The Impact of Low-Resource Periods on the Reliability of Wind Power Systems for Rural Electrification in Africa
Abstract
:1. Introduction
1.1. Application of Decentralized Energy Systems for Electrification in Remote Regions
1.2. Reliability and Serviceability of Decentralized Energy Systems in Low-Resource Periods
1.3. Wind-Based Decentralized Power Systems for Electrification in Africa
2. Materials and Methods
3. Results
3.1. Mean Wind Power Resource at Annual and Seasonal Scales
3.2. Mean Wind Power Resource at Monthly Scale
3.3. Daily Variability of Wind Power Resource
3.4. Low-Wind-Power Days and Periods
3.5. Economic Viability of 100% Wind MGs: A Rough Guess
4. Discussion
4.1. Adequacy of Mean Wind Power Potential (CF ≥ 0.2) and Its Reliability
4.2. Coping with Low-Wind-Power Periods
4.2.1. Demand Flexibility and Its Effects on the Micro-Grid Design
4.2.2. Mixing Variable Renewable Energy (VRE) Resources
4.3. Sensitivity of the Results to the Capacity Factor Threshold
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fay, M.; Hallegatte, S.; Vogt-Schilb, A.; Rozenberg, J.; Narloch, U.; Kerr, T. Decarbonizing Development: Three Steps to a Zero-Carbon Future; The World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Kaundinya, D.P.; Balachandra, P.; Ravindranath, N. Grid-connected versus stand-alone energy systems for decentralized power—A review of literature. Renew. Sustain. Energy Rev. 2009, 13, 2041–2050. [Google Scholar] [CrossRef]
- Marnay, C.; Venkataramanan, G. Microgrids in the evolving electricity generation and delivery infrastructure. In Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006; p. 5. [Google Scholar] [CrossRef] [Green Version]
- Engeland, K.; Borga, M.; Creutin, J.-D.; François, B.; Ramos, M.-H.; Vidal, J.-P. Space-time variability of climate variables and intermittent renewable electricity production—A review. Renew. Sustain. Energy Rev. 2017, 79, 600–617. [Google Scholar] [CrossRef]
- Lave, M.; Kleissl, J.; Arias-Castro, E. High-frequency irradiance fluctuations and geographic smoothing. Sol. Energy 2012, 86, 2190–2199. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, P.E.; Cutululis, N.A.; Vigueras-Rodriguez, A.; Jensen, L.E.; Hjerrild, J.; Donovan, M.H.; Madsen, H. Power Fluctuations from Large Wind Farms. IEEE Trans. Power Syst. 2007, 22, 958–965. [Google Scholar] [CrossRef]
- Mentis, D.; Hermann, S.; Howells, M.; Welsch, M.; Siyal, S.H. Assessing the technical wind energy potential in Africa a GIS-based approach. Renew. Energy 2015, 83, 110–125. [Google Scholar] [CrossRef]
- Kariuki, B.W.; Sato, T. Interannual and spatial variability of solar radiation energy potential in Kenya using Meteosat satellite. Renew. Energy 2018, 116, 88–96. [Google Scholar] [CrossRef]
- Plain, N.; Hingray, B.; Mathy, S. Accounting for low solar resource days to size 100% solar microgrids power systems in Africa. Renew. Energy 2019, 131, 448–458. [Google Scholar] [CrossRef]
- Schindler, D.; Behr, H.D.; Jung, C. On the spatiotemporal variability and potential of complementarity of wind and solar resources. Energy Convers. Manag. 2020, 218, 113016. [Google Scholar] [CrossRef]
- Fant, C.; Gunturu, B.; Schlosser, A. Characterizing wind power resource reliability in southern Africa. Appl. Energy 2016, 161, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Raynaud, D.; Hingray, B.; François, B.; Creutin, J. Energy droughts from variable renewable energy sources in European climates. Renew. Energy 2018, 125, 578–589. [Google Scholar] [CrossRef]
- van der Wiel, K.; Stoop, L.; van Zuijlen, B.; Blackport, R.; Broek, M.V.D.; Selten, F. Meteorological conditions leading to extreme low variable renewable energy production and extreme high energy shortfall. Renew. Sustain. Energy Rev. 2019, 111, 261–275. [Google Scholar] [CrossRef]
- Sinden, G. Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand. Energy Policy 2007, 35, 112–127. [Google Scholar] [CrossRef]
- Huld, T.; Moner-Girona, M.; Kriston, A. Geospatial Analysis of Photovoltaic Mini-Grid System Performance. Energies 2017, 10, 218. [Google Scholar] [CrossRef] [Green Version]
- Celli, G.; Pilo, F.; Pisano, G.; Soma, G. Optimal participation of a microgrid to the energy market with an intelligent EMS. In Proceedings of the 2005 International Power Engineering Conference, Singapore, 29 November–2 December 2005; pp. 663–668. [Google Scholar] [CrossRef]
- Chen, S.X.; Gooi, H.B.; Wang, M.Q. Sizing of Energy Storage for Microgrids. IEEE Trans. Smart Grid 2012, 3, 142–151. [Google Scholar] [CrossRef]
- Hedegaard, K.; Meibom, P. Wind power impacts and electricity storage—A time scale perspective. Renew. Energy 2012, 37, 318–324. [Google Scholar] [CrossRef]
- Al-Falahi, M.D.; Jayasinghe, S.; Enshaei, H. A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system. Energy Convers. Manag. 2017, 143, 252–274. [Google Scholar] [CrossRef]
- Perez, M.; Perez, R.; Rábago, K.R.; Putnam, M. Overbuilding & curtailment: The cost-effective enablers of firm PV generation. Sol. Energy 2019, 180, 412–422. [Google Scholar] [CrossRef]
- Van Ruijven, B.J.; Schers, J.; van Vuuren, D.P. Model-based scenarios for rural electrification in developing countries. Energy 2012, 38, 386–397. [Google Scholar] [CrossRef] [Green Version]
- Barasa, M.; Bogdanov, D.; Oyewo, A.S.; Breyer, C. A cost optimal resolution for Sub-Saharan Africa powered by 100% renewables in 2030. Renew. Sustain. Energy Rev. 2018, 92, 440–457. [Google Scholar] [CrossRef]
- Deichmann, U.; Meisner, C.; Murray, S.; Wheeler, D. The economics of renewable energy expansion in rural Sub-Saharan Africa. Energy Policy 2011, 39, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Johnson, N.G.; Bryden, K.M. Energy supply and use in a rural West African village. Energy 2012, 43, 283–292. [Google Scholar] [CrossRef]
- Xu, Z.; Nthontho, M.; Chowdhury, S. Rural electrification implementation strategies through microgrid approach in South African context. Int. J. Electr. Power Energy Syst. 2016, 82, 452–465. [Google Scholar] [CrossRef]
- Wheeler, D.; That, T.T.; Meisner, C.; Deichmann, U.; Buys, P. Country Stakes in Climate Change Negotiations: Two Dimensions of Vulnerability; Policy Research Working Paper Series; The World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Gabra, S.; Miles, J.; Scott, S.A. Techno-economic analysis of stand-alone wind micro-grids, compared with PV and diesel in Africa. Renew. Energy 2019, 143, 1928–1938. [Google Scholar] [CrossRef]
- Sayas, F.C.; Allan, R. Generation availability assessment of wind farms. IEE Proc. Gener. Transm. Distrib. 1996, 143, 507–518. [Google Scholar] [CrossRef]
- Billinton, R.; Gao, Y. Multistate Wind Energy Conversion System Models for Adequacy Assessment of Generating Systems Incorporating Wind Energy. IEEE Trans. Energy Convers. 2008, 23, 163–170. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2017; IRENA: Masdar City, Abu Dhabi, United Arab Emirates, 2018. [Google Scholar]
- Dimitrovski, A.; Tomsovic, K. Impact of Wind Generation Uncertainty on Generating Capacity Adequacy. In Proceedings of the 2006 International Conference on Probabilistic Methods Applied to Power Systems, Stockholm, Sweden, 11–15 June 2006; pp. 1–6. [Google Scholar] [CrossRef]
- López-González, A.; Ranaboldo, M.; Domenech, B.; Ferrer-Martí, L. Evaluation of small wind turbines for rural electrification: Case studies from extreme climatic conditions in Venezuela. Energy 2020, 209, 118450. [Google Scholar] [CrossRef]
- Ferrer-Martí, L.; Garwood, A.; Chiroque, J.; Ramirez, B.; Marcelo, O.; Garfí, M.; Velo, E. Evaluating and comparing three community small-scale wind electrification projects. Renew. Sustain. Energy Rev. 2012, 16, 5379–5390. [Google Scholar] [CrossRef]
- Szabó, S.; Bódis, K.; Huld, T.; Moner-Girona, M. Energy solutions in rural Africa: Mapping electrification costs of distributed solar and diesel generation versus grid extension. Environ. Res. Lett. 2011, 6, 034002. [Google Scholar] [CrossRef]
- Olatayo, K.I.; Wichers, J.H.; Stoker, P.W. Energy and economic performance of small wind energy systems under different climatic conditions of South Africa. Renew. Sustain. Energy Rev. 2018, 98, 376–392. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- ECMWF. Advancing Global NWP through International Collaboration. Available online: https://www.ecmwf.int/ (accessed on 5 April 2021).
- Fuhrländer FL 30—30.00 kW—Wind Turbine. Available online: https://en.wind-turbine-models.com/turbines/278-fuhrlaender-fl-30 (accessed on 5 April 2021).
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Sterl, S.; Liersch, S.; Koch, H.; Van Lipzig, N.P.M.; Thiery, W. A new approach for assessing synergies of solar and wind power: Implications for West Africa. Environ. Res. Lett. 2018, 13, 094009. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A.; Bauer, Z.A.; Goodman, S.C.; Chapman, W.E.; Cameron, M.A.; Bozonnat, C.; Chobadi, L.; Clonts, H.A.; Enevoldsen, P.; et al. 100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World. Joule 2017, 1, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Jurasz, J.; Canales, F.; Kies, A.; Guezgouz, M.; Beluco, A. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Sol. Energy 2020, 195, 703–724. [Google Scholar] [CrossRef]
- Heide, D.; von Bremen, L.; Greiner, M.; Hoffmann, C.; Speckmann, M.; Bofinger, S. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe. Renew. Energy 2010, 35, 2483–2489. [Google Scholar] [CrossRef]
- Francois, B.; Borga, M.; Creutin, J.; Hingray, B.; Raynaud, D.; Sauterleute, J. Complementarity between solar and hydro power: Sensitivity study to climate characteristics in Northern-Italy. Renew. Energy 2016, 86, 543–553. [Google Scholar] [CrossRef]
- Danso, D.K.; François, B.; Hingray, B.; Diedhiou, A. Assessing hydropower flexibility for integrating solar and wind energy in West Africa using dynamic programming and sensitivity analysis. Illustration with the Akosombo reservoir, Ghana. J. Clean. Prod. 2021, 287, 125559. [Google Scholar] [CrossRef]
- François, B.; Hingray, B.; Raynaud, D.; Borga, M.; Creutin, J. Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix. Renew. Energy 2016, 87, 686–696. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, Y.; Zhang, Y.; Terzija, V. Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data. Appl. Energy 2018, 216, 172–182. [Google Scholar] [CrossRef]
- Bekele, G.; Tadesse, G. Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia. Appl. Energy 2012, 97, 5–15. [Google Scholar] [CrossRef]
- Budischak, C.; Sewell, D.; Thomson, H.; Mach, L.; Veron, D.E.; Kempton, W. Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time. J. Power Sources 2013, 225, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Adaramola, M.S.; Agelin-Chaab, M.; Paul, S.S. Analysis of hybrid energy systems for application in southern Ghana. Energy Convers. Manag. 2014, 88, 284–295. [Google Scholar] [CrossRef]
- Gils, H.C.; Scholz, Y.; Pregger, T.; de Tena, D.L.; Heide, D. Integrated modelling of variable renewable energy-based power supply in Europe. Energy 2017, 123, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Bilal, B.; Adjallah, K.H.; Yetilmezsoy, K.; Bahramian, M.; Kıyan, E. Determination of wind potential characteristics and techno-economic feasibility analysis of wind turbines for Northwest Africa. Energy 2021, 218, 119558. [Google Scholar] [CrossRef]
- Pryor, S.; Barthelmie, R.J. Climate change impacts on wind energy: A review. Renew. Sustain. Energy Rev 2010, 14, 430–437. [Google Scholar] [CrossRef]
- Sawadogo, W.; Reboita, M.S.; Faye, A.; Da Rocha, R.P.; Odoulami, R.C.; Olusegun, C.F.; Adeniyi, M.O.; Abiodun, B.J.; Sylla, M.B.; Diallo, I.; et al. Current and future potential of solar and wind energy over Africa using the RegCM4 CORDEX-CORE ensemble. Clim. Dyn. 2020. [Google Scholar] [CrossRef]
- Moemken, J.; Reyers, M.; Feldmann, H.; Pinto, J.G. Future Changes of Wind Speed and Wind Energy Potentials in EURO-CORDEX Ensemble Simulations. J. Geophys. Res. Atmos. 2018, 123, 6373–6389. [Google Scholar] [CrossRef]
- Wang, S.; Yang, H.; Pham, Q.B.; Khoi, D.N.; Nhi, P.T.T. An Ensemble Framework to Investigate Wind Energy Sustainability Considering Climate Change Impacts. Sustainability 2020, 12, 876. [Google Scholar] [CrossRef] [Green Version]
- Bichet, A.; Hingray, B.; Evin, G.; Diedhiou, A.D.; Kebe, C.M.F.; Anquetin, S. Potential impact of climate change on solar resource in Africa for photovoltaic energy: Analyses from CORDEX-AFRICA climate experiments. Environ. Res. Lett. 2019, 14, 124039. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Brito, M.C.; Careto, J. Persistence of the high solar potential in Africa in a changing climate. Environ. Res. Lett. 2019, 14, 124036. [Google Scholar] [CrossRef]
- Florescu, A.; Barabas, S.; Dobrescu, T. Research on Increasing the Performance of Wind Power Plants for Sustainable Development. Sustainability 2019, 11, 1266. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.M.; Keith, D.W. Corrigendum: Observation-based solar and wind power capacity factors and power densities (2018 Environ. Res. Lett. 13 104008). Environ. Res. Lett. 2019, 14, 079501. [Google Scholar] [CrossRef]
Country | Ratio | Country | Ratio | Country | Ratio |
---|---|---|---|---|---|
Namibia | 100.5 | Burkina Faso | 15.9 | Kenya | 6.5 |
Central Afr. Rep. | 90.9 | Madagascar | 14.6 | Malawi | 6.4 |
Mauritania | 86.2 | Guinea-Bissau | 14.2 | Ghana | 5.7 |
Chad | 77.3 | Tanzania | 14.1 | Uganda | 3.1 |
Mali | 58.4 | Cameroon | 12.7 | Gambia | 2.7 |
Niger | 50.4 | Senegal | 12.5 | Burundi | 2.2 |
Congo | 43.6 | Benin | 12.5 | Nigeria | 2.0 |
Angola | 27.9 | Sierra Leone | 10.1 | Swaziland | 1.6 |
Sudan | 27.6 | Côte d’Ivoire | 9.6 | Lesotho | 1.4 |
Zambia | 25.2 | Eritrea | 9.5 | South Africa | 1.3 |
Congo, Dem Rep | 24.7 | Guinea | 9.0 | Equatorial Guinea | 0.9 |
Mozambique | 23.4 | Togo | 8.9 | Cape Verde | 0.9 |
Botswana | 22.4 | Ethiopia | 8.5 | Rwanda | 0.7 |
Gabon | 20.3 | Zimbabwe | 8.0 | Comoros | 0.2 |
Variable | Proportion of Grid Points (%) |
---|---|
Adequacy at Annual and Seasonal Scales | |
Annual | 57.71 |
DJF | 57.27 |
MAM | 56.92 |
JJA | 60.75 |
SON | 56.92 |
Adequacy at Monthly Scale | |
Minimum CFM | 40.07 |
Maximum CFM | 73.20 |
Low-Wind-Power Periods | |
CF5 | 2.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seyedhashemi, H.; Hingray, B.; Lavaysse, C.; Chamarande, T. The Impact of Low-Resource Periods on the Reliability of Wind Power Systems for Rural Electrification in Africa. Energies 2021, 14, 2978. https://doi.org/10.3390/en14112978
Seyedhashemi H, Hingray B, Lavaysse C, Chamarande T. The Impact of Low-Resource Periods on the Reliability of Wind Power Systems for Rural Electrification in Africa. Energies. 2021; 14(11):2978. https://doi.org/10.3390/en14112978
Chicago/Turabian StyleSeyedhashemi, Hanieh, Benoît Hingray, Christophe Lavaysse, and Théo Chamarande. 2021. "The Impact of Low-Resource Periods on the Reliability of Wind Power Systems for Rural Electrification in Africa" Energies 14, no. 11: 2978. https://doi.org/10.3390/en14112978
APA StyleSeyedhashemi, H., Hingray, B., Lavaysse, C., & Chamarande, T. (2021). The Impact of Low-Resource Periods on the Reliability of Wind Power Systems for Rural Electrification in Africa. Energies, 14(11), 2978. https://doi.org/10.3390/en14112978