Identification of Promising Alternative Mono-Alcohol Fuel Blend Components for Spark Ignition Engines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database Development
- EPI SuiteTM [19] is a series of quantitative structure-activity relationship models based on the regression of experimental data to predict the effect of chemical structures on the modeled parameter. Boiling and melting points, vapor pressures, water solubility, and anaerobic biodegradability (BIOWIN7) were predicted via EPI SuiteTM;
- Viscosity, density, surface tension, and flash point were predicted via Toxicity Estimation Software Tool [20];
- The LHV was predicted by a model suggested by Hechinger et al. [15];
- The HoV was estimated via ACD Structure Elucidator v15.01 (Advanced Chemistry Development, Inc., Toronto, ON, Canada) [16];
- Known peroxide-forming alcohols from a published list [21] were eliminated, and secondary alcohols were not considered since they are potential peroxide formers. Material safety data sheets were used to establish physical and health hazard categories. Peroxide formation could potentially be addressed by developing fuel stabilizers and antioxidants but that was not considered in this analysis.
2.2. First-Stage Screening
2.3. Stage 2 Screening: Low-Range Alcohol Blends (Scenario 1)
2.4. Stage 2 Screening: High-Range Alcohol Blends (Scenario 2)
3. Results
3.1. Outcome of Stage 1 Screening
3.2. Candidate Alcohols for Low-Range Blends
3.3. Candidate Alcohols for High-Range Blends
4. Discussion
4.1. Considerations for Use of the Database and the Product Design Methodology
4.2. Additional Potential Screening Criteria
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Potential Effects of Property Prediction Accuracy on the Outcomes of Screening
- (1)
- Level 1: The range of values +/−50% CV from the mean for each property was then determined.
- (2)
- Level 2: The range of values +/−100% CV from the mean for each property was then determined.
References
- MacLean, H.L.; Lave, L.B. Evaluating automobile fuel/propulsion system technologies. Prog. Energy Combust. Sci. 2003, 29, 1–69. [Google Scholar] [CrossRef]
- Drabik, D.; Venus, T. EU Biofuel Policies for Road and Rail Transportation Sector BT—EU Bioeconomy Economics and Policies: Volume II; Dries, L., Heijman, W., Jongeneel, R., Purnhagen, K., Wesseler, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 257–276. [Google Scholar] [CrossRef]
- McCormick, R.L.; Fioroni, G.; Fouts, L.; Christensen, E.; Yanowitz, J.; Polikarpov, E.; Albrecht, K.; Gaspar, D.J.; Gladden, J.; George, A. Selection criteria and screening of potential biomass-derived streams as fuel blendstocks for advanced spark-ignition engines. SAE Int. J. Fuels Lubr. 2017. [Google Scholar] [CrossRef]
- Dahmen, M.; Marquardt, W. Model-based design of tailor-made biofuels. Energy Fuels 2016, 30, 1109–1134. [Google Scholar] [CrossRef]
- Sharudin, H.; Abdullah, N.R.; Mamat, A.M.I.; Ali, O.M.; Mamat, R. An overview of spark ignition engine operating on lower-higher molecular mass alcohol blended gasoline fuels. J. Teknol. 2015, 76, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Bergthorson, J.M.; Thomson, M.J. A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renew. Sustain. Energy Rev. 2015, 42, 1393–1417. [Google Scholar] [CrossRef]
- Costagliola, M.A.; De Simio, L.; Iannaccone, S.; Prati, M.V. Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends. Appl. Energy 2013, 111, 1162–1171. [Google Scholar] [CrossRef]
- Shirazi, S.A.; Abdollahipoor, B.; Windom, B.; Reardon, K.F.; Foust, T.D. Effects of blending C3-C4 alcohols on motor gasoline properties and performance of spark ignition engines: A review. Fuel Process. Technol. 2020, 197, 106194. [Google Scholar] [CrossRef]
- Chen, L.; Stone, R.; Richardson, D. A study of mixture preparation and PM emissions using a direct injection engine fuelled with stoichiometric gasoline/ethanol blends. Fuel 2012, 96, 120–130. [Google Scholar] [CrossRef]
- Chen, L.; Braisher, M.; Crossley, A.; Stone, R.; Richardson, D. The influence of ethanol blends on particulate matter emissions from gasoline direct injection engines. In Proceedings of the SAE 2010 World Congress & Exhibition, SAE International, Detroit, MI, USA, 13 April 2010. [Google Scholar] [CrossRef]
- Fatouraie, M.; Wooldridge, M.; Wooldridge, S. In-cylinder particulate matter and spray imaging of ethanol/gasoline blends in a direct injection spark ignition engine. SAE Int. J. Fuels Lubr. 2013, 6, 1–10. [Google Scholar] [CrossRef]
- Di Iorio, S.; Lazzaro, M.; Sementa, P.; Vaglieco, B.M.; Catapano, F. Particle size distributions from a DI high performance SI engine fuelled with gasoline-ethanol blended fuels. In Proceedings of the 10th International Conference on Engines & Vehicles, SAE International, Capri, Naples, Italy, 11–15 September 2011. [Google Scholar] [CrossRef]
- Eyidogan, M.; Ozsezen, A.N.; Canakci, M.; Turkcan, A. Impact of alcohol-gasoline fuel blends on the performance and combustion characteristics of an SI engine. Fuel 2010, 89, 2713–2720. [Google Scholar] [CrossRef]
- Gugisch, R.; Kerber, A.; Kohnert, A.; Laue, R.; Meringer, M.; Rücker, C.; Wassermann, A. MOLGEN 5.0, a molecular structure generator. In Advances in Mathematical Chemistry and Applications: Volume 1; Bentham e-Books. [CrossRef] [Green Version]
- Hechinger, M.; Voll, A.; Marquardt, W. Towards an integrated design of biofuels and their production pathways. Comput. Chem. Eng. 2010, 34, 1909–1918. [Google Scholar] [CrossRef]
- ACD/Structure Elucidator, Version 15.01; Advanced Chemistry Development, Inc.: Toronto, ON, Canada, 2015; Available online: www.acdlabs.com (accessed on 12 January 2018).
- Dahmen, M.; Marquardt, W. A novel group contribution method for the prediction of the derived cetane number of oxygenated hydrocarbons. Energy Fuels 2015, 29, 5781–5801. [Google Scholar] [CrossRef]
- Perez, P.L.; Boehman, A.L. Experimental investigation of the autoignition behavior of surrogate gasoline fuels in a constant-volume combustion bomb apparatus and its relevance to HCCI combustion. Energy Fuels 2012, 26, 6106–6117. [Google Scholar] [CrossRef]
- EPA. Estimation Program Interface (EPI) Suite, Version 4.10; Office of Pollution Prevention & Toxics (OPPT) and Syracuse Research Corporation (SRC): Washington, DC, USA, 2003.
- Martin, T.P.; Harten, D.Y. TEST (Toxicity Estimation Software Tool) Ver 4.1.; EPA/600/C-12/006; U.S. Environmental Protection Agency: Washington, DC, USA, 2012. [Google Scholar]
- Kelly, R.J. Review of safety guidelines for peroxidizable organic chemicals. Chem. Health Saf. 1997, 3, 28–36. [Google Scholar]
- Smith, B.L.; Bruno, T.J. Improvements in the measurement of distillation curves. 3. Application to gasoline and gasoline + methanol mixtures. Ind. Eng. Chem. Res. 2007, 45, 4371–4380. [Google Scholar] [CrossRef]
- Smith, B.L.; Ott, L.S.; Bruno, T.J. Composition-explicit distillation curves of diesel fuel with glycol ether and glycol ester oxygenates: Fuel analysis metrology to enable decreased particulate emissions. Environ. Sci. Technol. 2008, 42, 7682–7689. [Google Scholar] [CrossRef]
- ASTM. D4814-18d Standard Specification for Automotive Spark-Ignition Engine Fuel; ASTM International: West Conshohocken, PA, USA, 2018; Available online: https://global.ihs.com/doc_detail.cfm?document_name=ASTM%20D4814&item_s_key=00101351#product-details-list (accesed on 15 April 2020). [CrossRef]
- Kalghatgi, G.T. Developments in internal combustion engines and implications for combustion science and future transport fuels. Proc. Combust. Inst. 2015, 35, 101–115. [Google Scholar] [CrossRef]
- Fodor, G.E.; Naegeli, D.W.; Kohl, K.B. Peroxide formation in jet fuels. Energy Fuels 1988, 2, 729–734. [Google Scholar] [CrossRef]
- Demirbas, A. Relationships derived from physical properties of vegetable oil and biodiesel fuels. Fuel 2008, 87, 1743–1748. [Google Scholar] [CrossRef]
- Andersen, V.F.; Anderson, J.E.; Wallington, T.J.; Mueller, S.A.; Nielsen, O.J. Vapor pressures of alcohol-gasoline blends. Energy Fuels 2010, 24, 3647–3654. [Google Scholar] [CrossRef]
- Motor Gasolines Technical Review. Available online: https://www.chevron.com/-/media/chevron/operations/documents/motor-gas-tech-review.pdf (accessed on 12 January 2018).
- Surisetty, V.R.; Dalai, A.K.; Kozinski, J. Alcohols as alternative fuels: An overview. Appl. Catal. A Gen. 2011, 404, 1–11. [Google Scholar] [CrossRef]
- Lee, S.K.; Chou, H.; Ham, T.S.; Lee, T.S.; Keasling, J.D. Metabolic engineering of microorganisms for biofuels production: From bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 2008, 19, 556–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yacoub, Y.; Bata, R.; Gautam, M. The performance and emission characteristics of C1-C5alcohol-gasoline blends with matched oxygen content in a single-cylinder spark ignition engine. Proc. Inst. Mech. Eng. Part A J. Power Energy 1998, 212, 363–379. [Google Scholar] [CrossRef]
- Farrell, J.; Holladay, J.; Wagner, R. Fuel Blendstocks with the Potential to Optimize Future Gasoline Engine Performance: Identification of Five Chemical Families for Detailed Evaluation; Technical Report; U.S. Department of Energy: Washington, DC, USA, 2018; DOE/GO-102018-4970.
- Shirazi, S.A.; Abdollahipoor, B.; Martinson, J.; Reardon, K.F.; Windom, B.C. Physiochemical property characterization of hydrous and anhydrous ethanol blended gasoline. Ind. Eng. Chem. Res. 2018, 57, 11239–11245. [Google Scholar] [CrossRef]
- Abdollahipoor, B.; Shirazi, S.A.; Reardon, K.F.; Windom, B.C. Near-azeotropic volatility behavior of hydrous and anhydrous ethanol gasoline mixtures and impact on droplet evaporation dynamics. Fuel Process. Technol. 2018, 181, 166–174. [Google Scholar] [CrossRef]
- Shirazi, S.A.; Abdollahipoor, B.; Martinson, J.; Windom, B.C.; Foust, T.; Reardon, K.F. Effects of dual-alcohol gasoline blends on physiochemical properties and volatility behavior. Fuel 2019, 252, 542–552. [Google Scholar] [CrossRef]
- Shirazi, S.A.; Abdollahipoor, B.; Foust, T.D.; Windom, B.C.; Reardon, K.F. Dual-alcohol blending effects on gasoline properties. In Proceedings of the 2017 AIChE Annual Meeting, Minneapolis, MN, USA, 29 October–3 November 2017. [Google Scholar]
- Shirazi, S.A. Application of Alcohols in Spark Ignition Engines; Colorado State University: Fort Collins, CO, USA, 2018. [Google Scholar]
- Christensen, E.; Yanowitz, J.; Ratcliff, M.; McCormick, R.L. Renewable oxygenate blending effects on gasoline properties. Energy Fuels 2011, 25, 4723–4733. [Google Scholar] [CrossRef]
- Elfasakhany, A. Experimental study on emissions and performance of an internal combustion engine fueled with gasoline and gasoline/n-butanol blends. Energy Convers. Manag. 2014, 88, 277–283. [Google Scholar] [CrossRef]
- Elfasakhany, A. Experimental investigation on SI engine using gasoline and a hybrid iso-butanol/gasoline fuel. Energy Convers. Manag. 2015, 95, 398–405. [Google Scholar] [CrossRef]
- Elfasakhany, A. Experimental study of dual n-butanol and iso-butanol additives on spark-ignition engine performance and emissions. Fuel 2016, 163, 166–174. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Jia, M.; Wei, Q.; Meng, X.; Shu, G. Combustion and particle number emissions of a direct injection spark ignition engine operating on ethanol/gasoline and n-butanol/gasoline blends with exhaust gas recirculation. Fuel 2014, 130, 177–188. [Google Scholar] [CrossRef]
- Wallner, T.; Miers, S.A.; McConnell, S. A comparison of ethanol and butanol as oxygenates using a direct-injection, spark-ignition engine. J. Eng. Gas Turbines Power 2009, 131, 032802. [Google Scholar] [CrossRef]
- Varol, Y.; Öner, C.; Öztop, H.F.; Altun, Ş. Comparison of methanol, ethanol, or n -butanol blending with unleaded gasoline on exhaust emissions of an si engine. Energy sources, part A recover. Util. Environ. Eff. 2014, 36, 938–948. [Google Scholar] [CrossRef]
- Gong, J.; Cai, J.; Tang, C. A comparative study of emission characteristics of propanol isomers/gasoline blends combined with EGR. SAE Int. J. Fuels Lubr. 2014. [Google Scholar] [CrossRef]
- Merola, S.S.; Tornatore, C.; Marchitto, L.; Valentino, G.; Corcione, F.E. Experimental investigations of butanol-gasoline blends effects on the combustion process in a SI engine. Int. J. Energy Environ. Eng. 2012, 3. [Google Scholar] [CrossRef] [Green Version]
- Szwaja, S.; Naber, J.D. Combustion of n-butanol in a spark-ignition IC engine. Fuel 2010, 89, 1573–1582. [Google Scholar] [CrossRef]
- Singh, S.B.; Dhar, A.; Agarwal, A.K. Technical feasibility study of butanol-gasoline blends for powering medium-duty transportation spark ignition engine. Renew. Energy 2015, 76, 706–716. [Google Scholar] [CrossRef]
- Irimescu, A. Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol. Appl. Energy 2012, 96, 477–483. [Google Scholar] [CrossRef]
- Cooney, C.; Wallner, T.; McConnell, S.; Gillen, J.C.; Abell, C.; Miers, S.A.; Naber, J.D. Effects of Blending Gasoline with Ethanol and Butanol on Engine Efficiency and Emissions Using a Direct-Injection, Spark-Ignition Engine. In Proceedings of the ASME 2009 Internal Combustion Engine Division, Milwaukee, WI, USA, 3–6 May 2019. [Google Scholar] [CrossRef]
- Venugopal, T.; Ramesh, A. Effective utilisation of butanol along with gasoline in a spark ignition engine through a dual injection system. Appl. Therm. Eng. 2013, 59, 550–558. [Google Scholar] [CrossRef]
- Hechinger, M.; Dahmen, M.; Victoria Villeda, J.J.; Marquardt, W. Rigorous generation and model-based selection of future biofuel candidates. In 11 International Symposium on Process Systems Engineering; Karimi, I.A., Srinivasan, R.B.T.-C.A.C.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 31, pp. 1341–1345. [Google Scholar] [CrossRef]
- Ulonska, K.; Ebert, B.E.; Blank, L.M.; Mitsos, A.; Viell, J. Systematic screening of fermentation products as future platform chemicals for biofuels. In 12 International Symposium on Process Systems Engineering and 25 European Symposium on Computer Aided Process Engineering; Gernaey, K.V., Huusom, J.K., Gani, R.B.T.-C.A.C.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 37, pp. 1331–1336. [Google Scholar] [CrossRef]
- Yunus, N.A.; Gernaey, K.V.; Woodley, J.M.; Gani, R. A systematic methodology for design of tailor-made blended products. Comput. Chem. Eng. 2014, 66, 201–213. [Google Scholar] [CrossRef]
- Hashim, H.; Narayanasamy, M.; Yunus, N.A.; Shiun, L.J.; Muis, Z.A.; Ho, W.S. A cleaner and greener fuel: Biofuel blend formulation and emission assessment. J. Clean. Prod. 2017, 146, 208–217. [Google Scholar] [CrossRef]
- Phoon, L.Y.; Hashim, H.; Mat, R.; Mustaffa, A.A. Tailor-made green diesel blends design using a decomposition-based computer-aided approach. Comput. Aided Chem. Eng. 2015, 37, 1085–1090. [Google Scholar] [CrossRef]
- Simasatitkul, L.; Arpornwichanop, A.; Gani, R. Design methodology for bio-based processing: Biodiesel and fatty alcohol production. Comput. Chem. Eng. 2013, 57, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Hada, S.; Solvason, C.C.; Eden, M.R. Molecular design of biofuel additives for optimization of fuel characteristics. Comput. Aided Chem. Eng. 2011, 29, 1633–1637. [Google Scholar] [CrossRef]
- Ariffin Kashinath, S.A.; Abdul Manan, Z.; Hashim, H.; Wan Alwi, S.R. Design of green diesel from biofuels using computer aided technique. Comput. Chem. Eng. 2012, 76, 101–105. [Google Scholar] [CrossRef]
- Tamouza, S.; Passarello, J.P.; Tobaly, P.; De Hemptinne, J.C. Group contribution method with SAFT EOS applied to vapor liquid equilibria of various hydrocarbon series. Fluid Phase Equilibria 2004, 222–223, 67–76. [Google Scholar] [CrossRef]
- Tihic, A.; von Solms, N.; Michelsen, M.L.; Kontogeorgis, G.M.; Constantinou, L. Analysis and applications of a group contribution sPC-SAFT equation of state. Fluid Phase Equilibria 2009, 281, 60–69. [Google Scholar] [CrossRef]
- Lubarsky, H.; Polishuk, I.; Nguyenhuynh, D. Implementation of GC-PPC-SAFT and CP-PC-SAFT for predicting thermodynamic properties of mixtures of weakly- and non-associated oxygenated compounds. J. Supercrit. Fluids 2016, 115, 65–78. [Google Scholar] [CrossRef]
- Andersen, V.F.; Anderson, J.E.; Wallington, T.J.; Mueller, S.A.; Nielsen, O.J. Distillation curves for alcohol-gasoline blends. Energy Fuels 2010, 24, 2683–2691. [Google Scholar] [CrossRef]
- Meadows, C.W.; Kang, A.; Lee, T.S. Metabolic engineering for advanced biofuels production and recent advances toward commercialization. Biotechnol. J. 2018, 13, 1600433. [Google Scholar] [CrossRef]
- Atsumi, S.; Liao, J.C. Metabolic engineering for advanced biofuels production from Escherichia coli. Curr. Opin. Biotechnol. 2008, 19, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Ndaba, B.; Chiyanzu, I.; Marx, S. N-Butanol derived from biochemical and chemical routes: A review. Biotechnol. Rep. 2015, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Toogood, H.S.; Scrutton, N.S. Retooling microorganisms for the fermentative production of alcohols. Curr. Opin. Biotechnol. 2018, 50, 1–10. [Google Scholar] [CrossRef]
- Ao, M.; Pham, G.H.; Sunarso, J.; Tade, M.O.; Liu, S. Active centers of catalysts for higher alcohol synthesis from syngas: A review. ACS Catal. 2018, 8, 7025–7050. [Google Scholar] [CrossRef]
- Fang, K.; Li, D.; Lin, M.; Xiang, M.; Wei, W.; Sun, Y. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catal. Today 2009, 147, 133–138. [Google Scholar] [CrossRef]
- Atsumi, S.; Hanai, T.; Liao, J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451, 86–89. [Google Scholar] [CrossRef]
- Lapuerta, M.; García-Contreras, R.; Campos-Fernández, J.; Dorado, M.P. Stability, lubricity, viscosity, and cold-flow properties of alcohol-diesel blends. Energy Fuels 2010, 24, 4497–4502. [Google Scholar] [CrossRef]
- Patel, S.J.; Ng, D.; Mannan, M.S. QSPR flash point prediction of solvents using topological indices for application in computer aided molecular design. Ind. Eng. Chem. Res. 2009, 48, 7378–7387. [Google Scholar] [CrossRef]
Property | Required Range | Comments |
---|---|---|
Boiling Point | 25–190 °C | Ensure liquid at room temperature; compatibility with ASTM D4814. |
Melting Point | ≤−10 °C | Guarantee fluidity in the terminal environment |
RON | ≥98 | SI engines require a finished fuel with high RON to provide a highly efficient performance. |
Peroxide Formation | Molecules with known peroxide formation (List B of peroxide former compounds) present safety risks; secondary alcohols are likely peroxide formers. | |
Anaerobic Biodegradation Probability | ≥0.2 | Rejected if less than 0.2 with the water solubility greater than or equal to 10,000 mg/L. |
Requirements | |||
---|---|---|---|
Property | Low-Range Blends | High-Range Blends | Comments |
Vapor Pressure | Rejected if RVP blending value > 10 kPa | Rejected if vapor pressure at 25 °C < 0.5 kPa | Low range: avoid high evaporative emissions High range: avoid cold start problems |
Boiling Point | — | Rejected if >165 °C | Compatibility with T90 of ASTM D4814 |
Melting Point | — | Rejected if > −20 °C | Allows transfer by pumping, especially in winter |
LHV | Rejected if LHV < 25 MJ/kg | Rejected if < 30 MJ/kg | Avoid high fuel volume consumption |
Kinematic Viscosity | — | Rejected if > 5 mm2/s | Avoid large droplets |
Linear and Branched Alcohols | Cyclic Alcohols | |
---|---|---|
Ethanol | 2,2,4-Trimethyl-1-pentanol | (1-Methylcyclopropyl)methanol |
1-Propanol | 2,3,4-Trimethyl-3-pentanol | (2,2-Dimethylcyclopropyl)methanol |
1-Butanol | 2,4,4-Trimethyl-2-pentanol | 2-Cyclopentylethanol |
2-Methyl-1-propanol | 2,3,4-Trimethyl-2-pentanol | 2-Cyclopropyl-2-butanol |
2-Methyl-2-pentanol | 2,3,4-Trimethyl-1-pentanol | (1-Ethylcyclobutyl)methanol |
3-Methyl-3-pentanol | 3-Ethyl-2-methyl-3-pentanol | 1,3-Dimethylcyclopentanol |
2,2-Dimethyl-1-butanol | 3,4,4-Trimethyl-1-hexanol | 1,2-Dimethylcyclopentanol |
2,3-Dimethyl-1-butanol | 2,5,5-Trimethyl-1-hexanol | 2-Cyclobutyl-2-propanol |
3,3-Dimethyl-1-butanol | 4,5,5-Trimethyl-1-hexanol | Cyclohexylmethanol |
4,4-Dimethyl-1-pentanol | 3,5,5-Trimethyl-3-hexanol | 1-Isopropylcyclopentanol |
3,3-Dimethyl-1-pentanol | 3-Ethyl-2,4-dimethyl-3-pentanol | 2-Cyclopropyl-3-methyl-2-butanol |
2-Ethyl-2-methyl-1-butanol | 2,4,6-Trimethyl-4-heptanol | 2-Cyclopropyl-2-pentanol |
2,3,3-Trimethyl-1-butanol | 2,3,4,5-Tetramethyl-3-hexanol | (2,3,4-Trimethylcyclobutyl)methanol |
2,2,3-Trimethyl-1-butanol | 4-Ethyl-2,3-dimethyl-3-hexanol | 3-Cyclopropyl-3-pentanol |
3,4-Dimethyl-3-hexanol | 3-Isopropyl-2,4-dimethyl-3-pentanol | 1-Cyclopentyl-2-propanol |
2,2-Dimethyl-1-hexanol | 3-Methyl-2-(2-methyl-2-propanyl)-1-pentanol | |
2,4,4-Trimethyl-1-pentanol |
Property | 1-Propanol | 1-Butanol | 2-Methyl-1-propanol | 2-Methyl-2-pentanol | 3-Methyl-3-pentanol | (1-Methylcyclo-propyl)methanol |
---|---|---|---|---|---|---|
Molecular Weight (g/mol) | 6.1 | 74.12 | 74.12 | 102.17 | 102.17 | 86.13 |
C (wt%) | 59.96 | 64.82 | 64.82 | 70.53 | 70.53 | 69.72 |
H (wt%) | 13.42 | 13.60 | 13.60 | 13.81 | 13.81 | 11.70 |
O (wt%) | 26.62 | 21.59 | 21.59 | 15.66 | 15.66 | 18.57 |
Boiling Point (°C) | 97.2 | 117.7 | 107.8 | 121.1 | 122.40 | 128 |
Melting Point (°C) | −126.1 | −89.80 | −108 | −103 | −23.60 | −31.42 |
Water Solubility at 25 °C (g/L) | 1000 | 63.20 | 85 | 32.4 | 42.60 | 46.49 a |
Anaerobic Biodegradation Probability (Biowin7) | 0.94 a | 0.65 a | 0.67 a | 0.31 a | 0.32 a | 0.341 a |
Research Octane Number (RON) | 104 | 98 | 105 | 99.16 a | 98.56 a | 99.73 a |
Flash Point (°C) | 15.00 | 28.88 | 27.78 | 21.1 | 156.00 | 48.4 a |
Vapor Pressure at 25°C (mmHg) | 20.99 | 6.7 | 10.5 | 8.59 | 5.56 | 4.35 a |
Viscosity at 25 °C (cP) | 1.96 | 2.55 | 3.37 | 3.35 a | 3.57 a | 3.1 a |
Density at 25 °C (g/cm3) | 0.80 | 0.81 | 0.8 | 0.81 | 0.83 | 0.042 a |
Kinematic Viscosity at 25 °C (mm2/s) | 2.44 | 3.15 | 4.2 | 4.14 a | 4.3 a | 3.1 a |
Surface Tension at 25 °C (dyne/cm) | 23.32 | 24.93 | 22.54 | 22.92 | 23.26 | 28.69 a |
Heat of Evaporation (kJ/mol) | 47.45 | 17 | 41.8 a | 39.6 a | 55.70 | 42.7 a |
Lower Heating Value (MJ/Kg) | 31.57 | 33.09 | 33.11 | 36.42 a | 36.42 a | 36.14 a |
Number of Alcohols Passing Each Screening Level | |||
---|---|---|---|
Screening Level | Original | Level 1 (+/−50% CV) | Level 2 (+/−100% CV) |
Stage 1 | 49 | 7 | 5 |
Stage 2 | |||
Scenario 1 | 48 | 6 | 4 |
Scenario 2 | 6 | 3 | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirazi, S.A.; Foust, T.D.; Reardon, K.F. Identification of Promising Alternative Mono-Alcohol Fuel Blend Components for Spark Ignition Engines. Energies 2020, 13, 1955. https://doi.org/10.3390/en13081955
Shirazi SA, Foust TD, Reardon KF. Identification of Promising Alternative Mono-Alcohol Fuel Blend Components for Spark Ignition Engines. Energies. 2020; 13(8):1955. https://doi.org/10.3390/en13081955
Chicago/Turabian StyleShirazi, Saeid Aghahossein, Thomas D. Foust, and Kenneth F. Reardon. 2020. "Identification of Promising Alternative Mono-Alcohol Fuel Blend Components for Spark Ignition Engines" Energies 13, no. 8: 1955. https://doi.org/10.3390/en13081955
APA StyleShirazi, S. A., Foust, T. D., & Reardon, K. F. (2020). Identification of Promising Alternative Mono-Alcohol Fuel Blend Components for Spark Ignition Engines. Energies, 13(8), 1955. https://doi.org/10.3390/en13081955