A Preliminary Techno-Economic Analysis on the Calcium Looping Process with Simultaneous Capture of CO2 and SO2 from a Coal-Based Combustion Power Plant
Abstract
:1. Introduction
2. Description of Plant Configurations
- Case 1 (Base Case): PF power plant without CaL system;
- Case 2: PF power plant with CaL system; and
- Case 3: PF power plant with CaL system for simultaneous capture of CO2 and SO2.
3. Assessment of Economic Performance
3.1. Estimation of Plant Capital Costs
- C is the capital cost of the single unit with capacity Q;
- C0 is the capital cost of the single unit with capacity Q0; and
- m is the constant depending on the equipment type.
3.2. Estimation of O&M Costs, LCOE, and CO2 Capture Costs.
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IEA. Energy and Climate Change, World Energy Outlook Special Report; IEA: Paris, France, 2015.
- Coppola, A.; Scala, F.; Salatino, P.; Montagnaro, F. Fluidized bed calcium looping cycles for CO2 capture under oxy-firing calcination conditions: Part 2. Assessment of dolomite vs. limestone. Chem. Eng. J. 2013, 231. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, X.; Anthony, E.J.; Jiang, X.; Duan, L.; Wu, Y.; Dong, W.; Zhao, C. Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Prog. Energy Combust. Sci. 2013, 39, 515–534. [Google Scholar] [CrossRef]
- Cormos, C.C. Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle. Energy 2014, 78, 665–673. [Google Scholar] [CrossRef]
- Pathi, S.K.; Lin, W.; Illerup, J.B.; Dam-Johansen, K.; Hjuler, K. Performance of a bench-scale fast fluidized bed carbonator. Energy Fuels 2014, 28, 5259–5269. [Google Scholar] [CrossRef]
- Ströhle, J.; Junk, M.; Kremer, J.; Galloy, A.; Epple, B. Carbonate looping experiments in a 1 MWth pilot plant and model validation. Fuel 2014, 127, 13–22. [Google Scholar] [CrossRef]
- Erans, M.; Manovic, V.; Anthony, E.J. Calcium looping sorbents for CO2 capture. Appl. Energy 2016, 180, 722–742. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, Y.; Li, Z.; Li, M.; Xu, K.; Liu, W.; Luo, G.; Yao, H. Limestone Decomposition in an O2/CO2/Steam Atmosphere Integrated with Coal Combustion. Energy Fuels 2016, 30, 5092–5100. [Google Scholar] [CrossRef]
- Perejón, A.; Romeo, L.M.; Lara, Y.; Lisbona, P.; Martínez, A.; Valverde, J.M. The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior. Appl. Energy 2016, 162, 787–807. [Google Scholar] [CrossRef] [Green Version]
- Salaudeen, S.A.; Acharya, B.; Dutta, A. CaO-based CO2 sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling. J. CO2 Util. 2018, 23, 179–199. [Google Scholar] [CrossRef]
- Tregambi, C.; Montagnaro, F.; Salatino, P.; Solimene, R. A model of integrated calcium looping for CO2 capture and concentrated solar power. Sol. Energy 2015, 120, 208–220. [Google Scholar] [CrossRef]
- Tregambi, C.; Salatino, P.; Solimene, R.; Montagnaro, F. An experimental characterization of Calcium Looping integrated with concentrated solar power. Chem. Eng. J. 2018, 331, 794–802. [Google Scholar] [CrossRef]
- Coppola, A.; Esposito, A.; Montagnaro, F.; De Tommaso, G.; Scala, F.; Salatino, P. Effect of exposure to SO2 and H2O during the carbonation stage of fluidised bed calcium looping on the performance of sorbents of different nature. Chem. Eng. J. 2019, 377, 120626. [Google Scholar] [CrossRef]
- IEA-GHG. Improvements in Power Generation with Post-Combustion Capture of CO2. Report PH4/33, Nov. 2004; IEA Greenhouse Gas R&D Programme: Cheltenham, UK, 2004.
- Xu, G.; Yang Y ping Ding, J.; Li, S.; Liu, W.; Zhang, K. Analysis and optimization of CO2 capture in an existing coal-fired power plant in China. Energy 2013, 58, 117–127. [Google Scholar] [CrossRef]
- Petrescu, L.; Bonalumi, D.; Valenti, G.; Cormos, A.M.; Cormos, C.C. Life Cycle Assessment for supercritical pulverized coal power plants with post-combustion carbon capture and storage. J. Clean. Prod. 2017, 157, 10–21. [Google Scholar] [CrossRef]
- Turton, R.; Bailie, R.C.; Whiting, W.B.; Shaeiwitz, J.A. Analysis, Synthesis and Design of Chemical Processes; Pearson Education: London, UK, 2008. [Google Scholar]
- Cormos, C.C. Techno-economic and environmental evaluations of large scale gasification-based CCS project in Romania. Int. J. Hydrog. Energy 2014, 39, 13–27. [Google Scholar] [CrossRef]
- Romano, M.C.; Spinelli, M.; Campanari, S.; Consonni, S.; Cinti, G.; Marchi, M.; Borgarello, E. The calcium looping process for low CO2 emission cement and power. Energy Procedia 2013, 37, 7091–7099. [Google Scholar] [CrossRef] [Green Version]
- Cormos, C.C.; Vatopoulos, K.; Tzimas, E. Assessment of the consumption of water and construction materials in state-of-the-art fossil fuel power generation technologies involving CO2 capture. Energy 2013, 51, 37–49. [Google Scholar] [CrossRef]
- Yang, Y.; Zhai, R.; Duan, L.; Kavosh, M.; Patchigolla, K.; Oakey, J. Integration and evaluation of a power plant with a CaO-based CO2 capture system. Int. J. Greenh. Gas Control 2010, 4, 603–612. [Google Scholar] [CrossRef]
- Martínez, A.; Lara, Y.; Lisbona, P.; Romeo, L.M. Operation of a mixing seal valve in calcium looping for CO2 capture. Energy Fuels 2014, 28, 2059–2068. [Google Scholar] [CrossRef]
- Romano, M.C.; Martínez, I.; Murillo, R.; Arstad, B.; Blom, R.; Ozcan, D.C.; Ahn, H.; Brandani, S. Process simulation of Ca-looping processes: Review and guidelines. Energy Procedia 2013, 37, 142–150. [Google Scholar] [CrossRef]
- Mantripragada, H.C.; Rubin, E.S. Calcium looping cycle for CO2 capture: Performance, cost and feasibility analysis. Energy Procedia 2014, 63, 2199–2206. [Google Scholar] [CrossRef] [Green Version]
- Hanak, D.P.; Powell, D.; Manovic, V. Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage. Appl. Energy 2017, 191, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Erans, M.; Hanak, D.P.; Mir, J.; Anthony, E.J.; Manovic, V. Process modelling and techno-economic analysis of natural gas combined cycle integrated with calcium looping. Therm. Sci. 2016, 20, S59–S67. [Google Scholar] [CrossRef] [Green Version]
- Peters, M.S.; Timmerhaus, K.D.; West, R.E.; Timmerhaus, K.; West, R. Plant Design and Economics for Chemical Engineers; McGraw-Hill: New York, NY, USA, 1968; Volume 4. [Google Scholar]
- Abanades, J.C.; Grasa, G.; Alonso, M.; Rodriguez, N.; Anthony, E.J.; Romeo, L.M. Cost structure of a postcombustion CO2 capture system using CaO. Environ. Sci. Technol. 2007, 41, 5523–5527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Minett, A.I.; Harris, A.T. A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2. Energy Environ. Sci. 2013, 6, 25–40. [Google Scholar] [CrossRef]
Unit | Parameters |
---|---|
Boiler | Pulverized fuel boiler |
Air separation unit | 95% (vol.) oxygen purity (Consumption: 200 kWh per tons of oxygen) |
Desulphurisation unit | Limestone Flue-gas desulfurization (SO2 abatement efficiency: 98–99%) |
Calcium looping unit | Carbonation @650 °C–Calcination @940 °C Sorbent make-up ratio: 5% |
Captured CO2 conditioning | Intercooled multi-stage compression @120 bar Dehydration by Tri-ethylene-glycol |
Steam cycle | Sub-critical: 170 bar@540 °C– One re-heat: 39 bar@540 °C |
Main Plant Data | Units | Case 1 | Case 2 | Case 3 |
---|---|---|---|---|
Coal flowrate | t/h | 182.30 | 242.30 | 246.97 |
Coal LHV | MJ/Kg | 25.17 | 25.17 | 25.17 |
Fuel thermal energy | MWth | 1274.58 | 1694.08 | 1726.73 |
Gross power output | MWe | 504.28 | 658.80 | 670.83 |
ASU consumption | MWe | 0.00 | 25.76 | 26.23 |
Boiler consumption | MWe | 6.37 | 8.47 | 8.63 |
Ca-looping unit consumption | MWe | - | 56.00 | 57.02 |
Power island consumption | MWe | 22.69 | 23.64 | 23.71 |
Ancillary consumption | MWe | 29.07 | 113.87 | 115.60 |
Net power output | MWe | 475.21 | 544.93 | 555.23 |
Gross efficiency | % | 39.56 | 38.89 | 38.85 |
Net efficiency | % | 37.28 | 32.17 | 32.15 |
Carbon capture rate | % | - | 92.00 | 92.00 |
CO2 specific emissions | Kg/MWh | 931.03 | 74.48 | 74.48 |
Plant Sub-Units | Units | Case 1 | Case 2 | Case 3 | ||
---|---|---|---|---|---|---|
equipment cost (EC) | Solid handling facilities | M€ | 46.10 | 57.39 | 60.26 | [20] |
Air separation unit | M€ | 0.00 | 102.65 | 107.78 | [20] | |
Boiler | M€ | 180.16 | 180.16 | 180.16 | [20] | |
CaL unit | M€ | 0.00 | 92.70 | 97.34 | [19] | |
Sulphur removal unit | M€ | 78.16 | 100.38 | 0.00 | [20] | |
CO₂ processing and drying | M€ | 0.00 | 33.14 | 33.14 | [20] | |
Power island | M€ | 133.71 | 166.73 | 150.06 | [20] | |
Utilities and offsite units (U&O) | M€ | 109.53 | 183.29 | 157.19 | 25% of EC | |
Total installed costs (IC) | M€ | 547.66 | 916.44 | 785.93 | EC + U&O | |
Owner’s costs and contingency (O&C) | M€ | 82.15 | 137.47 | 117.89 | 15% of IC | |
Land, permitting, surveying, etc. (L) | M€ | 27.38 | 45.82 | 39.30 | 5% of IC | |
Total investment costs (TIC) | M€ | 657.20 | 1099.73 | 943.11 | IC + O&C + L | |
TIC per KW (gross) | €/kW | 1303.23 | 1620.51 | 1389.74 | ||
TIC per KW (net) | €/kW | 1382.94 | 1957.12 | 1678.41 |
Coal | 1.9 | €/GJ |
Limestone (flux) | 20 | €/t |
Natural gas cost | 5 | €/GJ |
BFW and process water price | 0.1 | €/t |
Cooling water price | 0.01 | €/t |
Make up and water treatment chemicals | 0.0025 | €/t |
Slag disposal cost | 10 | €/t |
CO₂ transport and storage costs | 5 | €/t CO₂ |
Carbon tax | 0 | €/t CO₂ |
Direct labor | 100 | persons |
Average annual direct labor costs | 50000 | €/y |
Administrative, support, and overhead costs | 30% of the direct labor cost | 0.3 |
Annual maintenance costs | 3.5% from capital expenditure (CAPEX) | 0.035 |
Working capital | 30-day supply | |
Power plant load factor | 7500 | h/y |
Construction time | 3 | year |
Economical plant life | 25 | year |
Discount rate | 8.00 | % |
Case 1 | Case 2 | Case 3 | |
---|---|---|---|
Supervision | 1.750 | 1.750 | 1.750 |
Cost of direct labor | 5.000 | 5.000 | 5.000 |
Maintenance | 25.297 | 34.995 | 30.000 |
Taxes and insurance | 5.059 | 6.999 | 6.000 |
Total Fixed Costs | 37.106 | 48.744 | 42.750 |
Coal | 65.618 | 86.922 | 88.582 |
Limestone make-up | 2.346 | 27.990 | 29.274 |
Cooling water | 0.004 | 0.006 | 0.006 |
Spent limestone disposal | 0.000 | 8.705 | 10.487 |
Gypsum disposal | 0.695 | 0.880 | 0.000 |
Ash disposal | 4.414 | 5.587 | 5.671 |
CO₂ transport and storage | 0.000 | 21.919 | 22.733 |
Total Variable Costs | 73.078 | 152.009 | 156.753 |
Units | Case 1 | Case 2 | Case 3 | |
---|---|---|---|---|
LCOE | €/MWh | 61.90 | 84.13 | 79.09 |
CO2 avoided cost | €/t CO2 | 0 | 25.95 | 20.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppola, A.; Scala, F. A Preliminary Techno-Economic Analysis on the Calcium Looping Process with Simultaneous Capture of CO2 and SO2 from a Coal-Based Combustion Power Plant. Energies 2020, 13, 2176. https://doi.org/10.3390/en13092176
Coppola A, Scala F. A Preliminary Techno-Economic Analysis on the Calcium Looping Process with Simultaneous Capture of CO2 and SO2 from a Coal-Based Combustion Power Plant. Energies. 2020; 13(9):2176. https://doi.org/10.3390/en13092176
Chicago/Turabian StyleCoppola, Antonio, and Fabrizio Scala. 2020. "A Preliminary Techno-Economic Analysis on the Calcium Looping Process with Simultaneous Capture of CO2 and SO2 from a Coal-Based Combustion Power Plant" Energies 13, no. 9: 2176. https://doi.org/10.3390/en13092176
APA StyleCoppola, A., & Scala, F. (2020). A Preliminary Techno-Economic Analysis on the Calcium Looping Process with Simultaneous Capture of CO2 and SO2 from a Coal-Based Combustion Power Plant. Energies, 13(9), 2176. https://doi.org/10.3390/en13092176