Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diethyl Ether/Vegetable Oil Double Blends, and Diesel/ Diethyl Ether /Vegetable Oil Triple Blends
2.2. Characterization of the Biofuel Blends
2.2.1. Viscosity Measurements
2.2.2. Determination of Pour Point and Cloud Point
2.2.3. Mechanical and Environmental Characterization of a Diesel Engine Electric Generator Fuelled with Different Biofuel Double and Triple Blends
3. Results and Discussion
3.1. Properties of DEE/Oil Double Blends, and Diesel/DEE/Oil Triple Blends
3.2. Mechanical Performance of the Diesel Engine
3.3. Smoke Opacity Emissions
3.4. Fuel Consumption
3.5. Comparison with Reported Studies in Literature
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
ASTM | American society for testing and materials |
B0 | 100% diesel |
B20 | 80% diesel + 9% DEE + 11% oil |
B40 | 60% diesel + 18% DEE + 22% oil |
B60 | 40% diesel + 27% DEE + 33% oil |
B80 | 20% diesel + 36% DEE + 44% oil |
B100 | 45% DEE + 55% oil |
CI | Compression ignition |
CN | Cetane number |
CP | Cloud point |
cSt | Centistokes |
CV | Calorific Value |
DEE | Diethyl ether |
FAME | Fatty acids methyl esters |
FP | Flash point |
FSN | Filter smoke number |
ISO | International Standards Organization. |
LVLC | Low viscous and low cetane |
PP | Pour point |
rpm | Round per minute (min−1) |
SVO | straight vegetable oils |
TFP | Flash point temperature |
W | Watts |
Symbols | |
υ | Viscosity (centistokes) |
t | Flow time (s) |
C | Calibration constant (mm2/s)/s |
References
- Oberthür, S. Where to go from Paris? The European Union in climate geopolitics. Glob. Aff. 2016, 2, 119–130. [Google Scholar] [CrossRef]
- Delucchi, M.A.; Jacobson, M.Z. Meeting the world’s energy needs entirely with wind, water, and solar power. Bull. At. Sci. 2013, 69, 30–40. [Google Scholar] [CrossRef]
- Arutyunov, V.S.; Lisichkin, G.V. Energy resources of the 21st century: Problems and forecasts. Can renewable energy sources replace fossil fuels? Russ. Chem. Rev. 2017, 86, 777. [Google Scholar] [CrossRef]
- Sen, B.; Ercan, T.; Tatari, O. Does a battery-electric truck make a difference? Life cycle emissions, costs, and externality analysis of alternative fuel-powered Class 8 heavy-duty trucks in the United States. J. Clean. Prod. 2017, 141, 110–121. [Google Scholar] [CrossRef]
- Noh, H.M.; Benito, A.; Alonso, G. Study of the current incentive rules and mechanisms to promote biofuel use in the EU and their possible application to the civil aviation sector. Transp. Res. Part D Transp. Environ. 2016, 46, 298–316. [Google Scholar] [CrossRef] [Green Version]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294. [Google Scholar] [CrossRef]
- Lopes, M.; Serrano, L.; Ribeiro, I.; Cascão, P.; Pires, N.; Rafael, S.; Tarelho, L.; Monteiro, A.; Nunes, T.; Evtyugina, M. Emissions characterization from EURO 5 diesel/biodiesel passenger car operating under the new European driving cycle. Atmos. Environ. 2014, 84, 339–348. [Google Scholar] [CrossRef]
- Gardy, J.; Nourafkan, E.; Osatiashtiani, A.; Lee, A.F.; Wilson, K.; Hassanpour, A.; Lai, X. A core-shell SO4/Mg-Al-Fe3O4 catalyst for biodiesel production. Appl. Catal. B Environ. 2019, 259, 118093. [Google Scholar] [CrossRef]
- Gardy, J.; Rehan, M.; Hassanpour, A.; Lai, X.; Nizami, A.-S. Advances in nano-catalysts based biodiesel production from non-food feedstocks. J. Environ. Manag. 2019, 249, 109316. [Google Scholar] [CrossRef]
- Huang, D.; Zhou, H.; Lin, L. Biodiesel: An alternative to conventional fuel. Energy Procedia 2012, 16, 1874–1885. [Google Scholar] [CrossRef] [Green Version]
- Estevez, R.; Aguado-Deblas, L.; Bautista, F.M.; Luna, D.; Luna, C.; Calero, J.; Posadillo, A.; Romero, A.A. Biodiesel at the Crossroads: A Critical Review. Catalysts 2019, 9, 1033. [Google Scholar] [CrossRef] [Green Version]
- Kijenski, J.; Lipkowski, A.; Walisiewicz-Niedbalska, W.; Gwardiak, H.; Rozyczki, K.; Pawlak, I. A Biofuel for Compression-Ignition Engines and a Method for Preparing the Biofuel. European Patent EP1580255, 28 September 2005. [Google Scholar]
- Dhawan, M.S.; Yadav, G.D. Insight into a catalytic process for simultaneous production of biodiesel and glycerol carbonate from triglycerides. Catal. Today 2018, 309, 161–171. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, E.Y. Environmentally-benign dimethyl carbonate-mediated production of chemicals and biofuels from renewable bio-oil. Energies 2017, 10, 1790. [Google Scholar] [CrossRef] [Green Version]
- Luna, D.; Bautista, F.M.; Caballero, V.; Campelo, J.M.; Marinas, J.M.; Romero, A.A. Romero Method for Producing Biodiesel Using Porcine Pancreatic Lipase as an Enzymatic Catalyst. European Patent EP 2 050 823 A1, 22 April 2009. [Google Scholar]
- Luna, C.; Luna, D.; Bautista, F.M.; Estevez, R.; Calero, J.; Posadillo, A.; Romero, A.A.; Sancho, E.D. Application of Enzymatic Extracts from a CALB Standard Strain as Biocatalyst within the Context of Conventional Biodiesel Production Optimization. Molecules 2017, 22, 2025. [Google Scholar] [CrossRef] [Green Version]
- Calero, J.; Luna, D.; Sancho, E.D.; Luna, C.; Bautista, F.M.; Romero, A.A.; Posadillo, A.; Berbel, J.; Verdugo-Escamilla, C. An overview on glycerol-free processes for the production of renewable liquid biofuels, applicable in diesel engines. Renew. Sustain. Energy Rev. 2015, 42, 1437–1452. [Google Scholar] [CrossRef]
- Abdulkareem-Alsultan, G.; Asikin-Mijan, N.; Lee, H.; Rashid, U.; Islam, A.; Taufiq-Yap, Y. A Review on Thermal Conversion of Plant Oil (Edible and Inedible) into Green Fuel Using Carbon-Based Nanocatalyst. Catalysts 2019, 9, 350. [Google Scholar] [CrossRef] [Green Version]
- Prakash, T.; Geo, V.E.; Martin, L.J.; Nagalingam, B. Evaluation of pine oil blending to improve the combustion of high viscous (castor oil) biofuel compared to castor oil biodiesel in a CI engine. Heat Mass Transf. 2019, 55, 1491–1501. [Google Scholar] [CrossRef]
- Kasiraman, G.; Nagalingam, B.; Balakrishnan, M. Performance, emission and combustion improvements in a direct injection diesel engine using cashew nut shell oil as fuel with camphor oil blending. Energy 2012, 47, 116–124. [Google Scholar] [CrossRef]
- Vallinayagam, R.; Vedharaj, S.; Yang, W.; Roberts, W.L.; Dibble, R.W. Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review. Renew. Sustain. Energy Rev. 2015, 51, 1166–1190. [Google Scholar] [CrossRef]
- Vallinayagam, R.; Vedharaj, S.; Yang, W.; Lee, P.; Chua, K.; Chou, S. Pine oil–biodiesel blends: A double biofuel strategy to completely eliminate the use of diesel in a diesel engine. Appl. Energy 2014, 130, 466–473. [Google Scholar] [CrossRef]
- Panneerselvam, N.; Ramesh, M.; Murugesan, A.; Vijayakumar, C.; Subramaniam, D.; Kumaravel, A. Effect on direct injection naturally aspirated diesel engine characteristics fuelled by pine oil, Ceiba pentandra methyl ester compared with diesel. Transp. Res. Part D Transp. Environ. 2016, 48, 225–234. [Google Scholar] [CrossRef]
- Vallinayagam, R.; Vedharaj, S.; Yang, W.; Lee, P.; Chua, K.; Chou, S. Combustion performance and emission characteristics study of pine oil in a diesel engine. Energy 2013, 57, 344–351. [Google Scholar] [CrossRef]
- Tamilselvan, P.; Nallusamy, N. Performance, combustion and emission characteristics of a compression ignition engine operating on pine oil. Biofuels 2015, 6, 273–281. [Google Scholar] [CrossRef]
- Subramanian, T.; Varuvel, E.G.; Ganapathy, S.; Vedharaj, S.; Vallinayagam, R. Role of fuel additives on reduction of NO X emission from a diesel engine powered by camphor oil biofuel. Environ. Sci. Pollut. Res. 2018, 25, 15368–15377. [Google Scholar] [CrossRef]
- Rakopoulos, D.C.; Rakopoulos, C.D.; Giakoumis, E.G.; Papagiannakis, R.G.; Kyritsis, D.C. Influence of properties of various common bio-fuels on the combustion and emission characteristics of high-speed DI (direct injection) diesel engine: Vegetable oil, bio-diesel, ethanol, n-butanol, diethyl ether. Energy 2014, 73, 354–366. [Google Scholar] [CrossRef]
- Rakopoulos, D.C.; Rakopoulos, C.D.; Papagiannakis, R.G.; Giakoumis, E.G.; Karellas, S.; Kosmadakis, G.M. Combustion and emissions in an HSDI engine running on diesel or vegetable oil base fuel with n-butanol or diethyl ether as a fuel extender. J. Energy Eng. 2016, 142, 4015006. [Google Scholar] [CrossRef]
- Rakopoulos, D.C.; Rakopoulos, C.D.; Kyritsis, D.C. Butanol or DEE blends with either straight vegetable oil or biodiesel excluding fossil fuel: Comparative effects on diesel engine combustion attributes, cyclic variability and regulated emissions trade-off. Energy 2016, 115, 314–325. [Google Scholar] [CrossRef]
- Lakshminarayanan, A.; Olsen, D.B.; Cabot, P.E. Performance and emission evaluation of triglyceride-gasoline blends in agricultural compression ignition engines. Appl. Eng. Agric. 2014, 30, 523–534. [Google Scholar]
- Estevez, R.; Aguado-Deblas, L.; Posadillo, A.; Hurtado, B.; Bautista, F.M.; Hidalgo, J.M.; Luna, C.; Calero, J.; Romero, A.A.; Luna, D. Performance and Emission Quality Assessment in a Diesel Engine of Straight Castor and Sunflower Vegetable Oils, in Diesel/Gasoline/Oil Triple Blends. Energies 2019, 12, 2181. [Google Scholar] [CrossRef] [Green Version]
- Hurtado, B.; Posadillo, A.; Luna, D.; Bautista, F.; Hidalgo, J.; Luna, C.; Calero, J.; Romero, A.; Estevez, R. Synthesis, Performance and Emission Quality Assessment of Ecodiesel from Castor Oil in Diesel/Biofuel/Alcohol Triple Blends in a Diesel Engine. Catalysts 2019, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Bailey, B.; Eberhardt, J.; Goguen, S.; Erwin, J. Diethyl ether (DEE) as a renewable diesel fuel. SAE Trans. 1997, 106, 1578–1584. [Google Scholar]
- Kumar, M.V.; Babu, A.V.; Kumar, P.R. The impacts on combustion, performance and emissions of biodiesel by using additives in direct injection diesel engine. Alex. Eng. J. 2018, 57, 509–516. [Google Scholar] [CrossRef]
- Srikanth, H.; Venkatesh, J.; Godiganur, S.; Manne, B. Acetone and Diethyl ether: Improve cold flow properties of Dairy Washed Milkscum biodiesel. Renew. Energy 2019, 130, 446–451. [Google Scholar] [CrossRef]
- Kumar, A.; Rajan, K.; Rajaram Naraynan, M.; Senthil Kumar, K. Performance and emission characteristics of a DI diesel engine fuelled with Cashew Nut Shell Oil (CNSO)-diesel blends with Diethyl ether as additive. Appl. Mech. Mater. 2015, 787, 746–750. [Google Scholar] [CrossRef]
- Krishnamoorthi, M.; Malayalamurthi, R. Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel-aegle marmelos oil-diethyl ether blends. Energy 2017, 128, 312–328. [Google Scholar] [CrossRef]
- Krishnamoorthi, M.; Malayalamurthi, R. Availability analysis, performance, combustion and emission behavior of bael oil-diesel-diethyl ether blends in a variable compression ratio diesel engine. Renew. Energy 2018, 119, 235–252. [Google Scholar] [CrossRef]
- Ibrahim, A. An experimental study on using diethyl ether in a diesel engine operated with diesel-biodiesel fuel blend. Eng. Sci. Technol. Int. J. 2018, 21, 1024–1033. [Google Scholar] [CrossRef]
- Yesilyurt, M.K.; Aydin, M. Experimental investigation on the performance, combustion and exhaust emission characteristics of a compression-ignition engine fueled with cottonseed oil biodiesel/diethyl ether/diesel fuel blends. Energy Convers. Manag. 2020, 205, 112355. [Google Scholar] [CrossRef]
- Keera, S.; El Sabagh, S.; Taman, A. Castor oil biodiesel production and optimization. Egypt. J. Pet. 2018, 27, 979–984. [Google Scholar] [CrossRef]
- Ramadhas, A.; Jayaraj, S.; Muraleedharan, C. Use of vegetable oils as IC engine Fuels—A review. Renew. Energy 2004, 29, 727–742. [Google Scholar] [CrossRef]
- Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. Biodiesel production from high FFA rubber seed oil. Fuel 2005, 84, 335–340. [Google Scholar] [CrossRef]
- Kwangdinata, R.; Raya, I.; Zakir, M. Production of biodiesel from lipid of phytoplankton Chaetoceros calcitrans through ultrasonic method. Sci. World J. 2014, 2014, 231361. [Google Scholar] [CrossRef]
- Dwivedi, G.; Verma, P.; Sharma, M. Impact of oil and biodiesel on engine operation in cold climatic condition. J. Mater. Environ. Sci. 2016, 7, 4540–4555. [Google Scholar]
- Dwivedi, G.; Sharma, M. Impact of cold flow properties of biodiesel on engine performance. Renew. Sustain. Energy Rev. 2014, 31, 650–656. [Google Scholar] [CrossRef]
- Mejia, J.; Salgado, N.; Orrego, C. Effect of blends of Diesel and Palm-Castor biodiesels on viscosity, cloud point and flash point. Ind. Crop. Prod. 2013, 43, 791–797. [Google Scholar] [CrossRef]
- Sendzikiene, E.; Makareviciene, V.; Janulis, P. Influence of Composition of Fatty Acid Methyl Esters on Smoke Opacity and Amount of Polycyclic Aromatic Hydrocarbons in Engine Emissions. Pol. J. Environ. Stud. 2007, 16, 259–265. [Google Scholar]
- Glassman, I. Soot formation in combustion processes. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1989; Volume 22, pp. 295–311. [Google Scholar] [CrossRef]
- Krishnamoorthi, M.; Malayalamurthi, R. Experimental investigation on the availability, performance, combustion and emission distinctiveness of bael oil/diesel/diethyl ether blends powered in a variable compression ratio diesel engine. Heat Mass Transf. 2018, 54, 2023–2044. [Google Scholar] [CrossRef]
- Patil, K.; Thipse, S. Experimental investigation of CI engine combustion, performance and emissions in DEE–kerosene–diesel blends of high DEE concentration. Energy Convers. Manag. 2015, 89, 396–408. [Google Scholar] [CrossRef]
- Devaraj, J.; Robinson, Y.; Ganapathi, P. Experimental investigation of performance, emission and combustion characteristics of waste plastic pyrolysis oil blended with diethyl ether used as fuel for diesel engine. Energy 2015, 85, 304–309. [Google Scholar] [CrossRef]
Property | Diesel | Sunflower Oil | Castor Oil | DEE |
---|---|---|---|---|
Density at 15 °C (kg/m³) | 830 | 920 | 962 | 713 |
Kinematic viscosity at 40 °C (cSt)1 | 3.20 ± 0.01 | 37.80 ± 0.05 | 226.20 ± 0.05 | 0.21 ± 0.01 |
Calorific value (MJ/kg) | 42.8 | 39.5 | 37.2 | 33.9 |
Flash point (°C) | 66 | 220 | 228 | 16 |
Auto-ignition temperature (°C) | 250 | 316 | 448 | 160 |
Cetane number | 50 | 37 | 40 | >124 |
Diesel/DEE/Sunflower Oil Blend | ||||||
---|---|---|---|---|---|---|
Nomenclature (% renewable) | B0 | B20 | B40 | B60 | B80 | B100 |
100/0/0 | 80/9/11 | 60/18/22 | 40/27/33 | 20/36/44 | 0/45/55 | |
Kinematic Viscosity (cSt) | 3.20 ± 0.01 | 3.21 ± 0.01 | 3.26 ± 0.02 | 3.32 ± 0.02 | 3.52 ± 0.02 | 4.25 ± 0.03 |
Cloud point (°C) | −6.0 ± 1 | −15.0 ± 1 | −15.3 ± 1 | −15.0 ± 1 | −10.6 ± 1 | −15.5 ± 1 |
Pour point (°C) | −16.0 ± 1 | −21.6 ± 1 | −22.5 ± 1 | −21.9 ± 1 | −20.5 ± 1 | −21.0 ± 1 |
Flash point (°C) * | 66.0 | 78.4 | 90.9 | 103.3 | 115.8 | 128.2 |
Calorific value (MJ/kg) * | 42.8 | 41.6 | 40.5 | 39.3 | 38.1 | 36.9 |
Diesel/DEE/Castor Oil Blend | |||||||
---|---|---|---|---|---|---|---|
Nomenclature (% renewable) | B0 | B20 | B40 | B60 | B80 | B100 | |
100/0/0 | 80/9/11 | 60/18/22 | 40/27/33 | 20/36/44 | 0/45/55 | ||
Kinematic Viscosity (cSt) | 3.20 ± 0.01 | 3.21 ± 0.01 | 3.24 ± 0.01 | 3.32 ± 0.01 | 3.37 ± 0.02 | 3.48 ± 0.02 | |
Cloud point (°C) | −6.0 ± 1 | −16.0 ± 1 | −16.8 ± 1 | −15.2 ± 1 | −14.2± 1 | −16.3 ± 1 | |
Pour point (°C) | −16.0 ± 1 | −22.3 ± 1 | −22.8 ± 1 | −21.5 ± 1 | −20.0 ± 1 | −22.0 ± 1 | |
Flash point (°C) * | 66.0 | 79.3 | 92.6 | 106.0 | 119.3 | 132.6 | |
Calorific value (MJ/kg) * | 42.8 | 41.4 | 39.9 | 38.5 | 37.1 | 35.7 |
Nomenclature | Blend | Diesel Replacement (%) | Smoke Opacity * | Reference |
---|---|---|---|---|
B40 | 60% Diesel/22% castor oil/18% DEE | 40 | Present study | |
B2 | 60% Diesel/30% aegle marmelos oil/10% DEE | 40 | % | [50] |
B1 | 70% Diesel/20% aegle marmelos oil/10% DEE | 30 | 9.2% | [37] |
B2 | 60% Diesel/30% bael oil/10% DEE | 40 | 64.5% | [38] |
B20D15 | 68% Diesel/17% cashew Nut Shell Oil/15% DEE | 32 | 7.3% | [36] |
B20DEE2.5 | 77.5% Diesel/20% Cottonseed oil biodiesel/2.5%DEE | 22.5 | 8.1% | [40] |
DE15K15D | 72.25% Diesel/15% kerosene/12.75% DEE | 13 | [51] | |
D+24DEE | 76% Diesel/24% DEE | 24 | [28] | |
WD05 | 95% Waste plastic pyrolysis oil/5% DEE | 100 | [52] | |
B60 | 40% Diesel/24% gasoline/36% sunflower oil | 36 | [31] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguado-Deblas, L.; Hidalgo-Carrillo, J.; Bautista, F.M.; Luna, D.; Luna, C.; Calero, J.; Posadillo, A.; Romero, A.A.; Estevez, R. Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine. Energies 2020, 13, 1542. https://doi.org/10.3390/en13071542
Aguado-Deblas L, Hidalgo-Carrillo J, Bautista FM, Luna D, Luna C, Calero J, Posadillo A, Romero AA, Estevez R. Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine. Energies. 2020; 13(7):1542. https://doi.org/10.3390/en13071542
Chicago/Turabian StyleAguado-Deblas, Laura, Jesús Hidalgo-Carrillo, Felipa M. Bautista, Diego Luna, Carlos Luna, Juan Calero, Alejandro Posadillo, Antonio A. Romero, and Rafael Estevez. 2020. "Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine" Energies 13, no. 7: 1542. https://doi.org/10.3390/en13071542
APA StyleAguado-Deblas, L., Hidalgo-Carrillo, J., Bautista, F. M., Luna, D., Luna, C., Calero, J., Posadillo, A., Romero, A. A., & Estevez, R. (2020). Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine. Energies, 13(7), 1542. https://doi.org/10.3390/en13071542