Zheng, L.; et al. Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi Province, Southern China: Influences of terrigenous materials and hydrothermal fluids. Int. J. Coal Geol. 2013, 105, 60–84. [Google Scholar] [CrossRef]
- Dai, S.; Xie, P.; French, D.; Ward, C.R.; Graham, I.T.; Yan, X.; Guo, W. The occurrence of buddingtonite in super-high-organic-sulphur coals from the Yishan Coalfield, Guangxi, southern China. Int. J. Coal Geol. 2018, 195, 347–361. [Google Scholar] [CrossRef]
- Li, W.; Tang, Y. Characteristics of the rare earth elements in a high organic sulfur coal from Chenxi, Hunan province. J. Fuel Chem. Technol. 2013, 41, 540–549. [Google Scholar]
- Dai, S.; Liu, J.; Ward, C.R.; Hower, J.C.; French, D.; Jia, S.; Hood, M.M.; Garrison, T.M. Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan Province, China, with emphasis on enrichment of rare metals. Int. J. Coal Geol. 2016, 166, 71–95. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Z.; Yan, X.; Ji, D.; Yang, Y.; Hu, L. Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel 2015, 156, 190–197. [Google Scholar] [CrossRef]
- Zhao, Q.; Tang, Y.; Li, W.; Wang, S.; Deng, X.; Yu, X. Compositional characteristics of sulfur-containing compounds in high sulfur coals. Energy Explor. Explor. 2014, 32, 301–316. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, H.; Li, W. Analysis of coal reserves in Shaanxi Province. Inn. Mong. Coal Econ. 2015, 6, 200, 210. (In Chinese) [Google Scholar]
- Yao, Y.; Liu, D.; Tang, D.; Tang, S.; Che, Y.; Huang, W. Preliminary evaluation of the coalbed methane production potential and its geological controls in the Weibei Coalfield, Southeastern Ordos Basin, China. Int. J. Coal Geol. 2009, 78, 1–15. [Google Scholar] [CrossRef]
- Lai, A. Sedimentary Characteristics and Accumulation of Coal Measure in Weibei Mining Area. Master’s Thesis, Xi’an University of Science and Technology, Xi’an, China, 2014. [Google Scholar]
- Li, J.; Zhuang, X.; Querol, X.; Moreno, N.; Yang, G.; Pan, L.; Li, B.; Shangguan, Y.; Pan, Z.; Liu, B. Enrichment of Nb-Ta-Zr-W-Li in the Late Carboniferous Coals from the Weibei Coalfield, Shaanxi, North China. Energies 2020, 13, 4818. [Google Scholar] [CrossRef]
- GB/T 482-2008 (National Standard of China). Sampling of Coal in Seam; China National Coal Association: Beijing, China, 2008. (In Chinese)
- ASTM Standard D3173-11. Standard Test Method for Moisture in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM Standard D3174-12. Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- ASTM Standard D3175-18. Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- ASTM Standard D4239-18a. Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- ASTM Standard D2492-02. Standard Test Method for Forms of Sulfur in Coal; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- ASTM D2798-20. Standard Test Method for Microscopical Determination of the Vitrinite Reflectance of Coal; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Chung, F.H. Quantitative interpretation of X-ray diffraction patterns of mixtures: I. Matrix flushing method for quantitative multicomponent analysis. J. Appl. Crystalogr. 1974, 7, 519–525. [Google Scholar] [CrossRef]
- Querol, X.; Whateley, M.K.G.; Fernandez Turiel, J.L.; Tuncali, E. Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. Int. J. Coal Geol. 1997, 33, 255–271. [Google Scholar] [CrossRef]
- ASTM Standard D388-12. Standard Classification of Coals by Rank; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Dai, S.; Ren, D.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Grigoriev, N.A. Chemical Element Distribution in the Upper Continental Crust; UBRAS: Ekaterinburg, Russia, 2009; p. 382. (In Russian) [Google Scholar]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Dai, S.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; p. 312. [Google Scholar]
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Dai, S.; Li, D.; Chou, C.-L.; Zhao, L.; Zhang, Y.; Ren, D.; Ma, Y.; Sun, Y. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2008, 74, 185–202. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Li, S.; Jiang, Y. Mineralogy and geochemistry of the No.6 coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 2006, 66, 253–270. [Google Scholar] [CrossRef]
- Finkelman, R.B. Modes of occurrence of potentially hazardous elements in coal: Levels of confidence. Fuel Process. Technol. 1994, 39, 21–34. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Yuan, W.; Liu, B.; Querol, X.; Font, O.; Moreno, N.; Li, J.; Gang, T.; Liang, G. Mineral composition and geochemical characteristics of the Li-Ga-rich coals in the Buertaohai-Tianjiashipan mining district, Jungar Coalfield, Inner Mongolia. Int. J. Coal Geol. 2016, 167, 157–175. [Google Scholar] [CrossRef]
- Swaine, D.J. Trace Elements in Coal; Butterworth and Co. Ltd: London, UK, 1990; 278p. [Google Scholar]
- Wang, Z.; Zhang, J.; Chen, H. Study of the dispositional provenance of the terrigenous detritus in Ordos Basin in Late Paleozoic Era. J. Chengdu Univ. Technol. 2001, 28, 7–12, (In Chinese with English Abstract). [Google Scholar]
- Chen, Q.; Li, W.; Wang, Y.; Jin, S.; Gao, Y. The analysis of sediment provenance in Early-Middle period of Late Paleozoic in the Southwest of Ordos Basin. Geoscince 2006, 20, 628–634, (In Chinese with English Abstract). [Google Scholar]
- Chen, Q.; Li, W.; Hu, X.; Li, K.; Pang, J.; Guo, Y. Tectonic setting and provenance analysis of late Paleozoic sedimentary rocks in the Ordos Basin. Acta Geol. Sin. 2012, 86, 1150–1162, (In Chinese with English Abstract). [Google Scholar]
- Qu, H.; Ma, Q.; Gao, S.; Mei, Z.; Miao, J. Analyses on provenance of the Permian in the southeastern Ordos Basin. Acta Geol. Sin. 2011, 85, 979–986, (In Chinese with English Abstract). [Google Scholar]
- Hayashi, K.-I.; Fujisawa, H.; Holland, H.D.; Ohmoto, H. Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta 1997, 61, 4115–4137. [Google Scholar] [CrossRef]
- Dai, S.; Li, T.; Jiang, Y.; Ward, C.R.; Hower, J.C.; Sun, J.; Liu, J.; Song, H.; Wei, J.; Li, Q.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. Int. J. Coal Geol. 2015, 137, 92–110. [Google Scholar] [CrossRef]
- Hower, C.J.; Eble, F.C.; Keefe, M.K.J.; Dai, S.; Wang, P.; Xie, P.; Liu, J.; Ward, R.C.; French, D. Petrology, Palynology, and Geochemistry of Gray Hawk Coal (Early Pennsylvanian, Langsettian) in Eastern Kentucky, USA. Minerals 2015, 5, 592–622. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Grahame, I.T.; French, D. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield, southeastern Qinshui Basin, northern China. Ore Geol. Rev. 2019, 115, 103184. [Google Scholar] [CrossRef]
- Zhou, Y.; Ren, Y.; Tang, D.; Bohor, B. Characteristics of zircons from volcanic ash-derived tonsteins in Late Permian coal fields of eastern Yunnan, China. Int. J. Coal Geol. 1994, 25, 243–264. [Google Scholar] [CrossRef]
- Zhou, Y.; Bohor, B.F.; Ren, Y. Trace element geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Provinces, China. Int. J. Coal Geol. 2000, 44, 305–324. [Google Scholar] [CrossRef]
- CNACG, (China National Administration of Coal Geology). Late Paleozoic Coal Geology of North China Platform; Shanxi Science and Technology Press: Taiyuan, Shanxi, China, 1997; (In Chinese with English Abstract). [Google Scholar]
- Wan, Y. Study on the Spatial Coupling Relation of between the Sediment Source and Diagenesis of Yanchang Formation in southern Ordos Basin. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2011. (In Chinese with English Abstract). [Google Scholar]
- Zhu, X.-Q.; Zhu, W.-B.; Ge, R.-F.; Wang, X. Late paleozoic provenance shift in the south-central North China Craton: Implications for tectonic evolution and crustal growth. Gondwana Res. 2014, 25, 383–400. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, W.; Ning, S.; Han, L.; Deng, X. Aluminum Distribution in North China Permo-Carboniferous Coal and Its Resource Prospect. Coal Geol. China 2018, 30, 21–25+29, (In Chinese with English Abstract). [Google Scholar]
- Li, Y. Research of Lithofacies and Paleogeography of the Late Paleozoic Era in Southern Ordos Basin. Master’s Dissertation, Northwest University, Xi’an, Shaanxi, China, 2013. (In Chinese with English Abstract). [Google Scholar]
- Wang, T.; Wang, X.; Tian, W.; Zhang, C.; Li, W.; Li, S. North Qinling Paleozoicgranite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China. Sci. China Ser. D Earth Sci. 2009, 52, 1359–1384. [Google Scholar] [CrossRef]
- Qin, Z.; Wu, Y.; Siebel, W.; Gao, S.; Wang, H.; Abdallsamed, M.I.M.; Zhang, W.; Yang, S. Genesis of adakitic granitoids by partial melting of thickened lower crust and its implications for early crustal growth: A case study from the Huichizi pluton, Qinling orogen, central China. Lithos 2015, 238, 1–12. [Google Scholar] [CrossRef]
- Jian, P.; Kröner, A.; Windley, B.F.; Zhang, Q.; Zhang, W.; Zhang, L. Episodic mantl melting-crustal reworking in the late Neoarchean of the northwestern North China Craton: Zircon ages of magmatic and metamorphic rocks from the Yinshan Block. Precambr. Res. 2012, 222–223, 230–254. [Google Scholar] [CrossRef]
- Liu, G.; Yang, P.; Peng, Z.; Chou, C. Petrographic and geochemical contrasts and environmentally significant trace elements in marine-influenced coal seams, Yanzhoumining area, China. J. Asian Earth Sci. 2004, 23, 491–506. [Google Scholar] [CrossRef]
- Murray, R.W.; Buchholtz, T.; Brink, M.R.; Jones, D.L.; Gerlach, D.C.; Russ, G.P. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology 1990, 18, 268–272. [Google Scholar] [CrossRef]
- Chen, J.; Algeo, T.J.; Zhao, L.; Chen, Z.-Q.; Cao, L.; Zhang, L.; Li, Y. Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China. Earth-Sci. Rev. 2015, 149, 181–202. [Google Scholar] [CrossRef]
- Permana, A.K.; Ward, C.R.; Li, Z.; Gurba, L.W. Distribution and origin of minerals in high-rank coals of the South Walker Creek area, Bowen Basin, Australia. Int. J. Coal Geol. 2013, 116–117, 185–207. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Querol, X.; Font, O.; Izquierdo, M.; Wang, Z. New data on mineralogy and geochemistry of high-Ge coals in the Yimin coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2014, 125, 10–21. [Google Scholar] [CrossRef]
- Dai, S.; Zou, J.; Jiang, Y.; Ward, C.R.; Wang, X.; Li, T.; Xue, W.; Liu, S.; Tian, H.; Sun, X.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonianillite. Int. J. Coal Geol. 2012, 94, 250–270. [Google Scholar] [CrossRef]
- Zheng, Q.; Liu, Q.; Shi, S. Mineralogy and geochemistry of ammonian illite in intraseam partings in Permo-Carboniferous coal of the Qinshui coalfield, North China. Int. J. Coal Geol. 2016, 153, 1–11. [Google Scholar] [CrossRef]
- Boudou, J.P.; Schimmelmann, A.; Ader, M.; Mastalerz, M.; Sebilo, M.; Gengembre, L. Organic nitrogen chemistry during low-grade metamorphism. Geochim. Cosmochim. Acta 2008, 72, 1199–1221. [Google Scholar] [CrossRef] [Green Version]
- Nieto, F. Characterization of coexisting NH4- and K-micas in very low-grade metapelites. Am. Mineral. 2002, 87, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Lowenstein, T.K.; Hardie, L.A.; Timofeeff, M.N.; Demicco, R.V. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology 2003, 31, 857–860. [Google Scholar] [CrossRef]
- Strauss, H. 4 Ga of seawater evolution: Evidence from the sulfur isotopic composition of sulfate. Geol. Soc. Am. Spec. Pap. 2004, 379, 195–205. [Google Scholar]
- Kang, Y.; Liu, G.; Chou, C.L.; Wong, M.; Zheng, L.; Ding, R. Arsenic in Chinese coals: Distribution, modes of occurrence, and environmental effects. Sci. Total Environ. 2011, 412–413, 1–13. [Google Scholar] [CrossRef]
- Yuzhuang, S.; Cunliang, Z.; Yanheng, L.; Jinxi, W.; Jianya, Z.; Zhe, J.; Mingyue, L.; Kalkreuth, W. Further Information of the Associated Li Deposits in the No.6 Coal Seam at Jungar Coalfield, Inner Mongolia, Northern China. Acta Geol. Sin. 2013, 87, 801–812. [Google Scholar] [CrossRef]
- Dai, S.; Jiang, Y.; Ward, C.R.; Gu, L.; Seredin, V.V.; Liu, H.; Zhou, D.; Wang, X.; Sun, Y.; Zou, J.; et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 2012, 98, 10–40. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, L. The formation and material sources of the superlarge Hada Gol Ga-bearing coal deposit in Jungar Banner, Inner Mongolia. Geol. China 2009, 36, 417–423. [Google Scholar]
- Clauer, N.; Williams, L.B.; Lemarchand, D.; Florian, P.; Honty, M. Illitization decrypted by B and Li isotope geochemistry of nanometer-sized illite crystals from bentonite beds, East Slovak Basin. Chem. Geol. 2018, 477, 177–194. [Google Scholar] [CrossRef]
- Greene-Kelly, R. Lithium Absorption by Kaolin Minerals. J. Phys. Chem. 1955, 59, 1151–1152. [Google Scholar] [CrossRef]
- Hoyer, M.; Kummer, N.-A.; Merkel, B. Sorption of Lithium on Bentonite, Kaolin and Zeolite. Geosciences 2015, 5, 127–140. [Google Scholar] [CrossRef] [Green Version]
- DZ/T 0203-2002. Geology Mineral Industry Standard of P.R. China: Specifications for Rare Metal Mineral Exploration; Geological Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wu, P.; Yang, G.; Pan, L.; Zhuang, X.; Querol, X.; Moreno, N.; Li, B.; Shangguan, Y. Enrichment of Li–Ga–Zr–Hf and Se–Mo–Cr–V–As–Pb Assemblages in the No. 11 Superhigh Organic Sulfur Coal from the Sangshuping Coal Mine, Weibei Coalfield, Shaanxi, North China. Energies 2020, 13, 6660. https://doi.org/10.3390/en13246660
Li J, Wu P, Yang G, Pan L, Zhuang X, Querol X, Moreno N, Li B, Shangguan Y. Enrichment of Li–Ga–Zr–Hf and Se–Mo–Cr–V–As–Pb Assemblages in the No. 11 Superhigh Organic Sulfur Coal from the Sangshuping Coal Mine, Weibei Coalfield, Shaanxi, North China. Energies. 2020; 13(24):6660. https://doi.org/10.3390/en13246660
Chicago/Turabian StyleLi, Jing, Peng Wu, Guanghua Yang, Lei Pan, Xinguo Zhuang, Xavier Querol, Natalia Moreno, Baoqing Li, and Yunfei Shangguan. 2020. "Enrichment of Li–Ga–Zr–Hf and Se–Mo–Cr–V–As–Pb Assemblages in the No. 11 Superhigh Organic Sulfur Coal from the Sangshuping Coal Mine, Weibei Coalfield, Shaanxi, North China" Energies 13, no. 24: 6660. https://doi.org/10.3390/en13246660
APA StyleLi, J., Wu, P., Yang, G., Pan, L., Zhuang, X., Querol, X., Moreno, N., Li, B., & Shangguan, Y. (2020). Enrichment of Li–Ga–Zr–Hf and Se–Mo–Cr–V–As–Pb Assemblages in the No. 11 Superhigh Organic Sulfur Coal from the Sangshuping Coal Mine, Weibei Coalfield, Shaanxi, North China. Energies, 13(24), 6660. https://doi.org/10.3390/en13246660