Decentralized Management of Commercial HVAC Systems
Abstract
:1. Introduction
2. Methodology
3. Data-Driven Models
3.1. Linear Regression
3.2. Polynomial Linear Regression
3.3. Support Vector Regression
4. Building-Level Optimization
5. System-Level Optimization
5.1. Problem Formulation
5.2. Multi-Objective Optimization
5.3. Optimal Point Selection
6. Case Study
6.1. Accuracy of Data-Driven Models
6.2. Optimization Results
6.3. Numerical Comparison of Optimized Schedules
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EC | Energy cost |
DC | Demand charge |
ToU | Time-of-use tariff |
NSGA | Nondominated sorting genetic algorithm |
MOOP | Multi-objective optimization problem |
PF | Pareto frontier |
MILP | Mixed-integer linear programming |
Variables and Parameters | |
b | Linear regression temperature coefficient |
c | Linear regression temperature coefficient |
d | Polynomial linear regression temperature coefficient |
e | Polynomial linear regression temperature coefficient |
Z | Support vector regression coefficient vector |
Support vector regression bias | |
O | HVAC switching status (on/off) |
Building indoor air temperature | |
D | Indoor temperature deviation |
Building power consumption | |
Bus active power | |
Bus reactive power | |
V | Bus voltage |
Line power | |
Total active power at the substation | |
Virtual energy price signal | |
Support vector regression kernel mapping function | |
M | Support vector regression penalty |
Support vector regression loss function | |
Bus voltage upper limit | |
Bus voltage lower limit | |
Sum of voltage deviations outside the standard | |
Demand charge base rate | |
Demand charge peak rate | |
G | Line conductance |
B | Line susceptance |
Voltage angle | |
Actual energy price signal | |
Outside ambient air temperature | |
Lower bound of occupant comfort zone | |
Upper bound of occupant comfort zone | |
F | Indoor temperature deviation penalty |
Maximum allowed line power | |
N | Number of buses |
H | Number of training samples |
Set of all time steps | |
Set of on-peak time-of-use steps | |
Subscripts and Superscripts | |
Bus number indexes | |
l | Line index |
k | Building index |
t | Time index |
h | Training sample index |
References
- Cao, X.; Dai, X.; Liu, J. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build. 2016, 128, 198–213. [Google Scholar] [CrossRef]
- EIA. How Much Energy is Consumed in U.S. Residential and Commercial Buildings?—FAQ—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/tools/faqs/faq.php?id=86&t=1 (accessed on 16 August 2019).
- Adhikari, R.; Pipattanasomporn, M.; Rahman, S. Heuristic Algorithms for Aggregated HVAC Control via Smart Thermostats for Regulation Service. IEEE Trans. Smart Grid 2019, 11, 2023–2032. [Google Scholar] [CrossRef]
- Alibabaei, N.; Fung, A.S.; Raahemifar, K.; Moghimi, A. Effects of intelligent strategy planning models on residential HVAC system energy demand and cost during the heating and cooling seasons. Appl. Energy 2017, 185, 29–43. [Google Scholar] [CrossRef]
- Fiorentini, M.; Wall, J.; Ma, Z.; Braslavsky, J.H.; Cooper, P. Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage. Appl. Energy 2017, 187, 465–479. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhou, Y.; Quilumba, F.L.; Lee, W.J. Potential of the Commercial Sector to Participate in the Demand Side Management Program. IEEE Trans. Ind. Appl. 2019, 55, 7261–7269. [Google Scholar] [CrossRef]
- Yin, R.; Xu, P.; Piette, M.A.; Kiliccote, S. Study on Auto-DR and pre-cooling of commercial buildings with thermal mass in California. Energy Build. 2010, 42, 967–975. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.; Kowli, A.; Lin, Y.; Barooah, P.; Meyn, S. Ancillary service for the grid via control of commercial building HVAC systems. In Proceedings of the 2013 American Control Conference, Washington, DC, USA, 17–19 June 2013; IEEE: New York, NY, USA, 2013; pp. 467–472. [Google Scholar]
- Wang, H.; Wang, S.; Tang, R. Development of grid-responsive buildings: Opportunities, challenges, capabilities and applications of HVAC systems in non-residential buildings in providing ancillary services by fast demand responses to smart grids. Appl. Energy 2019, 250, 697–712. [Google Scholar] [CrossRef]
- Sturzenegger, D.; Gyalistras, D.; Morari, M.; Smith, R.S. Model predictive climate control of a swiss office building: Implementation, results, and cost–benefit analysis. IEEE Trans. Control Syst. Technol. 2015, 24, 1–12. [Google Scholar] [CrossRef]
- Smarra, F.; Jain, A.; De Rubeis, T.; Ambrosini, D.; D’Innocenzo, A.; Mangharam, R. Data-driven model predictive control using random forests for building energy optimization and climate control. Appl. Energy 2018, 226, 1252–1272. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Matuško, J.; Borrelli, F. Stochastic model predictive control for building HVAC systems: Complexity and conservatism. IEEE Trans. Control Syst. Technol. 2014, 23, 101–116. [Google Scholar] [CrossRef]
- Vishwanath, A.; Hong, Y.H.; Blake, C. Experimental Evaluation of a Data Driven Cooling Optimization Framework for HVAC Control in Commercial Buildings. In Proceedings of the Tenth ACM International Conference on Future Energy Systems, Phoenix, AZ, USA, 25–28 June 2019; pp. 78–88. [Google Scholar]
- Zhang, Z.; Chong, A.; Pan, Y.; Zhang, C.; Lam, K.P. Whole building energy model for HVAC optimal control: A practical framework based on deep reinforcement learning. Energy Build. 2019, 199, 472–490. [Google Scholar] [CrossRef]
- Chen, Y.; Norford, L.K.; Samuelson, H.W.; Malkawi, A. Optimal control of HVAC and window systems for natural ventilation through reinforcement learning. Energy Build. 2018, 169, 195–205. [Google Scholar] [CrossRef]
- Adetola, V.; Lin, F.; Yuan, S.; Reeve, H. Ramping Services from Grid-interactive Buildings. In Proceedings of the 2019 IEEE Conference on Control Technology and Applications (CCTA), Hong Kong, China, 19–21 August 2019; IEEE: New York, NY, USA, 2019; pp. 624–629. [Google Scholar]
- Zhou, Z.; Zhao, F.; Wang, J. Agent-based electricity market simulation with demand response from commercial buildings. IEEE Trans. Smart Grid 2011, 2, 580–588. [Google Scholar] [CrossRef]
- Hao, H.; Wu, D.; Lian, J.; Yang, T. Optimal coordination of building loads and energy storage for power grid and end user services. IEEE Trans. Smart Grid 2017, 9, 4335–4345. [Google Scholar] [CrossRef]
- Wang, P.; Wu, D.; Wang, J. Impacts of Lock-off Time on Virtual Battery Model from Thermostatically Controlled Loads. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; IEEE: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Sauter, P.S.; Solanki, B.V.; Cañizares, C.A.; Bhattacharya, K.; Hohmann, S. Electric thermal storage system impact on northern communities’ microgrids. IEEE Trans. Smart Grid 2017, 10, 852–863. [Google Scholar] [CrossRef]
- Razmara, M.; Bharati, G.; Hanover, D.; Shahbakhti, M.; Paudyal, S.; Robinett, R.D., III. Building-to-grid predictive power flow control for demand response and demand flexibility programs. Appl. Energy 2017, 203, 128–141. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Chu, C.C.; Pota, H.; Gadh, R. Energy management for a commercial building microgrid with stationary and mobile battery storage. Energy Build. 2016, 116, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Cupelli, L.; Schumacher, M.; Monti, A.; Mueller, D.; De Tommasi, L.; Kouramas, K. Simulation Tools and Optimization Algorithms for Efficient Energy Management in Neighborhoods. In Energy Positive Neighborhoods and Smart Energy Districts; Elsevier: Amsterdam, The Netherlands, 2017; pp. 57–100. [Google Scholar]
- Pinzon, J.A.; Vergara, P.P.; Da Silva, L.C.; Rider, M.J. Optimal management of energy consumption and comfort for smart buildings operating in a microgrid. IEEE Trans. Smart Grid 2018, 10, 3236–3247. [Google Scholar] [CrossRef]
- Hao, H.; Sun, Y.; Carroll, T.E.; Somani, A. A distributed cooperative power allocation method for campus buildings. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; IEEE: New York, NY, USA, 2015; pp. 1–5. [Google Scholar]
- Bharati, G.R.; Razmara, M.; Paudyal, S.; Shahbakhti, M.; Robinett, R.D. Hierarchical optimization framework for demand dispatch in building-grid systems. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; IEEE: New York, NY, USA, 2016; pp. 1–5. [Google Scholar]
- Kis, T.; Kovács, A.; Mészáros, C. On Optimistic and Pessimistic Bilevel Optimization Models for Demand Response Management. Energies 2021, 14, 2095. [Google Scholar] [CrossRef]
- Jung, S.; Yoon, Y.T.; Huh, J.H. An efficient micro grid optimization theory. Mathematics 2020, 8, 560. [Google Scholar] [CrossRef] [Green Version]
- Hakimi, S.M. A novel intelligent control of HVAC system in smart microgrid. J. Electr. Syst. Inf. Technol. 2017, 4, 299–309. [Google Scholar] [CrossRef]
- Contreras-Ocaña, J.E.; Sarker, M.R.; Ortega-Vazquez, M.A. Decentralized coordination of a building manager and an electric vehicle aggregator. IEEE Trans. Smart Grid 2016, 9, 2625–2637. [Google Scholar] [CrossRef]
- Xia, L.; de Hoog, J.; Alpcan, T.; Brazil, M.; Thomas, D.A.; Mareels, I. Local measurements and virtual pricing signals for residential demand side management. Sustain. Energy Grids Netw. 2015, 4, 62–71. [Google Scholar] [CrossRef]
- Feng, K.; Zhou, H.; Liu, Z.W.; Hu, D. Retail market pricing design in smart distribution networks considering wholesale market price uncertainty. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; IEEE: New York, NY, USA, 2017; pp. 5968–5973. [Google Scholar]
- Soares, A.; De Somer, O.; Ectors, D.; Aben, F.; Goyvaerts, J.; Broekmans, M.; Spiessens, F.; van Goch, D.; Vanthournout, K. Distributed optimization algorithm for residential flexibility activation—Results from a field test. IEEE Trans. Power Syst. 2018, 34, 4119–4127. [Google Scholar] [CrossRef]
- Hayes, B.; Melatti, I.; Mancini, T.; Prodanovic, M.; Tronci, E. Residential demand management using individualized demand aware price policies. IEEE Trans. Smart Grid 2016, 8, 1284–1294. [Google Scholar] [CrossRef]
- Muratori, M.; Rizzoni, G. Residential demand response: Dynamic energy management and time-varying electricity pricing. IEEE Trans. Power Syst. 2015, 31, 1108–1117. [Google Scholar] [CrossRef]
- Faddel, S.; Mohammed, O.A. Automated distributed electric vehicle controller for residential demand side management. IEEE Trans. Ind. Appl. 2018, 55, 16–25. [Google Scholar] [CrossRef]
- Risbeck, M.J.; Maravelias, C.T.; Rawlings, J.B.; Turney, R.D. A mixed-integer linear programming model for real-time cost optimization of building heating, ventilation, and air conditioning equipment. Energy Build. 2017, 142, 220–235. [Google Scholar] [CrossRef]
- Abdulaal, A.; Asfour, S. A linear optimization based controller method for real-time load shifting in industrial and commercial buildings. Energy Build. 2016, 110, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Žáčeková, E.; Váňa, Z.; Cigler, J. Towards the real-life implementation of MPC for an office building: Identification issues. Appl. Energy 2014, 135, 53–62. [Google Scholar] [CrossRef]
- Afram, A.; Janabi-Sharifi, F. Gray-box modeling and validation of residential HVAC system for control system design. Appl. Energy 2015, 137, 134–150. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, T. Learning occupants’ indoor comfort temperature through a Bayesian inference approach for office buildings in United States. Renew. Sustain. Energy Rev. 2020, 119, 109593. [Google Scholar] [CrossRef] [Green Version]
- Evgeniou, T.; Pontil, M. Support vector machines: Theory and applications. In Advanced Course on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 1999; pp. 249–257. [Google Scholar]
- DukeEnergy. Commercial/Industrial RATE SCHEDULES—Progress Energy. Available online: https://www.duke-energy.com/_/media/pdfs/rates/peratespefcommercialrateinsert.pdf?la=en (accessed on 6 March 2020).
- Li, C.; Savaghebi, M.; Vasquez, J.C.; Guerrero, J.M. Multiagent based distributed control for operation cost minimization of droop controlled AC microgrid using incremental cost consensus. In Proceedings of the 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva, Switzerland, 8–10 September 2015; IEEE: New York, NY, USA, 2015; pp. 1–9. [Google Scholar]
- American National Standard. C84. 1-2006. In For Electric Power Systems and Equipment-Voltage Ratings (60 Hz); American National Standard: New York, NY, USA, 2006. [Google Scholar]
- Robbins, B.A.; Domínguez-García, A.D. Optimal reactive power dispatch for voltage regulation in unbalanced distribution systems. IEEE Trans. Power Syst. 2015, 31, 2903–2913. [Google Scholar] [CrossRef]
- Mostafa, H.A.; El-Shatshat, R.; Salama, M.M. Multi-objective optimization for the operation of an electric distribution system with a large number of single phase solar generators. IEEE Trans. Smart Grid 2013, 4, 1038–1047. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.; Chang, Y.; Zhang, J.; Cai, X.; Zhang, W. Improved NSGA-III with selection-and-elimination operator. Swarm Evol. Comput. 2019, 49, 23–33. [Google Scholar] [CrossRef]
- Deb, K.; Deb, D. Analysing mutation schemes for real-parameter genetic algorithms. Int. J. Artif. Intell. Soft Comput. 2014, 4, 1–28. [Google Scholar] [CrossRef]
- Tzeng, G.H.; Huang, J.J. Multiple Attribute Decision Making: Methods and Applications; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Department of Energy. Commercial Reference Buildings. Available online: https://www.energy.gov/eere/buildings/commercial-reference-buildings (accessed on 2 August 2020).
- Manivannan, M.; Najafi, B.; Rinaldi, F. Machine learning-based short-term prediction of air-conditioning load through smart meter analytics. Energies 2017, 10, 1905. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Fannon, D.; Eckelman, M.J. Predictive modeling for US commercial building energy use: A comparison of existing statistical and machine learning algorithms using CBECS microdata. Energy Build. 2018, 163, 34–43. [Google Scholar] [CrossRef]
Bus | Type | Phase-A | Phase-B | Phase-C | |||
---|---|---|---|---|---|---|---|
kW | kVAr | kW | kVAr | kW | kVAr | ||
611 | Y-I | - | - | - | - | 170 | 80 |
645 | Y-PQ | - | - | 170 | 125 | - | - |
646 | D-Z | - | - | 230 | 132 | - | - |
652 | Y-Z | 128 | 86 | - | - | - | - |
Linear Regression | Polynomial Regression | Support Vectors | ||||
---|---|---|---|---|---|---|
Temperature | Power | Temperature | Power | Temperature | Power | |
Medium Office | 0.247 | 3.54 | 0.0701 | 3.468 | 0.2565 | 3.625 |
Mall | 0.05283 | 6.5 | 0.05083 | 6.13 | 0.0672 | 6.446 |
Supermarket | 0.1057 | 5.0686 | 0.0965 | 4.596 | 0.1244 | 5.371 |
Large Office | 0.174 | 86.476 | 0.176 | 83.68 | 0.2654 | 86.46 |
Restaurant | 0.0862 | 4.246 | 0.0807 | 3.885 | 0.14 | 4.337 |
Linear Regression | Polynomial Regression | Support Vector | |
---|---|---|---|
Uncoordinated | 0.4378 | 0.4944 | 0.4326 |
Coordinated | 0.4354 | 0.4928 | 0.353 |
Base Case | Linear Regression | Polynomial Regression | Support Vector | |
---|---|---|---|---|
EC | 6075.5 | 5901.89 | 6122 | 5520.11 |
DC | 1672.78 | 1555.05 | 1569.02 | 1562.42 |
Total | 7748.28 | 7456.94 | 7691.02 | 7082.53 |
Base Case | Linear Regression | Polynomial Regression | Support Vector | |
---|---|---|---|---|
EC | 6075.5 | 5888.45 | 6120.17 | 5539.14 |
DC | 1672.78 | 1548.40 | 1569.02 | 1561.58 |
Total | 7748.28 | 7436.85 | 7689.192 | 7100.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faddel, S.; Tian, G.; Zhou, Q. Decentralized Management of Commercial HVAC Systems. Energies 2021, 14, 3024. https://doi.org/10.3390/en14113024
Faddel S, Tian G, Zhou Q. Decentralized Management of Commercial HVAC Systems. Energies. 2021; 14(11):3024. https://doi.org/10.3390/en14113024
Chicago/Turabian StyleFaddel, Samy, Guanyu Tian, and Qun Zhou. 2021. "Decentralized Management of Commercial HVAC Systems" Energies 14, no. 11: 3024. https://doi.org/10.3390/en14113024
APA StyleFaddel, S., Tian, G., & Zhou, Q. (2021). Decentralized Management of Commercial HVAC Systems. Energies, 14(11), 3024. https://doi.org/10.3390/en14113024