Voltage Stability Margin Index Estimation Using a Hybrid Kernel Extreme Learning Machine Approach
Abstract
:1. Introduction
2. Voltage Stability Assessment
3. Artificial Intelligence (AI) Systems
- (a)
- Fastness: using a trained AI, it is possible to obtain a value of the stability system margin in the current operation point. The AI determines the margin in a fraction of a second after receiving the input data, which allows an appropriate response to prevent instability.
- (b)
- Knowledge extraction: the AI can extract stability system information; this provides an understanding of the system operation.
- (c)
- Less data capacity: for the conventional evaluation methods, accurate information is required as well as a complete description of the system. In contrast, the AI evaluates the stability only with the available and significant parameters.
- (d)
- Generalization capacity: the AI simultaneously handles a wide spectrum of scenarios or system conditions in the stability evaluation; these conditions can be previously assumed and not foreseen.
3.1. Artificial Neural Network (ANN)
3.2. SVM
3.3. KELM
4. Proposed Methodology
4.1. Building of AI Learning Database Using Monte Carlo Method
4.2. AI Training
4.3. Determination of AI Optimal Parameters
5. Test and Results
5.1. Database for AI Training
5.2. AI Optimal Parameters Selection
5.3. Comparison Performance of Machine Learning Techniques in VSM Estimation
- -
- Case 1: Voltage phasors measurements without noise.
- -
- Case 2: Voltage phasors measurements with noise in the phasor magnitude. The noise is added randomly following a normal distribution with zero mean and deviation equal to 0.01 p.u.
- -
- Case 3: Voltage phasors measurements with noise in the phasor magnitude, and with zero mean and deviation equal to 0.04 p.u.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liscouski, B.; Elliot, W. Final report on the august 14, 2003 blackout in the United States and Canada: Causes and recommendations. Rep. US Dep. Energy 2004, 40–72. [Google Scholar]
- Corsi, S.; Sabelli, C. General blackout in Italy Sunday September 28, 2003, h. 03:28:00. In Proceedings of the 2004 IEEE Power Engineering Society General Meeting; IEEE: Denver, CO, USA, 2004; pp. 1691–1702. [Google Scholar]
- Chen, L.; Sun, Y.; Chen, X. Analysis of the Blackout in Europe on November 4, 2006. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007. [Google Scholar]
- Dong, Z.; Xu, Y.; Wong, K.; Wong, K. Using IS to Assess an Electric Power System’s Real-Time Stability. IEEE Intell. Syst. 2013, 28, 60–66. [Google Scholar] [CrossRef]
- Savulescu, S.C. Real Time Stability Assessment in Modern Power Systems Control Centers; Savulescu, S.C., Ed.; IEEE Press Series on Power Engineering; John Wiley & Sons: Piscataway, NJ, USA, 2009; ISBN 978-0-470-23330-6. [Google Scholar]
- CIGRE Working Group. 601 CIGRE Technical Brochure on Review of On Line Dynamic Security Assessment Tools and Techniques; CIGRE: Beijing, China, 2007. [Google Scholar]
- Kundur, P.; Cañizares, C.; Paserba, J.; Ajjarapu, V.; Anderson, G.; Bose, A.; Haziargyriou, N.; Hill, D.; Stankovic, A.; Taylor, C.; et al. Definition and Classification of Power System Stability. IEEE Trans. Power Syst. 2004, 19, 1387–1401. [Google Scholar]
- Cañizares, C.A. Voltage Stability Assessment: Concepts, Practices and Tools, IEEE/PES Power System Stability Subcommittee. Tech. Rep. SP101PSS 2002, 1, 1–38. [Google Scholar]
- Gómez-Expósito, A.; Conejo, A.J.; Cañizares, C. Electric Energy Systems: Analysis and Operation, 1st ed.; CRC Press: New York, NY, USA, 2008; ISBN 0-8493-7365-4. [Google Scholar]
- Torres, S.P.; Peralta, W.H.; Castro, C.A. Power system loading margin estimation using a neuro-fuzzy approach. IEEE Trans. Power Syst. 2007, 22, 1955–1964. [Google Scholar] [CrossRef]
- Hatziargyriou, N.D.; Van Cutsem, T. Indices Predicting Voltage Collapse including Dynamic Phenomena. In Proceedings of the CIGRE 1994, Paris, France, 8 August–8 September 1994. [Google Scholar]
- Morison, K. On-line dynamic security assessment using intelligent systems. In Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006; p. 5. [Google Scholar]
- Shaikh, F.A.; Asghar, J. Computational Intelligence and Voltage Stability Analysis for Mitigation of Blackout. Int. J. Comput. Appl. 2011, 16, 2. [Google Scholar] [CrossRef]
- Jeyasurya, B. Artificial neural networks for on-line voltage stability assessment. In Proceedings of the 2000 IEEE Power Engineering Society Summer Meeting, Seattle, WA, USA, 16–20 July 2000; Volume 4, pp. 2014–2018. [Google Scholar]
- Chakrabarti, S.; Jeyasurya, B. On-line voltage stability monitoring using artificial neural network. In Proceedings of the 2004 Large Engineering Systems Conference on Power Engineering, Halifax, NS, Canada, 28–30 July 2004; pp. 71–75. [Google Scholar]
- Nakawiro, W.; Erlich, I. Online voltage stability monitoring using Artificial Neural Network. In Proceedings of the Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies—DRPT 2008, Nanjing, China, 6–9 April 2008; pp. 941–947. [Google Scholar]
- Zhou, D.Q.; Annakkage, U.D.; Rajapakse, A.D. Online Monitoring of Voltage Stability Margin Using an Artificial Neural Network. IEEE Trans. Power Syst. 2010, 25, 1566–1574. [Google Scholar] [CrossRef]
- Goh, H.H.; Chua, Q.S.; Lee, S.W.; Kok, B.C.; Goh, K.C.; Teo, K.T.K. Evaluation for Voltage Stability Indices in Power System Using Artificial Neural Network. Procedia Eng. 2015, 118, 1127–1136. [Google Scholar] [CrossRef] [Green Version]
- Bulac, C.; Triştiu, I.; Mandiş, A.; Toma, L. On-line power systems voltage stability monitoring using artificial neural networks. In Proceedings of the 2015 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 7–9 May 2015; pp. 622–625. [Google Scholar]
- Zhukov, A.; Tomin, N.; Sidorov, D.; Panasetsky, D.; Spirayev, V. A hybrid artificial neural network for voltage security evaluation in a power system. In Proceedings of the 2015 5th International Youth Conference on Energy (IYCE), Pisa, Italy, 27–30 May 2015; pp. 1–8. [Google Scholar]
- Subramani, C.; Jimoh, A.A.; Kiran, S.H.; Dash, S.S. Artificial neural network based voltage stability analysis in power system. In Proceedings of the 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India, 18–19 March 2016; pp. 1–4. [Google Scholar]
- Bahmanyar, A.R.; Karami, A. Power system voltage stability monitoring using artificial neural networks with a reduced set of inputs. Int. J. Electr. Power Energy Syst. 2014, 58, 246–256. [Google Scholar] [CrossRef]
- Hashemi, S.; Aghamohammadi, M.R. Wavelet based feature extraction of voltage profile for online voltage stability assessment using RBF neural network. Int. J. Electr. Power Energy Syst. 2013, 49, 86–94. [Google Scholar] [CrossRef]
- Rahi, O.P.; Yadav, A.K.; Malik, H.; Azeem, A.; Kr, B. Power System Voltage Stability Assessment through Artificial Neural Network. Procedia Eng. 2012, 30, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Innah, H.; Hiyama, T. A real time PMU data and neural network approach to analyze voltage stability. In Proceedings of the IEEE 2011 International Conference on Advanced Power System Automation and Protection, Beijing, China, 16–20 October 2011; pp. 1263–1267. [Google Scholar]
- Ashraf, S.M.; Gupta, A.; Choudhary, D.K.; Chakrabarti, S. Voltage stability monitoring of power systems using reduced network and artificial neural network. Int. J. Electr. Power Energy Syst. 2017, 87, 43–51. [Google Scholar] [CrossRef]
- Suganyadevi, M.V.; Babulal, C.K. Support Vector Regression Model for the prediction of Loadability Margin of a Power System. Appl. Soft Comput. 2014, 24, 304–315. [Google Scholar] [CrossRef]
- Nizam, M.; Mohamed, A.; Hussain, A. Dynamic voltage collapse prediction in power systems using support vector regression. Expert Syst. Appl. 2010, 37, 3730–3736. [Google Scholar] [CrossRef]
- Duraipandy, P.; Devaraj, D. On-line voltage stability assessment using least squares support vector machine with reduced input features. In Proceedings of the 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Calcutta, India, 31 January–2 February 2014; pp. 1070–1074. [Google Scholar]
- AbAziz, N.F.; Rahman, T.K.A.; Zakaria, Z. Voltage stability prediction by using Artificial Immune Least Square Support Vector Machines (AILSVM). In Proceedings of the 2014 IEEE 8th International Power Engineering and Optimization Conference (PEOCO), Langkawi, Malaysia, 24–25 March 2014; pp. 613–618. [Google Scholar]
- Sajan, K.S.; Kumar, V.; Tyagi, B. Genetic algorithm based support vector machine for on-line voltage stability monitoring. Int. J. Electr. Power Energy Syst. 2015, 73, 200–208. [Google Scholar] [CrossRef]
- Naganathan, G.S.; Babulal, C.K. Optimization of support vector machine parameters for voltage stability margin assessment in the deregulated power system. Soft Comput. 2018, 23, 10495–10507. [Google Scholar] [CrossRef]
- Amroune, M.; Bouktir, T.; Musirin, I. Power System Voltage Stability Assessment Using a Hybrid Approach Combining Dragonfly Optimization Algorithm and Support Vector Regression. Arab. J. Sci. Eng. 2018, 43, 3023–3036. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhou, H.; Ding, X.; Zhang, R. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans. Syst. Man Cybern. Part. B Cybern. 2012, 42, 513–529. [Google Scholar] [CrossRef] [Green Version]
- Duraipandy, P.; Devaraj, D. Extreme Learning Machine Approach for On-Line Voltage Stability Assessment. In Proceedings of the Swarm, Evolutionary, and Memetic Computing; Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S., Eds.; Springer International Publishing: Basel, Switzerland, 2013; pp. 397–405. [Google Scholar]
- Suganyadevi, M.V.; Babulal, C.K. Online Voltage Stability Assessment of Power System by Comparing Voltage Stability Indices and Extreme Learning Machine. In Proceedings of the Swarm, Evolutionary, and Memetic Computing; Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S., Eds.; Springer International Publishing: Basel, Switzerland, 2013; pp. 710–724. [Google Scholar]
- Duraipandy, P.; Devaraj, D. Extreme Learning Machine Approach for Real Time Voltage Stability Monitoring in a Smart Grid System using Synchronized Phasor Measurements. J. Electr. Eng. Technol. 2016, 11, 1527–1534. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Xu, Y.; Dong, Z.Y.; Zhang, P.; Wong, K.P. Voltage stability margin prediction by ensemble based extreme learning machine. In Proceedings of the 2013 IEEE Power Energy Society General Meeting, Vancouver, BC, USA, 21–25 July 2013; pp. 1–5. [Google Scholar]
- Ajjarapu, V. Computational Techniques for Voltage Stability Assessment and Control; Springer: Berlin, Germany, 2006. [Google Scholar]
- Lee, K.Y. Current Trend and the State of the Art in Intelligent System Applications to Power Systems. In Proceedings of the International Conference on Intelligent Systems Application to Power Systems (ISAP), Rio de Janeiro, Brazil, 4–8 April 1999; pp. 1–80. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin, Germany, 2006; Volume 4, ISBN 9780387310732. [Google Scholar]
- Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, 3rd ed.; Morgan Kaufmann: San Francisco, CA, USA, 2011; ISBN 0-12-381479-0. [Google Scholar]
- Cepeda, J.C. Evaluación de la Vulnerabilidad del Sistema Eléctrico de Potencia en Tiempo Real usando Tecnología de Medición Sincrofasorial. Ph.D. Thesis, Universidad Nacional de San Juan, San Juan, Argentina, 2013. [Google Scholar]
- Dong, Z.; Zhang, P.; Ma, J.; Zhao, J.; Ali, M.; Meng, K.; Yin, X. Emerging Techniques in Power System Analysis; Springer Science & Business Media: Berlin, Germany, 2010; ISBN 978-3-642-04282-9. [Google Scholar]
- Abe, S. Support. Vector Machines for Pattern Classification; Springer Science & Business Media: Berlin, Germany, 2006; ISBN 978-1-84628-219-5. [Google Scholar]
- Hsu, C.; Chang, C.; Lin, C. A Practical Guide to Support Vector Classification; Department of Computer Science, National Taiwan University: Taipei, Taiwan, 2010. [Google Scholar]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Huang, G.-B.; Wang, D.H.; Lan, Y. Extreme learning machines: A survey. Int. J. Mach. Learn. Cybern. 2011, 2, 107–122. [Google Scholar] [CrossRef]
- Huang, G.-B. An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels. Cogn. Comput. 2014, 6, 376–390. [Google Scholar] [CrossRef]
- Tu, J.; Xu, Y.; Yin, Z. Data-Driven Kernel Extreme Learning Machine Method for the Location and Capacity Planning of Distributed Generation. Energies 2019, 12, 109. [Google Scholar] [CrossRef] [Green Version]
- Billinton, R. Reliability Evaluation of Power Systems; Springer Science & Business Media: Berlin, Germany, 2013; ISBN 978-1-4615-7731-7. [Google Scholar]
- Wang, X.-F.; Song, Y.-H.; Irving, M. Modern Power Systems Analysis; Springer: Berlin, Germany, 2008; ISBN 978-0-387-72853-7. [Google Scholar]
- Cañizares, C.A.; Alvarado, F.L. Point of collapse and continuation methods for large AC/DC systems. IEEE Trans. Power Syst. 1993, 8, 1–8. [Google Scholar] [CrossRef]
- Ajjarapu, V.; Christy, C. The continuation power flow: A tool for steady state voltage stability analysis. IEEE Trans. Power Syst. 1992, 7, 416–423. [Google Scholar] [CrossRef]
- Sundaram, K.; Swarup, S. Classification and Assessment of Power System Security Using Multiclass SVM. IEEE Trans. Syst. Man Cybern. Part. C Appl. Rev. 2011, 41, 753–758. [Google Scholar]
- Erlich, I. Mean-Variance Mapping Optimization Algorithm Home Page. Available online: https://www.uni-due.de/mvmo/ (accessed on 9 February 2018).
- Rueda, J.L.; Cepeda, J.C.; Erlich, I. Estimation of location and coordinated tuning of PSS based on mean-variance mapping optimization. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar]
- Rueda, J.L.; Erlich, I. Optimal dispatch of reactive power sources by using MVMOs optimization. In Proceedings of the 2013 IEEE Computational Intelligence Applications in Smart Grid (CIASG), Singapore, 16–19 April 2013; pp. 29–36. [Google Scholar]
- Pai, M.A. Energy Function Analysis for Power System Stability; Springer: Berlin, Germany, 1989; ISBN 978-0-7923-9035-0. [Google Scholar]
- Washington, U. Power Systems Test Case Archive—UWEE. Available online: http://www2.ee.washington.edu/research/pstca/ (accessed on 16 April 2018).
- Huang, G.-B. Extreme Learning Machines: Random Neurons, Random Features, Kernels. Available online: http://www.ntu.edu.sg/home/egbhuang/ (accessed on 23 April 2018).
- Math Works, Inc. MATLAB. Available online: https://la.mathworks.com/products/matlab.html (accessed on 24 April 2018).
- Glavic, M.; Van Cutsem, T. Wide-Area Detection of Voltage Instability from Synchronized Phasor Measurements. Part II: Simulation Results. IEEE Trans. Power Syst. 2009, 24, 1417–1425. [Google Scholar] [CrossRef] [Green Version]
AI-Regressor | Identified Parameters | ||
---|---|---|---|
SVR | 12.888 | 0.675 | −4.778 |
KELM | 7.840 | −5.237 | -------- |
AI-Regressor | MSE | RMSE | ||||
---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 3 | Case 1 | Case 2 | Case 3 | |
ANN | 0.0008 | 19.3113 | 69.5482 | 0.0291 | 4.3945 | 8.3396 |
SVR | 0.0015 | 0.2909 | 1.7169 | 0.0389 | 0.5394 | 1.3103 |
KELM | 0.0005 | 0.0417 | 0.0460 | 0.0242 | 0.2043 | 0.2144 |
AI-Regressor | Training Time (s) | Testing Time (s) | ||
---|---|---|---|---|
Case 1 | Case 1 | Case 2 | Case 3 | |
ANN | 430.8661 | 0.0401 | 0.0187 | 0.0173 |
SVR | 116.8658 | 1.3095 | 1.2880 | 1.3120 |
KELM | 13.0696 | 1.2661 | 1.2774 | 1.2330 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villa-Acevedo, W.M.; López-Lezama, J.M.; Colomé, D.G. Voltage Stability Margin Index Estimation Using a Hybrid Kernel Extreme Learning Machine Approach. Energies 2020, 13, 857. https://doi.org/10.3390/en13040857
Villa-Acevedo WM, López-Lezama JM, Colomé DG. Voltage Stability Margin Index Estimation Using a Hybrid Kernel Extreme Learning Machine Approach. Energies. 2020; 13(4):857. https://doi.org/10.3390/en13040857
Chicago/Turabian StyleVilla-Acevedo, Walter M., Jesús M. López-Lezama, and Delia G. Colomé. 2020. "Voltage Stability Margin Index Estimation Using a Hybrid Kernel Extreme Learning Machine Approach" Energies 13, no. 4: 857. https://doi.org/10.3390/en13040857
APA StyleVilla-Acevedo, W. M., López-Lezama, J. M., & Colomé, D. G. (2020). Voltage Stability Margin Index Estimation Using a Hybrid Kernel Extreme Learning Machine Approach. Energies, 13(4), 857. https://doi.org/10.3390/en13040857