Paleoenvironment and Organic Matter Accumulation of the Upper Ordovician-Lower Silurian, in Upper Yangtze Region, South China: Constraints from Multiple Geochemical Proxies
Abstract
:1. Introduction
2. Geological Setting
3. Samples, Procedures, and Data Analysis
3.1. Analytical Procedures
3.2. Data Presentation
4. Results
4.1. Total Organic Carbon Content
4.2. Major Elements
4.3. Trace Earth Elements
5. Discussion
5.1. Terrigenous Influx
5.2. Paleoredox Conditions
5.3. Paleoproductivity
5.4. Accumulation Model of Organic Matter
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zou, C.N.; Zhu, R.K.; Chen, Z.Q.; Ogg, J.G.; Wu, S.T.; Dong, D.Z.; Qiu, Z.; Wang, Y.M.; Wang, L.; Lin, S.H.; et al. Organic-Matter-Rich shales of China. Earth-Sci. Rev. 2019, 189, 51–78. [Google Scholar] [CrossRef]
- Calvert, S.E.; Pedersen, T.F. Chapter fourteen elemental proxies for paleoclimatic and palaeoceanographic Variability in marine sediments: Interpretation and application. Dev. Mar. Geol. 2007, 1, 567–644. [Google Scholar]
- Yan, D.T.; Chen, D.Z.; Wang, Q.C.; Wang, J.G. Predominance of stratified anoxic Yangtze Sea interrupted by short-Term oxygenation during the Ordo-Silurian transition. Chem. Geol. 2012, 291, 69–78. [Google Scholar] [CrossRef]
- Li, Y.F.; Zhang, T.W.; Ellis, G.S.; Shao, D.Y. Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze Platform, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 466, 252–264. [Google Scholar] [CrossRef]
- Liu, Z.H.; Algeo, T.J.; Guo, X.S.; Fan, J.X.; Du, X.B.; Lu, Y.C. Paleo-Environmental cyclicity in the early silurian Yangtze Sea (south China): Tectonic or glacio-eustatic control? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 466, 59–76. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Q.; Zhu, Y.M.; Lash, G.G.; Wang, Y. Multi-Proxy analysis of organic matter accumulation in the Upper Ordovician-Lower Silurian black shale on the Upper Yangtze Platform, south China. Mar. Pet. Geol. 2019, 103, 473–484. [Google Scholar] [CrossRef]
- Mort, H.; Jacquat, O.; Adatte, T.; Steinmann, P.; Föllmi, K.; Matera, V.; Berner, Z.; Stüben, D. The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: Enhanced productivity and/or better preservation. Cretac. Res. 2007, 28, 597–612. [Google Scholar] [CrossRef] [Green Version]
- Sageman, B.B.; Murphy, A.E.; Werne, J.P.; Straeten, C.A.V.; Hollander, D.J.; Lyons, T.W. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-Rich strata, Middle-Upper Devonian, Appalachian basin. Chem. Geol. 2003, 195, 229–273. [Google Scholar] [CrossRef]
- Canfield, D.E. Factors influencing organic carbon preservation in marine sediments. Chem. Geol. 1994, 114, 315–329. [Google Scholar] [CrossRef]
- Tribovillard, N.; Bout-Roumazeilles, V.; Sionneau, T.; Montero-Serrano, J.C.; Riboulleau, A.; Baudin, F. Does a strong pycnocline impact organic-Matter preservation and accumulation in an anoxic setting? The case of the Orca Basin, Gulf of Mexico. Comptes Rendus Geosci. 2009, 341, 1–9. [Google Scholar] [CrossRef]
- Algeo, T.J.; Tribovillard, N. Environmental analysis of paleoceanographic systems based on molybdenum-Uranium covariation. Chem. Geol. 2009, 268, 211–225. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace-Metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Algeo, T.J.; Maynard, J.B. Trace-Element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 2004, 206, 289–318. [Google Scholar] [CrossRef]
- Algeo, T.J.; Lyons, T.W. Mo-Total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 2006, 21, PA1016. [Google Scholar] [CrossRef]
- Eagle, M.; Paytan, A.; Arrigo, K.R.; van Dijken, G.; Murray, R.W. A comparison between excess barium and barite as indicators of carbon export. Paleoceanography 2003, 18, 2101–2113. [Google Scholar] [CrossRef]
- Zhao, J.H.; Jin, Z.J.; Jin, Z.K.; Geng, Y.K.; Wen, X.; Yan, C.N. Applying sedimentary geochemical proxies for paleoenvironment interpretation of organic-Rich shale deposition in the Sichuan Basin, China. Int. J. Coal Geol. 2016, 163, 52–71. [Google Scholar] [CrossRef]
- Wang, K.; Chatterton, B.D.E.; Wang, Y. An organic carbon isotope record of Late Ordovician to Early Silurian marine sedimentary rocks, Yangtze Sea, South China: Implications for CO2 changes during the Hirnantian glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 132, 147–158. [Google Scholar] [CrossRef]
- Delabroye, A.; Vecoli, M.D.E. The end-Ordovician glaciation and the Hirnantian Stage: A global review and questions about Late Ordovician event stratigraphy. Earth Sci. Rev. 2010, 98, 269–282. [Google Scholar] [CrossRef]
- Huff, W.D.; Bergström, S.M.; Kolata, D.R. Gigantic Ordovician volcanic ash fall in North America and Europe: Biological, tectonomagmatic, and event-Stratigraphic significance. Geology 1992, 20, 875–878. [Google Scholar] [CrossRef]
- Chen, X.; Rong, J.Y.; Mitchell, C.E.; Harper, D.A.T.; Fan, J.X.; Zhan, R.B.; Zhang, Y.D.; Li, R.Y.; Wang, Y. Late Ordovician to earliest Silurian graptolite and brachiopod biozonation from the Yangtze region, South China, with a global correlation. Geol. Mag. 2000, 137, 623–650. [Google Scholar]
- Chen, X.; Rong, J.Y.; Li, Y.; Boucot, A.J. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 204, 353–372. [Google Scholar]
- Huang, F.X.; Chen, H.D.; Hou, M.C.; Zhong, Y.J.; Li, J. Filling process and evolutionary model of sedimentary sequence of Middle-Upper Yangtze craton in Caledonian (Cambrian-Silurian). Acta Petrol. Sin. 2011, 27, 2299–2317. [Google Scholar]
- Guo, R.B.; Zhang, J.C.; Zhao, P.W.; Tang, X.; Liu, Z.Y. Accumulation conditions and an analysis of the origins of natural gas in the lower silurian Shiniulan Formation from Well Anye 1, northern Guizhou province. Energies 2019, 12, 4087. [Google Scholar] [CrossRef] [Green Version]
- Melchin, M.J.; Mitchell, C.E.; Holmden, C.; Štorch, P. Environmental changes in the Late Ordovician-Early Silurian: Review and new insights from black shales and nitrogen isotopes. Geol. Soc. Am. Bull. 2013, 125, 1635–1670. [Google Scholar] [CrossRef]
- Liang, D.; Guo, T.; Chen, J.; Bian, L.; Zhao, Z. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary region, southern China (part 2): Geochemical characteristics of four suits of regional marine source rocks, South China. Mar. Orig. Pet. Geol. 2009, 14, 1–15. [Google Scholar]
- Haq, B.U.; Schutter, S.R. A chronology of Paleozoic sea-Level changes. Science 2008, 322, 64–68. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Zhao, H.X.; Chen, Y.Q.; Yang, T.; Yang, J.H.; Ling, H.F. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu province, China. Chem. Geol. 2007, 244, 584–604. [Google Scholar] [CrossRef]
- Wedepohl, K.H. Environmental Influences on the Chemical Composition of Shales and Clays; Ahrens, L.H., Press, F., Runcorn, S.K., Urey, H.C., Eds.; Pergamon: Oxford, UK, 1971; pp. 305–331. [Google Scholar]
- Murray, R.W.; Leinen, M. Scavenged excess aluminium and its relationship to bulk titaniumin biogenic sediment from the Central equatorial Pacific Ocean. Geochim. Cosmochim. Acta. 1996, 60, 3869–3878. [Google Scholar] [CrossRef]
- Taylor, S.R. The abundance of chemical elements in the continental crust-A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Dymond, J.; Suess, E.; Lyle, M. Barium in deep-sea sediments: A geochemical proxy for paleoproductivity. Paleoceanography 1992, 7, 163–181. [Google Scholar] [CrossRef] [Green Version]
- Ross, D.J.K.M.; Bustin, R.M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-Rich strata: Examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin. Chem. Geol. 2009, 260, 1–19. [Google Scholar] [CrossRef]
- Rachold, V.; Brumsack, H.J. Inorganic geochemistry of Albian sediments from the Lower Saxony Basin NW Germany: Palaeoenvironmental constraints and orbital cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 174, 121–143. [Google Scholar] [CrossRef]
- Young, G.M.; Nesbitt, H.W. Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. J. Sediment. Res. 1998, 68, 448–455. [Google Scholar] [CrossRef]
- Francois, R. A study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet sediments, British Columbia. Mar. Geol. 1988, 83, 285–308. [Google Scholar] [CrossRef]
- Morford, J.L.; Russell, A.D.; Emerson, S. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC. Mar. Geol. 2001, 174, 355–369. [Google Scholar] [CrossRef]
- Calvert, S.E.; Pedersen, T.F. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record. Mar. Geol. 1993, 113, 67–88. [Google Scholar] [CrossRef]
- Murray, R.W.; Leinen, M. Chemical transport to the seafloor of the equatorial Pacific Ocean across a latitudinal transect at 135 W: Tracking sedimentary major, trace, and rare earth element fluxes at the equator and the Intertropical Convergence Zone. Geochim. Cosmochim. Acta 1993, 57, 4141–4163. [Google Scholar] [CrossRef]
Average Shale | Wufeng Fm. | n = 12 | Lower Longmaxi Fm. | n = 18 | Upper Longmaxi Fm. | n = 38 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Oxide/Element | Abundance | –/Al | Abundance | –/Al | EF | Abundance | –/Al | EF | Abundance | –/Al | EF | |
TOC | (wt.%) | 0.20 | 0.03 | 2.86 | 0.93 | 31.13 | 4.22 | 1.20 | 40.06 | 1.76 | 0.27 | 8.91 |
Al2O3 | (%) | 16.70 | 1.00 | 8.30 | 1.00 | - | 7.91 | 1.00 | - | 13.48 | 1.00 | - |
SiO2 | (%) | 58.90 | 3.53 | 58.90 | 9.35 | 2.65 | 59.10 | 7.77 | 2.20 | 56.35 | 3.76 | 1.06 |
Fe2O3 | (%) | 2.80 | 0.17 | 2.66 | 0.49 | 2.91 | 3.29 | 0.58 | 3.41 | 4.64 | 0.46 | 2.70 |
CaO | (%) | 2.20 | 0.13 | 7.67 | 2.44 | 18.8 | 8.17 | 1.58 | 12.17 | 6.02 | 0.70 | 5.38 |
MgO | (%) | 2.60 | 0.16 | 3.11 | 0.59 | 3.67 | 2.49 | 0.38 | 2.36 | 3.01 | 0.27 | 1.71 |
K2O | (%) | 3.60 | 0.22 | 2.23 | 0.41 | 1.87 | 2.19 | 0.43 | 1.97 | 3.43 | 0.40 | 1.82 |
Na2O | (%) | 1.60 | 0.10 | 0.40 | 0.08 | 0.81 | 0.54 | 0.10 | 1.00 | 1.06 | 0.11 | 1.11 |
TiO2 | (%) | 0.78 | 0.05 | 0.37 | 0.05 | 1.05 | 0.34 | 0.05 | 1.00 | 0.56 | 0.05 | 0.95 |
P2O5 | (%) | 0.16 | 0.01 | 0.05 | 0.01 | 0.81 | 0.11 | 0.01 | 1.27 | 0.10 | 0.01 | 0.65 |
Ba | ppm | 580.00 | 65.60 | 986.04 | 253.45 | 3.86 | 1305.94 | 318.52 | 4.86 | 1527.79 | 207.90 | 3.17 |
Ni | ppm | 68.00 | 7.70 | 56.83 | 21.12 | 2.74 | 100.11 | 29.45 | 3.82 | 51.91 | 7.61 | 0.99 |
Cu | ppm | 45.00 | 5.10 | 74.38 | 20.10 | 3.94 | 51.33 | 13.51 | 2.65 | 38.02 | 5.64 | 1.11 |
Mo | ppm | 2.60 | 0.29 | 9.66 | 7.20 | 24.8 | 49.31 | 14.37 | 49.54 | 9.85 | 1.50 | 5.16 |
U | ppm | 3.70 | 0.42 | 5.83 | 2.70 | 6.43 | 18.66 | 5.48 | 13.04 | 7.30 | 1.09 | 2.59 |
V | ppm | 130.00 | 14.70 | 199.33 | 61.97 | 4.22 | 267.17 | 90.29 | 6.14 | 148.94 | 22.34 | 1.52 |
Zr | ppm | 160.00 | 18.10 | 124.77 | 31.13 | 1.72 | 111.53 | 27.90 | 1.54 | 204.58 | 29.20 | 1.61 |
Eu | ppm | 1.60 | 0.18 | 0.92 | 0.26 | 1.44 | 0.86 | 0.21 | 1.16 | 1.07 | 0.16 | 0.88 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Wang, X.; Yang, X.; Zhu, R.; Cui, J.; Shi, W.; Zhu, Y. Paleoenvironment and Organic Matter Accumulation of the Upper Ordovician-Lower Silurian, in Upper Yangtze Region, South China: Constraints from Multiple Geochemical Proxies. Energies 2020, 13, 858. https://doi.org/10.3390/en13040858
Huang Z, Wang X, Yang X, Zhu R, Cui J, Shi W, Zhu Y. Paleoenvironment and Organic Matter Accumulation of the Upper Ordovician-Lower Silurian, in Upper Yangtze Region, South China: Constraints from Multiple Geochemical Proxies. Energies. 2020; 13(4):858. https://doi.org/10.3390/en13040858
Chicago/Turabian StyleHuang, Zisang, Xingzhi Wang, Xiyan Yang, Rukai Zhu, Jingwei Cui, Wenrui Shi, and Yiqing Zhu. 2020. "Paleoenvironment and Organic Matter Accumulation of the Upper Ordovician-Lower Silurian, in Upper Yangtze Region, South China: Constraints from Multiple Geochemical Proxies" Energies 13, no. 4: 858. https://doi.org/10.3390/en13040858
APA StyleHuang, Z., Wang, X., Yang, X., Zhu, R., Cui, J., Shi, W., & Zhu, Y. (2020). Paleoenvironment and Organic Matter Accumulation of the Upper Ordovician-Lower Silurian, in Upper Yangtze Region, South China: Constraints from Multiple Geochemical Proxies. Energies, 13(4), 858. https://doi.org/10.3390/en13040858