How Much Human-Caused Global Warming Should We Expect with Business-As-Usual (BAU) Climate Policies? A Semi-Empirical Assessment
Abstract
:1. Introduction
- Question 1. What would future greenhouse gas emissions be over the coming century under “Business-As-Usual” conditions?
- Question 2. For each of the greenhouse gases, what is the relationship between emissions and actual changes in atmospheric concentrations?
- Question 3. How different would global average temperatures be at present if greenhouse gases were still at “pre-industrial concentrations”? In other words, how do we define the “pre-industrial levels” of global average temperatures to which the Paris Agreement refers?
- Question 4. How “sensitive” are global average temperatures to increases in the atmospheric concentrations of greenhouse gases?
2. What Would Future Greenhouse Gas Emissions Be Under “Business-As-Usual” Conditions?
2.1. Some Notes on Units and Acronyms
- 1 Gt C = 1 Pg C = 1000 Tg C = 3.6675 Gt CO2 = 3.6675 × 1012 kg of CO2 = 3.6675 × 1015 g of CO2
- 1 Mt CH4 = 1 Tg CH4 = 1 × 109 kg of CH4 = 1 × 1012 g of CH4
- 1 Mt N2O = 1 Tg N2O = 1 × 109 kg of N2O = 1 × 1012 g of N2O
- 1 ppmv of CO2 ≅ 7.8 Gt CO2 or 2.13 Gt C
- 1 ppbv of CH4 ≅ 2.85 Tg CH4
- 1 ppbv of N2O ≅ 7.42 Tg N2O
2.2. Carbon Dioxide (CO2) Emissions
2.3. Methane (CH4) Emissions
2.4. Nitrous Oxide (N2O) Emissions
3. What Is the Relationship between Greenhouse Gas Emissions and Actual Changes in Atmospheric Concentrations?
3.1. The Airborne Fraction of Carbon Dioxide (CO2) Emissions
- Paradigm 1—the “anthropocentric” approach. It is assumed that any natural sinks and sources of CO2 are effectively balanced, and that all human-caused CO2 emissions will contribute to human-caused global warming. This was originally proposed by studies before the Mauna Loa observations had begun or had only recently begun, e.g., refs. [37,101,102,103]. It also seems to be implicit among researchers who consider carbon dioxide (CO2) to be a “pollutant”, even though it is a naturally-occurring gas, e.g., the US EPA’s 2009 so-called “Endangerment finding” [104].
- Paradigm 2—the “airborne fraction” approach. Like Paradigm 1, it is assumed that any natural sinks and sources are roughly balanced from year-to-year. However, given the fact that the airborne fraction is <1, it is acknowledged that the natural sinks and sources are not exactly balancing each other. Instead, it is assumed that some of the natural sinks (chiefly, the oceans and terrestrial vegetation) are absorbing some of the anthropogenic emissions. Within this paradigm, there is ongoing debate over whether these sinks will continue to take up a fraction of this anthropogenic CO2 at the same rate they have been since 1959, e.g., refs. [105,106,107], or whether the airborne fraction is going to start increasing towards 1 in the near future, e.g., refs. [39,108,109].
- Paradigm 3—the “sinks and sources” approach. Within this paradigm, it is recognized that anthropogenic emissions are a new source of CO2, but that there is also significant variability in the magnitudes of the natural sinks and sources. In particular, it is widely acknowledged that increasing temperatures should increase the natural CO2 emissions from soil respiration [110,111] as well as reducing the solubility of CO2 in the upper oceans [112] (which could potentially lead to net outgassing of CO2 into the atmosphere). For this reason, several researchers have argued that some component of the observed increase in atmospheric CO2 since 1959 could be a result of a natural global warming trend (i.e., the opposite of the human-caused global warming theory), e.g., refs. [16,17,74,75,77,79,80,81,85,113]. Importantly, this paradigm does not rule out a contribution from anthropogenic emissions in the recent increase—rather, anthropogenic emissions are treated as an additional source that needs to be taken into account.
- Paradigm 4—the “resilient Earth” approach. This is similar to Paradigm 3, except that it is disputed whether there is anything unusual about the increase since 1959. Within this paradigm, it is argued that the Antarctic ice core estimates are unreliable and that similar CO2 concentrations to present may well have occurred in the decades and centuries before the Mauna Loa record began. Instead, it is argued that most (if not all) of the rise in CO2 over the Mauna Loa record was natural in origin (due to natural global warming), e.g., refs. [82,83,84,87,88,89,114].
3.2. The Airborne Fraction of Methane (CH4) Emissions
3.3. The Airborne Fraction of Nitrous Oxide (N2O) Emissions
3.4. Comparison of “Business-As-Usual” AirborneFfractions with the RCP Scenarios
3.5. Projected Greenhouse Gas Concentrations up to 2100 under “Business-As-Usual” Airborne Fractions
4. How Do We Define “Pre-Industrial” Global Temperatures?
4.1. How Much of the Recent Global Warming is Human-Caused vs. Natural?
- Paradigm 1. Recent global warming was mostly or entirely human-caused, and future climate change is going to be increasingly dominated by human-caused global warming
- Paradigm 2. Recent global warming was a mixture of human and natural causes. This means that the current climate models are probably underestimating the role of natural factors in the recent warming and are therefore probably overestimating the magnitude of human-caused global warming that we should expect.
- Paradigm 3. Recent global warming was mostly or entirely natural, and not human-caused. This implies that there is something fundamentally wrong with the computer models, and their projections of future human-caused global warming should be treated with skepticism.
- The IPCC argued that automated statistical homogenization techniques, such as Menne and Williams (2009) [155], are able to remove any non-climatic biases, such as the growth of urban heat islands, and therefore use as many stations as possible to estimate global temperature trends—regardless of whether they have been affected by urbanization bias or not. Soon et al. argued that those automated homogenization techniques are inadequate for that purpose, and therefore estimated global temperature trends using only rural (or mostly rural) stations.
- The IPCC argued that solar variability has been very low since the 19th century, and that solar activity has been, if anything, declining since the mid-20th century. Therefore, they only considered solar variability estimates that fit that narrative, e.g., Wang et al. (2005) [156] or Krivova et al. (2010) [157]. Soon et al. argued that all of the plausible estimates of solar variability in the literature should be considered, and they identified one which implied quite a substantial role for the Sun in global temperature changes since at least 1881, i.e., Scafetta and Willson (2014)’s updated version [158] of Hoyt and Schatten (1993) [159]—see also Scafetta et al. (2019) [160].
- The IPCC were therefore unable to explain any of the post-1950s global temperature trends in terms of natural factors and concluded that human-caused factors (chiefly increasing greenhouse gas concentrations) were needed to explain the warming since then. They therefore concluded that recent global warming was mostly (or entirely) human caused. On the other hand, Soon et al. were able to explain almost all of the temperature trends since 1881 in terms of changes in solar output. They therefore concluded that recent global warming was probably mostly (or entirely) natural.
4.2. When Exactly Was “Pre-industrial”?
- Paradigm 1. Until the end of the 19th century, global average temperatures were fairly constant, with if anything a gradual long-term cooling. This is consistent with the post-19th century warming being entirely human caused. An example of a reconstruction that fits this paradigm is the Mann et al. (1999) [164] reconstruction in Figure 12a.
- Paradigm 2. There was a Medieval Warm Period around 11th/12th centuries (or possibly a bit earlier), and the 18th/19th centuries were relatively cold (the Little Ice Age), but the Current Warm Period is warmer than the Medieval Warm Period was. This is consistent with much of the post-19th century warming being human caused, but also allows the possibility that some of it could be natural in origin (similar to the Medieval Warm Period). An example of a reconstruction that fits this paradigm is the D’Arrigo et al. (2006) [166] reconstruction in Figure 12b.
- Paradigm 3. There was a Medieval Warm Period around 11th/12th centuries (or possibly a bit earlier) and the 18th/19th centuries were relatively cold (the Little Ice Age), and the Medieval Warm Period was at least as warm as the Current Warm Period was. This is consistent with much of the post-19th century warming being natural in origin (similar to the Medieval Warm Period). An example of a reconstruction that fits this paradigm is the Moberg et al. (2005) [165] reconstruction in Figure 12c.
- Paradigm 4. There are still too many inconsistencies between the various reconstructions and uncertainties and poorly justified assumptions associated with many of the underlying proxy series for us to establish how the globally representative averaged temperature changes during the current period compared to those over the last millennium or longer. Some of these problems and uncertainties have been described by, e.g., [178,183,184,185,190,191,192,198,199].
5. How “Sensitive” Is the Global Average Temperature to Changes in Greenhouse Gas Concentrations?
5.1. Climate Sensitivity Paradigms
- Paradigm 1: “Global warming is mostly or entirely human-caused”. Changes in greenhouse gas concentrations are the primary driver of global temperature change, especially in recent decades, and the long-term warming since the late-19th century is mostly (if not entirely) due to human-caused greenhouse gas emissions. Within this paradigm, there is generally less interest in trying to understand the causes of recent climate change, and instead the focus is largely on quantifying future climate change from increasing greenhouse gas concentrations, e.g., Andronova and Schlesinger (2001) [202]; Hegerl et al. (2006) [210]; Chylek et al. (2007) [211]; Aldrin et al. (2012) [212]; Ring et al. (2012) [203]; Lewis (2013) [213]; Shindell (2014) [214]; Skeie et al. (2014) [215]; Lovejoy (2014) [205]; Monckton et al. (2015a) [216]; Bates (2016) [209]; Marvel et al. (2016) [206]; Lewis and Curry (2018) [208]; Shurer et al. (2018) [217].
- Paradigm 2: “Global warming is a mixture of human-caused and natural factors”. It is assumed that human-caused greenhouse gas emissions are a significant driver of recent global temperature change (as in Paradigm 1), but that natural climate change has probably also been a significant driver. Within this paradigm, satisfactorily establishing the relative roles of natural and human-caused factors in recent climate change is a primary focus since this strongly influences both our understanding of recent climate change and our expectations for future climate change. For instance, if 50% of the warming since the late-19th century was due to natural climate change, then this suggests that the future warming from increasing greenhouse gases would probably only be at most half of what might be expected if 100% of the warming was due to greenhouse gases, e.g., Idso (1998) [218]; Loehle and Scafetta (2011) [219]; Ziskin and Shaviv (2012) [220]; Loehle (2014) [221]; Spencer and Braswell (2014) [222]; van der Werf and Dolman (2014) [223]; Wyatt and Curry (2014) [224]; Lim et al. (2014) [225]; Harde (2017) [226]; Christy and McNider (2017) [227]; McKitrick and Christy (2018) [228].
- Paradigm 3: “Global warming is mostly or entirely natural”. Greenhouse gases are not necessarily a major driver of global temperature change, and most (or all) of the warming since the late-19th century is due to the same natural climatic changes that have occurring since long before the Industrial Revolution. Within this paradigm, there is generally less interest in describing future climate change (which is typically assumed to be comparable to the climate changes experienced over the last few millennia). Instead, the primary focus tends to be on better quantifying the magnitudes and causes of past climate changes, e.g., Carter and Gammon (2004) [153]; Svensmark (2007) [229]; Eschenbach (2010); Loehle and Singer (2010) [230]; Carter (2010) [113]; Shaviv et al. (2014) [231]; Lüning and Vahrenholt (2015) [232]; Soon et al. (2015); Svensmark et al. (2016) [233]; Lüning and Vahrenholt (2016) [234]; Kravtsov et al. (2018) [235].
- Paradigm 1a: For estimating the future climate change that would occur if CO2 doubles or quadruples, the latest simulations from the most up-to-date Global Climate Models are probably more reliable than extrapolating from historical observations, e.g., Knutti et al. (2008) [238]; Shindell (2014) [214]; Marvel et al. (2016) [206]; Gregory and Andrews (2016) [241]; Rohrschneider et al. (2019) [242]; Forster et al. (2020) [243].
- Paradigm 1b: The use of relatively simple analytical models or theoretical frameworks (preferably coupled to historical observations) offers a quicker and more flexible method for estimating future climate changes, e.g., Aldrin et al. (2012) [212]; Lewis (2013) [213]; Geoffroy et al. (2013) [244]; Skeie et al. (2014) [215]; Monckton et al. (2015a) [216]; Bates (2016) [209]; Lewis and Curry (2018) [208].
- Paradigm 1c: The most realistic (or, at least, the most compelling) estimates of climate sensitivity are probably ones that are derived from historical observations, although the calculations often require making theoretical assumptions that can be subjective, e.g., Andronova and Schlesinger (2001) [202]; Edwards et al. (2007) [245]; Chylek et al. (2007) [211]; Schwartz (2007) [237]; (2008) [236]; Ring et al. (2012) [203]; Lovejoy (2014) [205].
5.2. Different Climate Sensitivity Definitions and Estimates
5.3. Converting Projected Greenhouse Gas Concentrations into Projected Human-Caused Global Warming for Different Transient Climate Response and Equilibrium Climate Sensitivity Estimates
6. How Much Human-Caused Global Warming Should We Expect with Business-As-Usual (BAU) Climate Policies?
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manabe, S.; Wetherald, R.T. Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity. J. Atmos. Sci. 1967, 24, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Manabe, S.; Wetherald, R.T. The Effects of Doubling the CO2 Concentration on the climate of a General Circulation Model. J. Atmos. Sci. 1975, 32, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Budyko, M.I. The effect of solar radiation variations on the climate of the Earth. Tellus 1969, 21, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Kukla, G.J.; Angell, J.K.; Korshover, J.; Dronia, H.; Hoshiai, M.; Namias, J.; Rodewald, M.; Yamamoto, R.; Iwashima, T. New data on climatic trends. Nature 1977, 270, 573–580. [Google Scholar] [CrossRef]
- Jones, P.D.; Wigley, T.M.L.; Wright, P.B. Global temperature variations between 1861 and 1984. Nature 1986, 322, 430–434. [Google Scholar] [CrossRef]
- Hansen, J.; Lebedeff, S. Global trends of measured surface air temperature. J. Geophys. Res. Atmos. 1987, 92, 13345–13372. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Lebedeff, S. Global surface air temperatures: Update through 1987. Geophys. Res. Lett. 1988, 15, 323–326. [Google Scholar] [CrossRef] [Green Version]
- Schlesinger, M.E. Equilibrium and transient climatic warming induced by increased atmospheric CO2. Clim. Dyn. 1986, 1, 35–51. [Google Scholar] [CrossRef]
- Tricot, C.; Berger, A. Modelling the equilibrium and transient responses of global temperature to past and future trace gas concentrations. Clim. Dyn. 1987, 2, 39–61. [Google Scholar] [CrossRef]
- Hansen, J.; Fung, I.; Lacis, A.; Rind, D.; Lebedeff, S.; Ruedy, R.; Russell, G.; Stone, P. Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model. J. Geophys. Res. Atmos. 1988, 93, 9341–9364. [Google Scholar] [CrossRef]
- Shabecoff, P.; Times, S.T. The N.Y. Global Warming Has Begun, Expert Tells Senate. The New York Times. 1988. Available online: https://www.nytimes.com/1988/06/24/us/global-warming-has-begun-expert-tells-senate.html (accessed on 15 January 2020).
- United Nations. United Nations Framework Convention on Climate Change. Available online: http://unfccc.int/files/essential_background/background_publications_htmlpdf/application/pdf/conveng.pdf (accessed on 15 January 2020).
- UN General Assembly Protection of Global Climate for Present and Future Generations of Mankind: Resolution/Adopted by the General Assembly, 22 December 1989, A/RES/44/207. Available online: https://unfccc.int/documents/4587 (accessed on 15 January 2020).
- Lacis, A.A.; Schmidt, G.A.; Rind, D.; Ruedy, R.A. Atmospheric CO2: Principal Control Knob Governing Earth’s Temperature. Science 2010, 330, 356–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC Summary for Policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Idso, C.D.; Carter, R.M.; Singer, S.F. Climate Change Reconsidered II: Physical Science; Karnick, S.T., Bast, D.C., Eds.; The Heartland Institute: Chicago, IL, USA, 2013; ISBN 978-1-934791-40-0. [Google Scholar]
- Bezdek, R.; Idso, C.D.; Legates, D.R.; Singer, S.F. Climate Change Reconsidered II: Fossil Fuels; Bast, J.L., Bast, D.C., Eds.; The Heartland Institute: Arlington Heights, IL, USA, 2019; ISBN 978-1-934791-45-5. [Google Scholar]
- Kyoto Protocol to the United Nations Framework Convention on Climate Change—UNFCCC. Available online: https://unfccc.int/documents/2409 (accessed on 15 January 2020).
- UNFCCC. Report of the Conference of the Parties on its Twenty-First Session, Held in Paris from 30 November to 13 December 2015. Addendum. Part Two: Action Taken by the Conference of the Parties at Its TwentyFirst Session—UNFCCC; United Nations: San Francisco, CA, USA, 2016. [Google Scholar]
- Friedman, L. Trump Serves Notice to Quit Paris Climate Agreement. The New York Times. 2019. Available online: https://www.nytimes.com/2019/11/04/climate/trump-paris-agreement-climate.html (accessed on 15 January 2020).
- Mahony, M. Climate change and the geographies of objectivity: The case of the IPCC’s burning embers diagram. Trans. Inst. Br. Geogr. 2015, 40, 153–167. [Google Scholar] [CrossRef]
- Knutti, R.; Rogelj, J.; Sedláček, J.; Fischer, E.M. A scientific critique of the two-degree climate change target. Nat. Geosci. 2016, 9, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Tschakert, P. 1.5 °C or 2 °C: A conduit’s view from the science-policy interface at COP20 in Lima, Peru. Clim. Chang. Responses 2015, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; Luderer, G.; Pietzcker, R.C.; Kriegler, E.; Schaeffer, M.; Krey, V.; Riahi, K. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Chang. 2015, 5, 519–527. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, X.; Zhang, X. The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering 2017, 3, 272–278. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Kharecha, P.; Beerling, D.; Berner, R.; Masson-Delmotte, V.; Pagani, M.; Raymo, M.; Royer, D.L.; Zachos, J.C. Target Atmospheric CO: Where Should Humanity Aim? Open Atmos. Sci. J. 2008, 2, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Randalls, S. History of the 2 °C climate target. WIREs Clim. Chang. 2010, 1, 598–605. [Google Scholar] [CrossRef]
- Victor, D.G.; Kennel, C.F. Climate policy: Ditch the 2 °C warming goal. Nat. News 2014, 514, 30. [Google Scholar] [CrossRef] [Green Version]
- Geden, O.; Beck, S. Renegotiating the global climate stabilization target. Nat. Clim. Chang. 2014, 4, 747–748. [Google Scholar] [CrossRef]
- Hulme, M. 1.5 °C and climate research after the Paris Agreement. Nat. Clim. Chang. 2016, 6, 222–224. [Google Scholar] [CrossRef] [Green Version]
- Tyndall, J.I. The Bakerian Lecture—On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption, and conduction. Philos. Trans. R. Soc. Lond. 1861, 151, 1–36. [Google Scholar]
- Hartmann, D.L. Global Physical Climatology, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands; Boston, MA, USA, 2006; ISBN 978-0-12-328531-7. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Arrhenius, P.S. XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1896, 41, 237–276. [Google Scholar] [CrossRef] [Green Version]
- Ångström, K. Knut Ångström on atmospheric absorption. Mon. Wea. Rev. 1901, 29, 268. [Google Scholar]
- Simpson, G.C. Past Climates. Nature 1929, 124, 988–991. [Google Scholar] [CrossRef] [Green Version]
- Callendar, G.S. The artificial production of carbon dioxide and its influence on temperature. Q. J. R. Meteorol. Soc. 1938, 64, 223–240. [Google Scholar] [CrossRef]
- Rubino, M.; Etheridge, D.M.; Thornton, D.P.; Howden, R.; Allison, C.E.; Francey, R.J.; Langenfelds, R.L.; Steele, L.P.; Trudinger, C.M.; Spencer, D.A.; et al. Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica. Earth Syst. Sci. Data 2019, 11, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Hauck, J.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; Quéré, C.L.; et al. Global Carbon Budget 2019. Earth Syst. Sci. Data 2019, 11, 1783–1838. [Google Scholar] [CrossRef] [Green Version]
- Boden, T.A.; Marland, G.; Andres, R.J. Global, Regional, and National Fossil-Fuel CO2 Emissions; Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy: Oak Ridge, TN, USA; Available online: https://doi.org/10.3334/CDIAC/00001_V2017 (accessed on 26 January 2020).
- Smith, S.J.; Rothwell, A. Carbon density and anthropogenic land-use influences on net land-use change emissions. Biogeosciences 2013, 10, 6323–6337. [Google Scholar] [CrossRef] [Green Version]
- Gütschow, J.; Jeffery, M.L.; Gieseke, R.; Gebel, R.; Stevens, D.; Krapp, M.; Rocha, M. The PRIMAP-hist national historical emissions time series. Earth Syst. Sci. Data 2016, 8, 571–603. [Google Scholar] [CrossRef] [Green Version]
- Gütschow, J.; Jeffery, L.; Gieseke, R. The PRIMAP-hist national historical emissions time series (1850–2016). Earth Syst. Sci. Data 2016, 8, 571–603. Available online: http://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:3842934 (accessed on 15 January 2020). [CrossRef] [Green Version]
- Tirpak, D.; Vellinga, P. Emissions Scenarios. In AR1, Working Group 3: The IPCC Response Strategies—IPCC; Island Press: Washington, DC, USA, 1990. [Google Scholar]
- Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC) Intergovernmental Panel on Climate Change—IPCC. IPCC IS92 Emissions Scenarios (A, B, C, D, E, F) Dataset Version 1.1. 2000. Available online: https://doi.org/10.7927/H41C1TT4 (accessed on 26 January 2020).
- Nakicenovic, N.; Swart, R. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A.; House, J.I.; Pongratz, J.; van der Werf, G.R.; DeFries, R.S.; Hansen, M.C.; Quéré, C.L.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar] [CrossRef] [Green Version]
- Hansis, E.; Davis, S.J.; Pongratz, J. Relevance of methodological choices for accounting of land use change carbon fluxes. Glob. Biogeochem. Cycles 2015, 29, 1230–1246. [Google Scholar] [CrossRef] [Green Version]
- Arneth, A.; Sitch, S.; Pongratz, J.; Stocker, B.D.; Ciais, P.; Poulter, B.; Bayer, A.D.; Bondeau, A.; Calle, L.; Chini, L.P.; et al. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat. Geosci. 2017, 10, 79–84. [Google Scholar] [CrossRef]
- Houghton, R.A.; Nassikas, A.A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 2017, 31, 456–472. [Google Scholar] [CrossRef]
- IPCC—Intergovernmental Panel on Climate Change Climate Change: The IPCC Scientific Assessment; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1990; ISBN 0-521-40360-X.
- Intergovernmental Panel on Climate Change. Climate Change 1995: The Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Houghton, J.T., Filho, L.G.M., Callander, B.A., Harris, N., Kattenburg, A., Maskell, K., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1996; ISBN 978-0-521-56433-5. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; ISBN 978-0-521-80767-8. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; ISBN 978-0-521-88009-1. [Google Scholar]
- Mckitrick, R.; Strazicich, M.C.; Lee, J. Long-Term Forecasting of Global Carbon Dioxide Emissions: Reducing Uncertainties Using a Per Capita Approach. J. Forecast. 2013, 32, 435–451. [Google Scholar] [CrossRef]
- Castles, I.; Henderson, D. The IPCC Emission Scenarios: An Economic-Statistical Critique. Energy Environ. 2003, 14, 159–185. [Google Scholar] [CrossRef]
- Nakicenovic, N.; Grübler, A.; Gaffin, S.; Jung, T.T.; Kram, T.; Morita, T.; Pitcher, H.; Riahi, K.; Schlesinger, M.; Shukla, P.R.; et al. IPCC Sres Revisited: A Response. Energy Environ. 2003, 14, 187–214. [Google Scholar] [CrossRef] [Green Version]
- Castles, I.; Henderson, D. Economics, Emissions Scenarios and the Work of the IPCC. Energy Environ. 2003, 14, 415–435. [Google Scholar] [CrossRef]
- Grübler, A.; Nakicenovic, N.; Alcamo, J.; Davis, G.; Fenhann, J.; Hare, B.; Mori, S.; Pepper, B.; Pitcher, H.; Riahi, K.; et al. Emissions Scenarios: A Final Response. Energy Environ. 2004, 15, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Henderson, D. SRES, IPCC and the Treatment of Economic Issues: What Has Emerged? Energy Environ. 2005, 16, 549–578. [Google Scholar] [CrossRef]
- Ritchie, J.; Dowlatabadi, H. Why do climate change scenarios return to coal? Energy 2017, 140, 1276–1291. [Google Scholar] [CrossRef]
- Ritchie, J.; Dowlatabadi, H. The 1000 GtC coal question: Are cases of vastly expanded future coal combustion still plausible? Energy Econ. 2017, 65, 16–31. [Google Scholar] [CrossRef]
- Ritchie, J.; Dowlatabadi, H. Defining climate change scenario characteristics with a phase space of cumulative primary energy and carbon intensity. Environ. Res. Lett. 2018, 13, 024012. [Google Scholar] [CrossRef]
- Hausfather, Z.; Peters, G.P. Emissions—The ‘business as usual’ story is misleading. Nature 2020, 577, 618–620. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Chang. 2017, 42, 169–180. [Google Scholar] [CrossRef] [Green Version]
- US Department of Commerce. NOAA/ESRL Global Monitoring Division—The Noaa Annual Greenhouse Gas Index (AGGI). Available online: https://www.esrl.noaa.gov/gmd/aggi/aggi.html (accessed on 26 January 2020).
- US Department of Commerce. ESRL Global Monitoring Division—Halocarbons and other Atmospheric Trace Species. Available online: https://www.esrl.noaa.gov/gmd/hats/ (accessed on 28 January 2020).
- Rubino, M.; Etheridge, D.M.; Thornton, D.P.; Howden, R.; Allison, C.E.; Francey, R.J.; Langenfelds, R.L.; Steele, L.P.; Trudinger, C.; Spencer, D.A.; et al. Law Dome, Antarctica 2000 Year Ice Core CO2, CH4, N2O and d13C-CO2 Data. Available online: https://www.ncdc.noaa.gov/paleo-search/study/25830 (accessed on 26 January 2020).
- Monnin, E.; Indermühle, A.; Dällenbach, A.; Flückiger, J.; Stauffer, B.; Stocker, T.F.; Raynaud, D.; Barnola, J.-M. Atmospheric CO2 Concentrations over the Last Glacial Termination. Science 2001, 291, 112–114. [Google Scholar] [CrossRef] [Green Version]
- Ciais, P.; Sabine, C.L.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; DeFries, R.S.; Galloway, J.N.; Heimann, M.; et al. Carbon and Other Biogeochemical Cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Rörsch, A.; Courtney, R.S.; Thoenes, D. Global Warming and the Accumulation of Carbon Dioxide in the Atmosphere: A Critical Consideration of the Evidence. Energy Environ. 2005, 16, 101–125. [Google Scholar] [CrossRef]
- Rörsch, A.; Courtney, R.S.; Thoenes, D. The Interaction of Climate Change and the Carbon Dioxide Cycle. Energy Environ. 2005, 16, 217–238. [Google Scholar]
- Quirk, T. Sources and Sinks of Carbon Dioxide. Energy Environ. 2009, 20, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Ahlbeck, D.J.R. On the Increased Rate of Atmospheric Carbon Dioxide Accumulation 1980–2008. Energy Environ. 2009, 20, 1149–1154. [Google Scholar] [CrossRef]
- Salby, M.L. Global emission of carbon dioxide: The contribution from natural sources. In Proceedings of the Sydney Institute, Sydney, NSW, Australia, 2 August 2011; Available online: https://thesydneyinstitute.com.au/blog/global-emission-of-carbon-dioxide-the-contribution-from-natural-sources/ (accessed on 15 January 2020).
- Humlum, O.; Stordahl, K.; Solheim, J.-E. The phase relation between atmospheric carbon dioxide and global temperature. Glob. Planet. Chang. 2013, 100, 51–69. [Google Scholar] [CrossRef]
- Harde, H. Scrutinizing the carbon cycle and CO2 residence time in the atmosphere. Glob. Planet. Chang. 2017, 152, 19–26. [Google Scholar] [CrossRef]
- Harde, H. What Humans Contribute to Atmospheric CO2: Comparison of Carbon Cycle Models with Observations. Earth Sci. 2019, 8, 139. [Google Scholar]
- Berry, E.X. Human CO2 Emissions Have Little Effect on Atmospheric CO2. Int. J. Atmos. Ocean. Sci. 2019, 3, 13. [Google Scholar]
- Jaworowski, Z.; Segalstad, T.V.; Ono, N. Do glaciers tell a true atmospheric CO2 story? Sci. Total Environ. 1992, 114, 227–284. [Google Scholar] [CrossRef]
- Jaworowski, Z. Ancient atmosphere- Validity of ice records. Environ. Sci. Pollut. Res. 1994, 1, 161–171. [Google Scholar] [CrossRef]
- Starr, C. Atmospheric CO2 residence time and the carbon cycle. Energy 1993, 18, 1297–1310. [Google Scholar] [CrossRef]
- Linden, H.R. Are the IPCC Carbon Emission and Carbon Dioxide Stabilization Scenarios Realistic? Energy Environ. 1998, 9, 647–657. [Google Scholar] [CrossRef] [Green Version]
- Beck, E.-G. 180 Years of Atmospheric CO2 Gas Analysis by Chemical Methods. Energy Environ. 2007, 18, 259–282. [Google Scholar] [CrossRef]
- Beck, E.-G. Comments on “180 Years of Atmospheric CO2 Gas Analysis by Chemical Methods”. Energy Environ. 2007, 18, 641–646. [Google Scholar] [CrossRef]
- Beck, E.-G. 50 Years of Continuous Measurement of CO2 on Mauna Loa. Energy Environ. 2008, 19, 1017–1028. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.C.; Gaffin, S.R.; Oppenheimer, M. Reply to “Reservoir timescales for anthropogenic CO2 in the atmosphere: Commentary”. Tellus B Chem. Phys. Meteorol. 1996, 48, 707–709. [Google Scholar]
- O’Neill, B.C.; Oppenheimer, M.; Gaffin, S.R. Measuring Time in the Greenhouse; an Editorial Essay. Clim. Chang. 1997, 37, 491–505. [Google Scholar] [CrossRef]
- Tans, P.P. The CO2 Lifetime Concept Should Be Banished; an Editorial Comment. Clim. Chang. 1997, 37, 487–490. [Google Scholar] [CrossRef]
- Kern, Z.; Leuenberger, M. Comment on “The phase relation between atmospheric carbon dioxide and global temperature” Humlum et al. [Glob. Planet. Change 100: 51–69.]: Isotopes ignored. Glob. Planet. Chang. 2013, 109, 1–2. [Google Scholar] [CrossRef]
- Masters, T.; Benestad, R. Comment on “The phase relation between atmospheric carbon dioxide and global temperature”. Glob. Planet. Chang. 2013, 106, 141–142. [Google Scholar] [CrossRef]
- Richardson, M. Comment on “The phase relation between atmospheric carbon dioxide and global temperature” by Humlum, Stordahl and Solheim. Glob. Planet. Chang. 2013, 107, 226–228. [Google Scholar] [CrossRef]
- Grosjean, M.; Guiot, J.; Yu, Z. Commentary: H. Harde: “Scrutinizing the carbon cycle and CO2 residence time in the atmosphere”. Global and Planetary Change 152 (2017), 19–26. Glob. Planet. Chang. 2018, 164, 65–66. [Google Scholar] [CrossRef]
- Köhler, P.; Hauck, J.; Völker, C.; Wolf-Gladrow, D.A.; Butzin, M.; Halpern, J.B.; Rice, K.; Zeebe, R.E. Comment on “Scrutinizing the carbon cycle and CO2 residence time in the atmosphere” by H. Harde. Glob. Planet. Chang. 2018, 164, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Meijer, H.A.J.; Keeling, R.F. Comment on “180 Years of Atmospheric CO2 Gas Analysis by Chemical Methods” by Ernst-Georg Beck: Energy & Environment, Vol. 18(2), 2007. Energy Environ. 2007, 18, 635–640. [Google Scholar]
- Oeschger, H.Z. Jaworowski: Ancient atmosphere—Validity of ice records ESPR 1 (3) 161–171 (1994). Environ. Sci. Pollut. Res. 1995, 2, 60–61. [Google Scholar] [CrossRef]
- Kuhn, T.S.; Hacking, I. The Structure of Scientific Revolutions: 50th Anniversary Edition; University of Chicago Press: Chicago, IL, USA; London, UK, 2012; ISBN 978-0-226-45812-0. [Google Scholar]
- Callendar, G.S. On the Amount of Carbon Dioxide in the Atmosphere. Tellus 1958, 10, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Plass, G.N. The Carbon Dioxide Theory of Climatic Change. Tellus 1956, 8, 140–154. [Google Scholar] [CrossRef] [Green Version]
- Bolin, B. The Atmosphere and the Sea in Motion: Scientific Contributions to the Rossby Memorial Volume; Rockefeller Institute Press: New York, NY, USA, 1959. [Google Scholar]
- US EPA. Endangerment and Cause or Contribute Findings for Greenhouse Gases under the Section 202(a) of the Clean Air Act. Available online: https://www.epa.gov/ghgemissions/endangerment-and-cause-or-contribute-findings-greenhouse-gases-under-section-202a-clean (accessed on 15 January 2020).
- Ballantyne, A.P.; Alden, C.B.; Miller, J.B.; Tans, P.P.; White, J.W.C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 2012, 488, 70–72. [Google Scholar] [CrossRef]
- Raupach, M.R. The exponential eigenmodes of the carbon-climate system, and their implications for ratios of responses to forcings. Earth Syst. Dyn. 2013, 4, 31–49. [Google Scholar] [CrossRef] [Green Version]
- Bennedsen, M.; Hillebrand, E.; Koopman, S.J. Trend analysis of the airborne fraction and sink rate of anthropogenically released CO2. Biogeosciences 2019, 16, 3651–3663. [Google Scholar] [CrossRef] [Green Version]
- Le Quéré, C.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Doney, S.C.; Feely, R.A.; Foster, P.; et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2009, 2, 831–836. [Google Scholar] [CrossRef]
- Betts, R.A.; Collins, M.; Hemming, D.L.; Jones, C.D.; Lowe, J.A.; Sanderson, M.G. When could global warming reach 4 °C? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Raich, J.W.; Schlesinger, W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B Chem. Phys. Meteorol. 1992, 44, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Bond-Lamberty, B.; Bailey, V.L.; Chen, M.; Gough, C.M.; Vargas, R. Globally rising soil heterotrophic respiration over recent decades. Nature 2018, 560, 80–83. [Google Scholar] [CrossRef]
- Takahashi, T.; Sutherland, S.C.; Sweeney, C.; Poisson, A.; Metzl, N.; Tilbrook, B.; Bates, N.; Wanninkhof, R.; Feely, R.A.; Sabine, C.; et al. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 1601–1622. [Google Scholar] [CrossRef]
- Carter, P.R. Climate: The Counter-Consensus; Stacey International: London, UK, 2010; ISBN 978-1-906768-29-4. [Google Scholar]
- Calder, N. The Carbon Dioxide Thermometer and the Cause of Global Warming. Energy Environ. 1999, 10, 1–18. [Google Scholar] [CrossRef]
- Kanwisher, J. pCO2 in Sea Water and its Effect on the Movement of CO2 in Nature. Tellus 1960, 12, 209–215. [Google Scholar] [CrossRef]
- Revelle, R.; Suess, H.E. Carbon Dioxide Exchange Between Atmosphere and Ocean and the Question of an Increase of Atmospheric CO2 during the Past Decades. Tellus 1957, 9, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Wagner, F.; Bohncke, S.J.P.; Dilcher, D.L.; Kürschner, W.M.; van Geel, B.; Visscher, H. Century-Scale Shifts in Early Holocene Atmospheric CO2 Concentration. Science 1999, 284, 1971–1973. [Google Scholar] [CrossRef]
- Mcelwain, J.C.; Mayle, F.E.; Beerling, D.J. Stomatal evidence for a decline in atmospheric CO2 concentration during the Younger Dryas stadial: A comparison with Antarctic ice core records. J. Quat. Sci. 2002, 17, 21–29. [Google Scholar] [CrossRef]
- Wagner, F.; Aaby, B.; Visscher, H. Rapid atmospheric CO2 changes associated with the 8200-years-B.P. cooling event. Proc. Natl. Acad. Sci. USA 2002, 99, 12011–12014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rundgren, M.; Björck, S. Late-glacial and early Holocene variations in atmospheric CO2 concentration indicated by high-resolution stomatal index data. Earth Planet. Sci. Lett. 2003, 213, 191–204. [Google Scholar] [CrossRef]
- Wagner, F.; Kouwenberg, L.L.R.; van Hoof, T.B.; Visscher, H. Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency. Quat. Sci. Rev. 2004, 23, 1947–1954. [Google Scholar] [CrossRef]
- Hoof, T.B.V.; Kaspers, K.A.; Wagner, F.; Wal, R.S.W.V.D.; Kürschner, W.M.; Visscher, H. Atmospheric CO2 during the 13th century AD: Reconciliation of data from ice core measurements and stomatal frequency analysis. Tellus B 2005, 57, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Kouwenberg, L.; Wagner, R.; Kürschner, W.; Visscher, H. Atmospheric CO2 fluctuations during the last millennium reconstructed by stomatal frequency analysis of Tsuga heterophylla needles. Geology 2005, 33, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Van Hoof, T.B.; Wagner-Cremer, F.; Kürschner, W.M.; Visscher, H. A role for atmospheric CO2 in preindustrial climate forcing. Proc. Natl. Acad. Sci. USA 2008, 105, 15815–15818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finsinger, W.; Wagner-Cremer, F. Stomatal-based inference models for reconstruction of atmospheric CO2 concentration: A method assessment using a calibration and validation approach. Holocene 2009, 19, 757–764. [Google Scholar] [CrossRef]
- Steinthorsdottir, M.; Wohlfarth, B.; Kylander, M.E.; Blaauw, M.; Reimer, P.J. Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions. Quat. Sci. Rev. 2013, 68, 43–58. [Google Scholar] [CrossRef]
- Steinthorsdottir, M.; de Boer, A.M.; Oliver, K.I.C.; Muschitiello, F.; Blaauw, M.; Reimer, P.J.; Wohlfarth, B. Synchronous records of pCO2 and Δ14C suggest rapid, ocean-derived pCO2 fluctuations at the onset of Younger Dryas. Quat. Sci. Rev. 2014, 99, 84–96. [Google Scholar] [CrossRef]
- Barnola, J.M.; Anklin, M.; Porcheron, J.; Raynaud, D.; Schwander, J.; Stauffer, B. CO2 evolution during the last millennium as recorded by Antarctic and Greenland ice. Tellus B 1995, 47, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Indermühle, A.; Stauffer, B.; Stocker, T.F.; Raynaud, D.; Barnola, J.-M.; Birks, H.H.; Eide, W.; Birks, H.J.B.; Wagner, F.; Kurschner, W.M.; et al. Early Holocene Atmospheric CO2 Concentrations. Science 1999, 286, 1815. [Google Scholar] [CrossRef] [Green Version]
- Tschumi, J.; Stauffer, B. Reconstructing past atmospheric CO2 concentration based on ice-core analyses: Open questions due to in situ production of CO2 in the ice. J. Glaciol. 2000, 46, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Köhler, P.; Fischer, H.; Schmitt, J.; Brook, E.J.; Marcott, S.A. Comment on “Synchronous records of pCO2 and Δ14C suggest rapid, ocean-derived pCO2 fluctuations at the onset of Younger Dryas” by Steinthorsdottir et al. Quat. Sci. Rev. 2015, 107, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Butler, J.H.; Montzka, S.A. NOAA/ESRL Global Monitoring Division—The Noaa Annual Greenhouse Gas Index (AGGI). Available online: https://www.esrl.noaa.gov/gmd/aggi/aggi.html (accessed on 26 January 2020).
- Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J.G.; Dlugokencky, E.J.; Bergamaschi, P.; Bergmann, D.; Blake, D.R.; Bruhwiler, L.; et al. Three decades of global methane sources and sinks. Nat. Geosci. 2013, 6, 813–823. [Google Scholar] [CrossRef]
- Ganesan, A.L.; Schwietzke, S.; Poulter, B.; Arnold, T.; Lan, X.; Rigby, M.; Vogel, F.R.; van der Werf, G.R.; Janssens-Maenhout, G.; Boesch, H.; et al. Advancing Scientific Understanding of the Global Methane Budget in Support of the Paris Agreement. Glob. Biogeochem. Cycles 2019, 33, 1475–1512. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Manning, M.R.; Dlugokencky, E.J.; Fisher, R.E.; Lowry, D.; Michel, S.E.; Myhre, C.L.; Platt, S.M.; Allen, G.; Bousquet, P.; et al. Very Strong Atmospheric Methane Growth in the 4 Years 2014–2017: Implications for the Paris Agreement. Glob. Biogeochem. Cycles 2019, 33, 318–342. [Google Scholar] [CrossRef]
- Saunois, M.; Bousquet, P.; Poulter, B.; Peregon, A.; Ciais, P.; Canadell, J.G.; Dlugokencky, E.J.; Etiope, G.; Bastviken, D.; Houweling, S.; et al. The global methane budget 2000–2012. Earth Syst. Sci. Data 2016, 8, 697–751. [Google Scholar] [CrossRef] [Green Version]
- PBL. Trends in Global CO2 and Total Greenhouse Gas Emissions: 2018 Report. Available online: https://www.pbl.nl/en/publications/trends-in-global-CO2-and-total-greenhouse-gas-emissions-2018-report (accessed on 14 January 2020).
- Gupta, J. The History of Global Climate Governance, 1st ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; ISBN 978-1-107-04051-9. [Google Scholar]
- Tian, H.; Chen, G.; Lu, C.; Xu, X.; Ren, W.; Zhang, B.; Banger, K.; Tao, B.; Pan, S.; Liu, M.; et al. Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosyst. Health Sustain. 2015, 1, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Xiao, X.; Dong, J.; Xin, F.; Zhang, Y.; Qin, Y.; Doughty, R.B.; Moore, B. Fingerprint of rice paddies in spatial–temporal dynamics of atmospheric methane concentration in monsoon Asia. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bastviken, D.; Tranvik, L.J.; Downing, J.A.; Crill, P.M.; Enrich-Prast, A. Freshwater Methane Emissions Offset the Continental Carbon Sink. Science 2011, 331, 50. [Google Scholar] [CrossRef] [Green Version]
- Davidson, E.A.; Kanter, D. Inventories and scenarios of nitrous oxide emissions. Environ. Res. Lett. 2014, 9, 105012. [Google Scholar] [CrossRef]
- Soper, F.M.; Sullivan, B.W.; Osborne, B.B.; Shaw, A.N.; Philippot, L.; Cleveland, C.C. Leaf-cutter ants engineer large nitrous oxide hot spots in tropical forests. Proc. R. Soc. B Biol. Sci. 2019, 286, 20182504. [Google Scholar] [CrossRef] [Green Version]
- Machacova, K.; Vainio, E.; Urban, O.; Pihlatie, M. Seasonal dynamics of stem N 2 O exchange follow the physiological activity of boreal trees. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Garcia, W.O.; Hartmann, J.; Khanna, T.; et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef] [Green Version]
- Doran, P.T.; Zimmerman, M.K. Examining the Scientific Consensus on Climate Change. Eos Trans. Am. Geophys. Union 2009, 90, 22–23. [Google Scholar] [CrossRef]
- Cook, J.; Nuccitelli, D.; Green, S.A.; Richardson, M.; Winkler, B.; Painting, R.; Way, R.; Jacobs, P.; Skuce, A. Quantifying the consensus on anthropogenic global warming in the scientific literature. Environ. Res. Lett. 2013, 8, 024024. [Google Scholar] [CrossRef] [Green Version]
- Stenhouse, N.; Maibach, E.; Cobb, S.; Ban, R.; Bleistein, A.; Croft, P.; Bierly, E.; Seitter, K.; Rasmussen, G.; Leiserowitz, A. Meteorologists’ Views About Global Warming: A Survey of American Meteorological Society Professional Members. Bull. Am. Meteorol. Soc. 2013, 95, 1029–1040. [Google Scholar] [CrossRef]
- Verheggen, B.; Strengers, B.; Cook, J.; van Dorland, R.; Vringer, K.; Peters, J.; Visser, H.; Meyer, L. Scientists’ Views about Attribution of Global Warming. Environ. Sci. Technol. 2014, 48, 8963–8971. [Google Scholar] [CrossRef] [Green Version]
- Soon, W.; Baliunas, S. Proxy climatic and environmental changes of the past 1000 years. Clim. Res. 2003, 23, 89–110. [Google Scholar] [CrossRef]
- Soon, W.; Baliunas, S.; Idso, C.; Idso, S.; Legates, D.R. Reconstructing Climatic and Environmental Changes of the Past 1000 Years: A Reappraisal. Energy Environ. 2003, 14, 233–296. [Google Scholar] [CrossRef]
- Soon, W.; Connolly, R.; Connolly, M. Re-evaluating the role of solar variability on Northern Hemisphere temperature trends since the 19th century. Earth-Sci. Rev. 2015, 150, 409–452. [Google Scholar] [CrossRef]
- Carter, R.M.; Gammon, P. New Zealand Maritime Glaciation: Millennial-Scale Southern Climate Change Since 3.9 Ma. Science 2004, 304, 1659–1662. [Google Scholar] [CrossRef] [Green Version]
- LeGates, D.R.; Soon, W.; Briggs, W.M.; Brenchley, C.M.O. Climate Consensus and ‘Misinformation’: A Rejoinder to Agnotology, Scientific Consensus, and the Teaching and Learning of Climate Change. Sci. Educ. 2015, 24, 299–318. [Google Scholar] [CrossRef]
- Menne, M.J.; Williams, C.N. Homogenization of Temperature Series via Pairwise Comparisons. J. Clim. 2009, 22, 1700–1717. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-M.; Lean, J.L.; Sheeley, J.N.R. Modeling the Sun’s Magnetic Field and Irradiance since 1713. Astrophys. J. 2005, 625, 522. [Google Scholar] [CrossRef]
- Krivova, N.A.; Vieira, L.E.A.; Solanki, S.K. Reconstruction of solar spectral irradiance since the Maunder minimum. J. Geophys. Res. Space Phys. 2010, 115, A12. [Google Scholar] [CrossRef] [Green Version]
- Scafetta, N.; Willson, R.C. ACRIM total solar irradiance satellite composite validation versus TSI proxy models. Astrophys. Space Sci. 2014, 350, 421–442. [Google Scholar] [CrossRef] [Green Version]
- Hoyt, D.V.; Schatten, K.H. A discussion of plausible solar irradiance variations, 1700–1992. J. Geophys. Res. Space Phys. 1993, 98, 18895–18906. [Google Scholar] [CrossRef] [Green Version]
- Scafetta, N.; Willson, R.C.; Lee, J.N.; Wu, D.L. Modeling Quiet Solar Luminosity Variability from TSI Satellite Measurements and Proxy Models during 1980–2018. Remote Sens. 2019, 11, 2569. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A. Misdefining “climate change”: Consequences for science and action. Environ. Sci. Policy 2005, 8, 548–561. [Google Scholar] [CrossRef]
- Hawkins, E.; Ortega, P.; Suckling, E.; Schurer, A.; Hegerl, G.; Jones, P.; Joshi, M.; Osborn, T.J.; Masson-Delmotte, V.; Mignot, J.; et al. Estimating Changes in Global Temperature since the Preindustrial Period. Bull. Am. Meteorol. Soc. 2017, 98, 1841–1856. [Google Scholar] [CrossRef]
- Lüning, S.; Vahrenholt, F. Paleoclimatological Context and Reference Level of the 2 °C and 1.5 °C Paris Agreement Long-Term Temperature Limits. Front. Earth Sci. 2017, 5, 104. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.E.; Bradley, R.S.; Hughes, M.K. Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophys. Res. Lett. 1999, 26, 759–762. [Google Scholar] [CrossRef] [Green Version]
- Moberg, A.; Sonechkin, D.M.; Holmgren, K.; Datsenko, N.M.; Karlén, W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 2005, 433, 613–617. [Google Scholar] [CrossRef]
- D’Arrigo, R.; Wilson, R.; Jacoby, G. On the long-term context for late twentieth century warming. J. Geophys. Res. Atmos. 2006, 111, D03103. [Google Scholar] [CrossRef]
- Loehle, C.; McCulloch, J.H. Correction to: A 2000-Year Global Temperature Reconstruction Based on Non-Tree Ring Proxies. Energy Environ. 2008, 19, 93–100. [Google Scholar] [CrossRef]
- Ljungqvist, F.C. A new reconstruction of temperature variability in the extra-tropical northern hemisphere during the last two millennia. Geogr. Ann. Ser. A Phys. Geogr. 2010, 92, 339–351. [Google Scholar] [CrossRef]
- Ljungqvist, F.C.; Zhang, Q.; Brattström, G.; Krusic, P.J.; Seim, A.; Li, Q.; Zhang, Q.; Moberg, A. Centennial-Scale Temperature Change in Last Millennium Simulations and Proxy-Based Reconstructions. J. Clim. 2019, 32, 2441–2482. [Google Scholar] [CrossRef]
- Neukom, R.; Barboza, L.A.; Erb, M.P.; Shi, F.; Emile-Geay, J.; Evans, M.N.; Franke, J.; Kaufman, D.S.; Lücke, L.; Rehfeld, K.; et al. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 2019, 12, 643–649. [Google Scholar]
- Akasofu, S.-I. On the recovery from the Little Ice Age. Nat. Sci. 2010, 2, 1211–1224. [Google Scholar] [CrossRef] [Green Version]
- Koch, A.; Brierley, C.; Maslin, M.M.; Lewis, S.L. Earth system impacts of the European arrival and Great Dying in the Americas after 1492. Quat. Sci. Rev. 2019, 207, 13–36. [Google Scholar] [CrossRef]
- Ruddiman, W.F.; Fuller, D.Q.; Kutzbach, J.E.; Tzedakis, P.C.; Kaplan, J.O.; Ellis, E.C.; Vavrus, S.J.; Roberts, C.N.; Fyfe, R.; He, F.; et al. Late Holocene climate: Natural or anthropogenic? Rev. Geophys. 2016, 54, 93–118. [Google Scholar] [CrossRef] [Green Version]
- Soon, W.W.-H.; Legates, D.R.; Baliunas, S.L. Estimation and representation of long-term (>40 year) trends of Northern-Hemisphere-gridded surface temperature: A note of caution. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Montford, A.W. The Hockey Stick Illusion; Climategate and the Corruption of Science, Later Printing edition; Stacey International: London, UK, 2010; ISBN 978-1-906768-35-5. [Google Scholar]
- Mann, M. The Hockey Stick and the Climate Wars: Dispatches from the Front Lines, Reprint ed.; Columbia University Press: New York, NY, USA, 2013; ISBN 978-0-231-15255-6. [Google Scholar]
- Soon, W.; Baliunas, S.; Legates, D. Comment on “On past temperatures and anomalous late-20th century warmth”. Eos Trans. Am. Geophys. Union 2003, 84, 473–476. [Google Scholar] [CrossRef]
- Connolly, R.; Connolly, M. Global temperature changes of the last millennium. Open Peer Rev. J. 2014, 16, 1. [Google Scholar]
- Byatt, S.I.; Carter, B.; Castles, I.; de Freitas, C.; Goklany, I.M.; Henderson, D.; Holland, D.; Blaby, L.L.; Lindzen, R.S.; McKitrick, R.; et al. The Stern Review: A Dual Critique. World Econ. 2006, 7, 165–232. [Google Scholar]
- Broecker, W.S. Was the Medieval Warm Period Global? Science 2001, 291, 1497–1499. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.; Amman, C.; Bradley, R.; Briffa, K.; Jones, P.; Osborn, T.; Crowley, T.; Hughes, M.; Oppenheimer, M.; Overpeck, J.; et al. On past temperatures and anomalous late-20th-century warmth. Eos Trans. Am. Geophys. Union 2003, 84, 256. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.; Ammann, C.; Bradley, R.; Briffa, K.; Jones, P.; Osborn, T.; Crowley, T.; Hughes, M.; Oppenheimer, M.; Overpeck, J.; et al. Response “[to Comment on ‘On past temperatures and anomalous late-20th-century warmth’”]. Eos. Trans. Am. Geophys. Union 2003, 84, 473. [Google Scholar] [CrossRef]
- McIntyre, S.; McKitrick, R. Corrections to the Mann et al. (1998) Proxy Data Base and Northern Hemispheric Average Temperature Series. Energy Environ. 2003, 14, 751–771. [Google Scholar] [CrossRef]
- McIntyre, S.; McKitrick, R. Hockey sticks, principal components, and spurious significance. Geophys. Res. Lett. 2005, 32, L03710. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, S.; McKitrick, R. The M&M Critique of the MBH98 Northern Hemisphere Climate Index: Update and Implications. Energy Environ. 2005, 16, 69–100. [Google Scholar]
- Von Storch, H.; Zorita, E.; Jones, J.M.; Dimitriev, Y.; González-Rouco, F.; Tett, S.F.B. Reconstructing Past Climate from Noisy Data. Science 2004, 306, 679–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahl, E.R.; Ritson, D.M.; Ammann, C.M. Comment on “Reconstructing Past Climate from Noisy Data”. Science 2006, 312, 529. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.E.; Rutherford, S.; Wahl, E.; Ammann, C. Testing the Fidelity of Methods Used in Proxy-Based Reconstructions of Past Climate. J. Clim. 2005, 18, 4097–4107. [Google Scholar] [CrossRef] [Green Version]
- Von Storch, H.; Zorita, E.; Jones, J.M.; Gonzalez-Rouco, F.; Tett, S.F.B. Response to Comment on “Reconstructing Past Climate from Noisy Data”. Science 2006, 312, 529. [Google Scholar] [CrossRef] [Green Version]
- Bürger, G.; Cubasch, U. Are multiproxy climate reconstructions robust? Geophys. Res. Lett. 2005, 32, 227–235. [Google Scholar] [CrossRef]
- Bürger, G.; Fast, I.; Cubasch, U. Climate reconstruction by regression—32 variations on a theme. Tellus A Dyn. Meteorol. Oceanogr. 2006, 58, 227–235. [Google Scholar] [CrossRef]
- McShane, B.B.; Wyner, A.J. A statistical analysis of multiple temperature proxies: Are reconstructions of surface temperatures over the last 1000 years reliable? Ann. Appl. Stat. 2011, 5, 5–44. [Google Scholar] [CrossRef] [Green Version]
- Shi, F.; Yang, B.; Mairesse, A.; von Gunten, L.; Li, J.; Bräuning, A.; Yang, F.; Xiao, X. Northern Hemisphere temperature reconstruction during the last millennium using multiple annual proxies. Clim. Res. 2013, 56, 231–244. [Google Scholar] [CrossRef]
- Xing, P.; Chen, X.; Luo, Y.; Nie, S.; Zhao, Z.; Huang, J.; Wang, S. The Extratropical Northern Hemisphere Temperature Reconstruction during the Last Millennium Based on a Novel Method. PLoS ONE 2016, 11, e0146776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christiansen, B.; Ljungqvist, F.C. Challenges and perspectives for large-scale temperature reconstructions of the past two millennia. Rev. Geophys. 2017, 55, 40–96. [Google Scholar] [CrossRef]
- Esper, J.; George, S.S.; Anchukaitis, K.; D’Arrigo, R.; Ljungqvist, F.C.; Luterbacher, J.; Schneider, L.; Stoffel, M.; Wilson, R.; Büntgen, U. Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochronologia 2018, 50, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Kinne, O. Climate Research: An article unleashed worldwide storms. Clim. Res. 2003, 24, 197–198. [Google Scholar] [CrossRef]
- Bürger, G. On the verification of climate reconstructions. Clim. Past 2007, 3, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Loehle, C. A mathematical analysis of the divergence problem in dendroclimatology. Clim. Chang. 2009, 94, 233–245. [Google Scholar] [CrossRef]
- Knutti, R.; Rugenstein, M.A.A.; Hegerl, G.C. Beyond equilibrium climate sensitivity. Nat. Geosci. 2017, 10, 727–736. [Google Scholar] [CrossRef]
- Harries, J.E.; Brindley, H.E.; Sagoo, P.J.; Bantges, R.J. Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997. Nature 2001, 410, 355–357. [Google Scholar] [CrossRef]
- Andronova, N.G.; Schlesinger, M.E. Objective estimation of the probability density function for climate sensitivity. J. Geophys. Res. Atmos. 2001, 106, 22605–22611. [Google Scholar] [CrossRef]
- Ring, M.J.; Lindner, D.; Cross, E.F.; Schlesinger, M.E. Causes of the Global Warming Observed since the 19th Century. Atmos. Clim. Sci. 2012, 2, 401. [Google Scholar] [CrossRef] [Green Version]
- Muller, R.A.; Rohde, R.; Jacobsen, R.; Muller, E.; Perlmutter, S.; Rosenfeld, A.; Wurtele, J.; Groom, D.; Wickham, C. A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011. Geoinform. Geostat. Overv. 2013, 2013. [Google Scholar] [CrossRef]
- Lovejoy, S. Scaling fluctuation analysis and statistical hypothesis testing of anthropogenic warming. Clim. Dyn. 2014, 42, 2339–2351. [Google Scholar] [CrossRef]
- Marvel, K.; Schmidt, G.A.; Miller, R.L.; Nazarenko, L.S. Implications for climate sensitivity from the response to individual forcings. Nat. Clim. Chang. 2016, 6, 386–389. [Google Scholar] [CrossRef]
- Otto, A.; Otto, F.E.L.; Boucher, O.; Church, J.; Hegerl, G.; Forster, P.M.; Gillett, N.P.; Gregory, J.; Johnson, G.C.; Knutti, R.; et al. Energy budget constraints on climate response. Nat. Geosci. 2013, 6, 415–416. [Google Scholar] [CrossRef]
- Lewis, N.; Curry, J. The Impact of Recent Forcing and Ocean Heat Uptake Data on Estimates of Climate Sensitivity. J. Clim. 2018, 31, 6051–6071. [Google Scholar] [CrossRef]
- Bates, J.R. Estimating climate sensitivity using two-zone energy balance models. Earth Space Sci. 2016, 3, 207–225. [Google Scholar] [CrossRef] [Green Version]
- Hegerl, G.C.; Crowley, T.J.; Hyde, W.T.; Frame, D.J. Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 2006, 440, 1029–1032. [Google Scholar] [CrossRef]
- Chylek, P.; Lohmann, U.; Dubey, M.; Mishchenko, M.; Kahn, R.; Ohmura, A. Limits on climate sensitivity derived from recent satellite and surface observations. J. Geophys. Res. Atmos. 2007, 112, D24. [Google Scholar] [CrossRef] [Green Version]
- Aldrin, M.; Holden, M.; Guttorp, P.; Skeie, R.B.; Myhre, G.; Berntsen, T.K. Bayesian estimation of climate sensitivity based on a simple climate model fitted to observations of hemispheric temperatures and global ocean heat content. Environmetrics 2012, 23, 253–271. [Google Scholar] [CrossRef]
- Lewis, N. An Objective Bayesian Improved Approach for Applying Optimal Fingerprint Techniques to Estimate Climate Sensitivity. J. Clim. 2013, 26, 7414–7429. [Google Scholar] [CrossRef] [Green Version]
- Shindell, D.T. Inhomogeneous forcing and transient climate sensitivity. Nat. Clim. Chang. 2014, 4, 274–277. [Google Scholar] [CrossRef] [Green Version]
- Skeie, R.B.; Berntsen, T.; Aldrin, M.; Holden, M.; Myhre, G. A lower and more constrained estimate of climate sensitivity using updated observations and detailed radiative forcing time series. Earth Syst. Dyn. 2014, 5, 139–175. [Google Scholar] [CrossRef] [Green Version]
- Monckton, C.; Soon, W.W.-H.; Legates, D.R.; Briggs, W.M. Why models run hot: Results from an irreducibly simple climate model. Sci. Bull. 2015, 60, 122–135. [Google Scholar] [CrossRef] [Green Version]
- Schurer, A.; Hegerl, G.; Ribes, A.; Polson, D.; Morice, C.; Tett, S. Estimating the Transient Climate Response from Observed Warming. J. Clim. 2018, 31, 8645–8663. [Google Scholar] [CrossRef]
- Idso, S.B. CO2-induced global warming: A skeptic’s view of potential climate change. Clim. Res. 1998, 10, 69–82. [Google Scholar] [CrossRef]
- Loehle, C.; Scafetta, N. Climate Change Attribution Using Empirical Decomposition of Climatic Data. Open Atmos. Sci. J. 2011, 5. Available online: https://benthamopen.com/ABSTRACT/TOASCJ-5-74 (accessed on 31 January 2020). [CrossRef] [Green Version]
- Ziskin, S.; Shaviv, N.J. Quantifying the role of solar radiative forcing over the 20th century. Adv. Space Res. 2012, 50, 762–776. [Google Scholar] [CrossRef]
- Loehle, C. A minimal model for estimating climate sensitivity. Ecol. Model. 2014, 276, 80–84. [Google Scholar] [CrossRef]
- Spencer, R.W.; Braswell, W.D. The role of ENSO in global ocean temperature changes during 1955–2011 simulated with a 1D climate model. Asia-Pac. J. Atmos. Sci. 2014, 50, 229–237. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Dolman, A.J. Impact of the Atlantic Multidecadal Oscillation (AMO) on deriving anthropogenic warming rates from the instrumental temperature record. Earth Syst. Dyn. 2014, 5, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Wyatt, M.G.; Curry, J.A. Role for Eurasian Arctic shelf sea ice in a secularly varying hemispheric climate signal during the 20th century. Clim. Dyn. 2014, 42, 2763–2782. [Google Scholar] [CrossRef]
- Lim, H.-G.; Yeh, S.-W.; Kim, J.-W.; Park, R.; Song, C.-K. Contributions of solar and greenhouse gases forcing during the present warm period. Meteorol. Atmos. Phys. 2014, 126, 71–79. [Google Scholar] [CrossRef]
- Harde, H. Radiation Transfer Calculations and Assessment of Global Warming by CO2. Int. J. Atmos. Sci. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Christy, J.R.; McNider, R.T. Satellite bulk tropospheric temperatures as a metric for climate sensitivity. Asia-Pac. J. Atmos. Sci. 2017, 53, 511–518. [Google Scholar] [CrossRef]
- McKitrick, R.; Christy, J. A Test of the Tropical 200- to 300-hPa Warming Rate in Climate Models. Earth Space Sci. 2018, 5, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Svensmark, H. Cosmoclimatology: A new theory emerges. Astron. Geophys. 2007, 48, 1.18–1.24. [Google Scholar] [CrossRef] [Green Version]
- Loehle, C.; Singer, S.F. Holocene temperature records show millennial-scale periodicity. Can. J. Earth Sci. 2010, 47, 1327–1336. [Google Scholar] [CrossRef]
- Shaviv, N.J.; Prokoph, A.; Veizer, J. Is the Solar System’s Galactic Motion Imprinted in the Phanerozoic Climate? Sci. Rep. 2014, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Luning, S.; Vahrenholt, F. The Neglected Sun: Why the Sun Precludes Climate Catastrophe, 2nd English ed.; The Heartland Institute: Arlington Heights, IL, USA, 2015. [Google Scholar]
- Svensmark, J.; Enghoff, M.B.; Shaviv, N.J.; Svensmark, H. The response of clouds and aerosols to cosmic ray decreases. J. Geophys. Res. Space Phys. 2016, 121, 8152–8181. [Google Scholar] [CrossRef] [Green Version]
- Lüning, S.; Vahrenholt, F. Chapter 16—The Sun’s Role in Climate. In Evidence-Based Climate Science, 2nd ed.; Easterbrook, D.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 283–305. ISBN 978-0-12-804588-6. [Google Scholar]
- Kravtsov, S.; Grimm, C.; Gu, S. Global-scale multidecadal variability missing in state-of-the-art climate models. NPJ Clim. Atmos. Sci. 2018, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, S.E. Reply to comments by G. Foster et al., R. Knutti et al., and N. Scafetta on “Heat capacity, time constant, and sensitivity of Earth’s climate system”. J. Geophys. Res. Atmos. 2008, 113, D15105. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, S.E. Heat capacity, time constant, and sensitivity of Earth’s climate system. J. Geophys. Res. Atmos. 2007, 112, D24. [Google Scholar] [CrossRef]
- Knutti, R.; Krähenmann, S.; Frame, D.J.; Allen, M.R. Comment on “Heat capacity, time constant, and sensitivity of Earth’s climate system” by S. E. Schwartz. J. Geophys. Res. Atmos. 2008, 113, D15103. [Google Scholar] [CrossRef] [Green Version]
- Richardson, M.; Hausfather, Z.; Nuccitelli, D.A.; Rice, K.; Abraham, J.P. Misdiagnosis of Earth climate sensitivity based on energy balance model results. Sci. Bull. 2015, 60, 1370–1377. [Google Scholar] [CrossRef] [Green Version]
- Monckton of Brenchley, C.; Soon, W.W.-H.; Legates, D.R.; Briggs, W.M. Keeping it simple: The value of an irreducibly simple climate model. Sci. Bull. 2015, 60, 1378–1390. [Google Scholar] [CrossRef] [Green Version]
- Gregory, J.M.; Andrews, T. Variation in climate sensitivity and feedback parameters during the historical period. Geophys. Res. Lett. 2016, 43, 3911–3920. [Google Scholar] [CrossRef] [Green Version]
- Rohrschneider, T.; Stevens, B.; Mauritsen, T. On simple representations of the climate response to external radiative forcing. Clim. Dyn. 2019, 53, 3131–3145. [Google Scholar] [CrossRef] [Green Version]
- Forster, P.M.; Maycock, A.C.; McKenna, C.M.; Smith, C.J. Latest climate models confirm need for urgent mitigation. Nat. Clim. Chang. 2020, 10, 7–10. [Google Scholar] [CrossRef]
- Geoffroy, O.; Saint-Martin, D.; Olivié, D.J.L.; Voldoire, A.; Bellon, G.; Tytéca, S. Transient Climate Response in a Two-Layer Energy-Balance Model. Part I: Analytical Solution and Parameter Calibration Using CMIP5 AOGCM Experiments. J. Clim. 2012, 26, 1841–1857. [Google Scholar] [CrossRef]
- Edwards, T.L.; Crucifix, M.; Harrison, S.P. Using the past to constrain the future: How the palaeorecord can improve estimates of global warming. Prog. Phys. Geogr. 2007, 31, 481–500. [Google Scholar] [CrossRef] [Green Version]
- National Research Council; Assembly of Mathematical and Physical Sciences; Climate Research Board; Ad Hoc Study Group on Carbon Dioxide and Climate. Carbon Dioxide and Climate: A Scientific Assessment; National Academy of Science: Washington, DC, USA, 1979. [Google Scholar]
- Van der Sluijs, J.; van Eijndhoven, J.; Shackley, S.; Wynne, B. Anchoring Devices in Science for Policy: The Case of Consensus around Climate Sensitivity. Soc. Stud. Sci. 1998, 28, 291–323. [Google Scholar] [CrossRef]
- Bryan, K.; Komro, F.G.; Manabe, S.; Spelman, M.J. Transient Climate Response to Increasing Atmospheric Carbon Dioxide. Science 1982, 215, 56–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vial, J.; Dufresne, J.-L.; Bony, S. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim. Dyn. 2013, 41, 3339–3362. [Google Scholar] [CrossRef]
- Gregory, J.M.; Mitchell, J.F.B. The climate response to CO2 of the Hadley Centre coupled AOGCM with and without flux adjustment. Geophys. Res. Lett. 1997, 24, 1943–1946. [Google Scholar] [CrossRef]
- Gregory, J.M.; Ingram, W.J.; Palmer, M.A.; Jones, G.S.; Stott, P.A.; Thorpe, R.B.; Lowe, J.A.; Johns, T.C.; Williams, K.D. A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Gregory, J.M.; Andrews, T.; Good, P. The inconstancy of the transient climate response parameter under increasing CO2. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373. [Google Scholar] [CrossRef] [Green Version]
- Held, I.M.; Winton, M.; Takahashi, K.; Delworth, T.; Zeng, F.; Vallis, G.K. Probing the Fast and Slow Components of Global Warming by Returning Abruptly to Preindustrial Forcing. J. Clim. 2010, 23, 2418–2427. [Google Scholar] [CrossRef] [Green Version]
- Forster, P.M.; Andrews, T.; Good, P.; Gregory, J.M.; Jackson, L.S.; Zelinka, M. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos. 2013, 118, 1139–1150. [Google Scholar] [CrossRef] [Green Version]
- Raper, S.C.B.; Gregory, J.M.; Stouffer, R.J. The Role of Climate Sensitivity and Ocean Heat Uptake on AOGCM Transient Temperature Response. J. Clim. 2002, 15, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Winton, M.; Takahashi, K.; Held, I.M. Importance of Ocean Heat Uptake Efficacy to Transient Climate Change. J. Clim. 2009, 23, 2333–2344. [Google Scholar] [CrossRef]
- Hansen, J.; Nazarenko, L.; Ruedy, R.; Sato, M.; Willis, J.; Genio, A.D.; Koch, D.; Lacis, A.; Lo, K.; Menon, S.; et al. Earth’s Energy Imbalance: Confirmation and Implications. Science 2005, 308, 1431–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufresne, J.-L.; Bony, S. An Assessment of the Primary Sources of Spread of Global Warming Estimates from Coupled Atmosphere–Ocean Models. J. Clim. 2008, 21, 5135–5144. [Google Scholar] [CrossRef] [Green Version]
- Hope, C. The $10 trillion value of better information about the transient climate response. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373. [Google Scholar] [CrossRef] [PubMed]
- Lindzen, R.S.; Choi, Y.-S. On the observational determination of climate sensitivity and its implications. Asia-Pac. J. Atmos. Sci. 2011, 47, 377. [Google Scholar] [CrossRef]
- Gregory, J.M.; Forster, P.M. Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Myers, T.A.; McCoy, D.T.; Po-Chedley, S.; Caldwell, P.M.; Ceppi, P.; Klein, S.A.; Taylor, K.E. Causes of Higher Climate Sensitivity in CMIP6 Models. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef] [Green Version]
- Lewis, N.; Grünwald, P. Objectively combining AR5 instrumental period and paleoclimate climate sensitivity evidence. Clim. Dyn. 2018, 50, 2199–2216. [Google Scholar] [CrossRef] [Green Version]
- Lea, D.W. The 100 000-Yr Cycle in Tropical SST, Greenhouse Forcing, and Climate Sensitivity. J. Clim. 2004, 17, 2170–2179. [Google Scholar] [CrossRef]
- Masters, T. Observational estimate of climate sensitivity from changes in the rate of ocean heat uptake and comparison to CMIP5 models. Clim. Dyn. 2014, 42, 2173–2181. [Google Scholar] [CrossRef]
- Specht, E.; Redemann, T.; Lorenz, N. Simplified mathematical model for calculating global warming through anthropogenic CO2. Int. J. Therm. Sci. 2016, 102, 1–8. [Google Scholar] [CrossRef]
- Myhre, G.; Highwood, E.J.; Shine, K.P.; Stordal, F. New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 1998, 25, 2715–2718. [Google Scholar] [CrossRef]
- Wigley, T.M.L. The effect of model structure on projections of greenhouse-gas-induced climatic change. Geophys. Res. Lett. 1987, 14, 1135–1138. [Google Scholar] [CrossRef]
- Shi, G.-Y. Radiative forcing and greenhouse effect due to the atmospheric trace gases. Sci. China Ser. B-Chem. Life Sci. Earth Sci. 1992, 35, 217–229. [Google Scholar]
- Byrne, B.; Goldblatt, C. Radiative forcing at high concentrations of well-mixed greenhouse gases. Geophys. Res. Lett. 2014, 41, 152–160. [Google Scholar] [CrossRef]
- Etminan, M.; Myhre, G.; Highwood, E.J.; Shine, K.P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophys. Res. Lett. 2016, 43, 12614–12623. [Google Scholar] [CrossRef]
- IPCC Summary for Policymakers. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018. [Google Scholar]
- Lang, P.A.; Gregory, K.B. Economic Impact of Energy Consumption Change Caused by Global Warming. Energies 2019, 12, 3575. [Google Scholar] [CrossRef] [Green Version]
- Dayaratna, K.D.; McKitrick, R.; Michaels, P.J. Climate sensitivity, agricultural productivity and the social cost of carbon in FUND. Environ. Econ. Policy Stud. 2020, 1–16. [Google Scholar] [CrossRef] [Green Version]
Constituent | Chemical Formula | Infrared-Active | Calculated “GWP” | Molecular Weight (g/mole) | Fraction by Volume of Dry Air in 1990 | Total Mass (g) in 1990 |
---|---|---|---|---|---|---|
Total Atmosphere | 28.97 | 5.136 × 1021 | ||||
Dry Air | 28.964 | 100.0% | 5.119 × 1021 | |||
Nitrogen | N2 | No | 28.013 | 78.08% | 3.876 × 1021 | |
Oxygen | O2 | No | 31.999 | 20.95% | 1.185 × 1021 | |
Argon | Ar | No | 39.948 | 0.934% | 6.59 × 1019 | |
Water Vapor | H2O | Yes | N/A | 18.015 | - | 1.7 × 1019 |
Carbon Dioxide | CO2 | Yes | 1 | 44.01 | 353 ppmv | ~2.76 × 1018 |
Neon | Ne | No | 20.183 | 18.2 ppmv | 6.48 × 1016 | |
Krypton | Kr | No | 83.80 | 1.14 ppmv | 1.69 × 1016 | |
Helium | He | No | 4.003 | 5.24 ppmv | 3.71 × 1015 | |
Methane | CH4 | Yes | 28 | 16.043 | 1720 ppbv | ~4.9 × 1015 |
Xenon | Xe | No | 131.30 | 87 ppmv | 2.02 × 1015 | |
Ozone | O3 | Yes | 47.998 | Variable | ~3.3 × 1015 | |
Nitrous Oxide | N2O | Yes | 265 | 44.013 | 310 ppbv | ~2.3 × 1015 |
“F-compounds” | Various | Yes | >1000 | Various | ~1 ppbv | <<1 × 1015 |
Emissions Type | Dataset | Ref. |
---|---|---|
Historical CO2 Emissions (fossil fuels/industry) | Global Carbon Budget (2019), https://www.globalcarbonproject.org/ | [39] |
(Alternative Source) | CDIAC, https://doi.org/10.3334/CDIAC/00001_V2017 | [40] |
CO2 Emissions (Land use/Land Cover) | Global Carbon Budget (2019), https://www.globalcarbonproject.org/ | [39] |
(Alternative Source) | Smith and Rothwell (2013), CDIAC, https://cdiac.ess-dive.lbl.gov/land_use.html | [41] |
Historical CH4 and N2O Emissions | Gütschow et al. (2019): The PRIMAP-hist national historical emissions time series (1850-2017). v2.1. GFZ Data Services. https://doi.org/10.5880/pik.2019.018 | [42,43] |
IPCC AR1 Projections | IPCC Working Group 3, 1st Assessment Report (1990). There are 5 scenarios: A, B, C, D and D* | [44] |
IPCC AR2 Projections | IS92 Emissions Scenarios. The scenarios are A, B, C, D, E and F. Source: https://sedac.ciesin.columbia.edu/data/set/ipcc-is92-emissions-scenarios-v1-1 | [45] |
IPCC AR3 and AR4 Projections | Special Report on Emissions Scenarios (“SRES”). This comprises more than 40 different scenarios, but six are recommended as “representative scenarios”, i.e., A1, A1G, A1T, A2, B1 and B2. Source: https://sedac.ciesin.columbia.edu/ddc/sres/ | [46] |
IPCC AR5 Projections | Representative Concentrations Projections (“RCP”) Database (Version 2.0.5). This comprises four scenarios each of which is named in terms of the expected increase in radiative forcing in W/m2 by 2100, i.e., 2.6, 4.5, 6.0, and 8.5. Source: http://www.iiasa.ac.at/web-apps/tnt/RcpDb | [47] |
IPCC AR6 Projections | The Shared Socioeconomic Pathways (“SSP”) scenarios are paired with a slightly extended range of the RCP projections (increases in radiative forcing of 1.9, 3.4 and 7.0 W/m2 are also considered). Hence, they are sometimes referred to as “SSP/RCP”. Nine scenarios have been recommended for use by the CMIP6 climate modelling groups, i.e., SSP1-19, SSP1-26, SSP2-45, SSP3-70 (Baseline), SSP3-70 (LowNTCF), SSP4-34, SSP4-60, SSP5-34-OS, and SSP5-85 (Baseline). The naming format is SSPn-xx, where n is the pathway and xx is the projected increase in radiative forcing by 2100 (× 10). Source: https://tntcat.iiasa.ac.at/SspDb/dsd | [48] |
Acronym | Meaning |
---|---|
AGW | Anthropogenic, i.e., human-caused Global Warming |
BAU | Business-As-Usual |
CH4 | Methane |
CMIPn | Coupled Model Intercomparison Project, phase n, where n = 3, 5 or 6 |
CO2 | Carbon dioxide |
ECS | Equilibrium Climate Sensitivity |
GCM | Global Climate Model. Note that historically this acronym originally referred to General Circulation Models, i.e., early climate models |
Gt | Gigatonne, i.e., 1015 g |
GWP | Global Warming Potential |
IPCC | Intergovernmental Panel on Climate Change |
IPCC ARn | The nth IPCC Assessment Report (where n = 1−6) |
IS-92 | Projections used for IPCC AR2 (1995) |
n × CO2 | A climate model simulation that is run assuming atmospheric CO2 is n times that of present (where n is typically 1, 2 or 4) |
N2O | Nitrous oxide, "laughing gas" |
NASA GISS | NASA Goddard Institute of Space Studies, based in New York, USA |
Pg | Petagram, identical to gigatonne, i.e., 1015 g |
ppbv | parts per billion by volume |
ppmv | parts per million by volume |
RCP | Representative Concentrations Projections, projections used for IPCC AR5 (2013) |
RF | Radiative Forcing |
SRES | Special Report on Emissions Scenarios, projections used for IPCC AR3 (2001) and AR4 (2007) |
SSP or SSP/RCP | Shared Socioeconomic Pathways. (Often described with an accompanying Representative Concentrations Projection), projections to be used for the upcoming IPCC AR6 report |
TCR | Transient Climate Response, a type of climate sensitivity estimate |
Tg | Teragram, i.e., 1012 g |
UNFCCC | United Nations Framework Convention on Climate Change |
Emissions Type | Dataset | Reference |
---|---|---|
CO2, CH4 and N2O Atmospheric Concentrations | NOAA ESRL Global Monitoring Division, https://www.esrl.noaa.gov/gmd/ccgg/ | - |
(Alternative Source) | The NOAA Annual Greenhouse Gas Index (AGGI) https://www.esrl.noaa.gov/gmd/aggi/aggi.html | [69] |
N2O (Alternative Source) | Combined Nitrous Oxide data from NOAA ESRL ftp://ftp.cmdl.noaa.gov/hats/n2o/combined/ | [70] |
Law Dome, Antarctic Ice Core Estimates | NOAA NCEI Paleoclimatology Data, https://www.ncdc.noaa.gov/paleo-search/study/25830 | [38,71] |
IPCC AR5 Projections | RCP Database (Version 2.0.5), http://www.iiasa.ac.at/web-apps/tnt/RcpDb | [47] |
Study | Paradigm | ECS (or Equivalent) | TCR (or Equivalent) |
---|---|---|---|
“Charney Report” (1979) [246] | 1 | 1.5–4.5 °C | - |
Schlesinger (1986) [8] | 1 | 0.24–9.6 °C | - |
IPCC AR1 (1990) [53] | 1 | 1.5–4.5 °C | - |
IPCC AR2 (1995) [54] | 1 | 1.5–4.5 °C | - |
IPCC AR3 (2001) [55] | 1 | 1.5–4.5 °C | 1.1–3.1 °C |
IPCC AR4 (2007) [56] | 1 | 2.0–4.5 °C | 1.0–3.0 °C |
IPCC AR5 (2013) [33] | 1 | 1.5–4.5 °C | 1.0–2.5 °C |
Gregory and Andrews (2008) [261] | 1a | - | 1.3–2.3 °C |
Vial et al. (2013) [249] | 1a | 1.9–4.4 °C | - |
Forster et al. (2013) [254] | 1a | 1.90–4.54 °C (†3.22 °C) | 1.19–2.45 °C (†1.82 °C) |
Shindell (2014) [214] | 1a | - | >1.3 °C |
Marvel et al. (2016) [206] | 1a | ~3.0 °C | ~1.8 °C |
Zelinka et al. (2020) [262] | 1a | 1.8–5.6 °C | - |
Lindzen & Choi (2011) [260] | 1b | 0.5–1.3 °C (†0.7 °C) | - |
Aldrin et al. (2012) [212] | 1b | 0.7–4.3°C (†2 °C) | - |
Otto et al. (2013) [207] | 1b | 1.2–3.9 °C (†2.0 °C) | 0.9–2.0 °C (†1.3 °C) |
Skeie et al. (2014) [215] | 1b | 0.9–3.2 °C (†1.8 °C) | 0.79–2.2 °C (†1.4 °C) |
Monckton et al. (2015a) [216] | 1b | 0.8–1.3 °C (†1.05 °C) | 0.8–1.3 °C (†1.05 °C) |
Bates (2016) [209] | 1b | 0.85–1.30 °C (†1.05 °C) | - |
Lewis and Grünwald (2018) [263] | 1b | 1.1–4.05 °C (†1.87 °C) | - |
Lewis and Curry (2018) [208] | 1b | 1.05–2.45 °C (†1.50 °C) | 0.9–1.7°C (†1.20 °C) |
Schurer et al. (2018) [217] | 1b | - | 1.2–2.4 °C (†1.7 °C) |
Andronova and Schlesinger (2001) [202] | 1c | 1.0–9.3 °C | - |
Lea (2004) [264] | 1c | 4.4–5.6 °C | - |
Hegerl et al. (2006) [210] | 1c | 1.6–6.2 °C (†2.5 °C) | - |
Chylek et al. (2007) [211] | 1c | 1.1–1.8 °C | - |
Schwartz (2007) [237] | 1c | 0.6–1.6 °C (†1.1 °C) | - |
Schwartz (2008) [236] | 1c | 0.9–2.9 °C (†1.9 °C) | - |
Ring et al. (2012) [203] | 1c | 1.45–2.01 °C (†1.6 °C) | - |
Masters (2014) [265] | 1c | 1.2–5.1 °C (†2.0 °C) | - |
Lovejoy (2014) [205] | 1c | 2.5–3.66 °C (†3.08 °C) | - |
Idso (1998) [218] | 2 | <0.4 °C | <0.4 °C |
Loehle and Scafetta (2011) [219] | 2 | <1–1.5°C | <1–1.5 °C |
Ziskin and Shaviv (2012) [220] | 2 | 0.69–1.26 °C (†0.93 °C) | - |
van der Werf and Dolman (2014) [223] | 2 | - | 1.0–3.3 °C (†1.6 °C) |
Spencer and Braswell (2014) [222] | 2 | 1.3–2.2 °C | - |
Loehle (2014) [221] | 2 | 1.75–2.23 °C (†1.99 °C) | 0.96–1.23 °C (†1.09 °C) |
Specht et al. (2016) [266] | 2 | 0.4 °C | - |
Harde (2017) [226] | 2 | 0.7 °C | - |
Christy and McNider (2017) [227] | 2 | - | 0.84–1.36°C (†1.10 °C) |
Soon et al. (2015) [152] | 3 | - | <0.44 °C |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Connolly, R.; Connolly, M.; Carter, R.M.; Soon, W. How Much Human-Caused Global Warming Should We Expect with Business-As-Usual (BAU) Climate Policies? A Semi-Empirical Assessment. Energies 2020, 13, 1365. https://doi.org/10.3390/en13061365
Connolly R, Connolly M, Carter RM, Soon W. How Much Human-Caused Global Warming Should We Expect with Business-As-Usual (BAU) Climate Policies? A Semi-Empirical Assessment. Energies. 2020; 13(6):1365. https://doi.org/10.3390/en13061365
Chicago/Turabian StyleConnolly, Ronan, Michael Connolly, Robert M. Carter, and Willie Soon. 2020. "How Much Human-Caused Global Warming Should We Expect with Business-As-Usual (BAU) Climate Policies? A Semi-Empirical Assessment" Energies 13, no. 6: 1365. https://doi.org/10.3390/en13061365
APA StyleConnolly, R., Connolly, M., Carter, R. M., & Soon, W. (2020). How Much Human-Caused Global Warming Should We Expect with Business-As-Usual (BAU) Climate Policies? A Semi-Empirical Assessment. Energies, 13(6), 1365. https://doi.org/10.3390/en13061365