Modernization of the Public Transport Bus Fleet in the Context of Low-Carbon Development in Poland
Abstract
:1. Introduction
2. Changes in Urban Transport in the Context of Low-Carbon Development
3. Possible Ways of Modernizing Urban Bus Fleet
4. Methodology
- The number of buses will be close to the average from recent years, i.e., 12,000. It does not provide for changes in the number of buses because the analysis covers a relatively short period of time.
- Each bus will cover an average distance of 72,590 km as before. Currently, there are no data available that would allow determining the average distance covered during a year.
- CO2 emission levels will stay at the current level.
- The share of hybrid buses will grow very slowly due to difficulties in obtaining funding for their purchase.
- The share of electricity generation based on renewable energy sources will increase from 18% in 2020 to 20% in 2024.
- A slow increase in the share of buses powered by natural gas (LNG and CNG) due financing issues related to the relatively high emissions of greenhouse gases and other pollutants.
5. Results and Discussion
6. Conclusions
- ongoing monitoring and adaptation of the bus system to the needs of users (location of stops, routes for individual lines);
- introducing zones in city centers that ban cars with engines that do not meet the latest ecological standards, while simultaneously expanding parking lots on the outskirts where it would be possible to leave non-ecological cars and use ecological urban transport;
- implementation of educational activities to promote low-carbon transport;
- radical limitation and the future banning by local governments of the purchase of buses with internal combustion engines;
- increasing parking fees in city centers;
- expansion of pedestrian infrastructure, especially in the vicinity of bus stops;
- expansion of bus lanes infrastructure; and
- blocking some roads to passenger car traffic.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barcik, R.; Jakubiec, M. Wpływ innowacyjnych rozwiązań w transporcie miejskim na jakość życia mieszkańców. Logistyka 2014, 4, 1637–1648. (In Polish) [Google Scholar]
- Proost, S.; Van Dender, K. Energy and environment challenges in the transport sector. Econ. Transp. 2012, 1, 77–87. [Google Scholar] [CrossRef]
- Pietrzak, K.; Pietrzak, O. Environmental effects of electromobility in a sustainable urban public transport. Sustainability 2020, 12, 1052. [Google Scholar] [CrossRef] [Green Version]
- Wołek, M.; Wolański, M.; Bartłomiejczyk, M.; Wyszomirski, O.; Grzelec, K.; Hebel, K. Ensuring sustainable development of urban public transport: A case study of the trolleybus system in Gdynia and Sopot (Poland). J. Clean. Prod. 2021, 279, 123807. [Google Scholar] [CrossRef]
- Grijalva, E.R.; López Martínez, J.M. Analysis of the Reduction of CO2 Emissions in Urban Environments by Replacing Conventional City Buses by Electric Bus Fleets: Spain Case Study. Energies 2019, 12, 525. [Google Scholar] [CrossRef] [Green Version]
- Junga, R.; Pospolita, J.; Niemiec, P.; Dudek, M.; Szleper, R. Improvement of coal boiler’s efficiency after application of liquid fuel additive. Appl. Therm. Eng. 2020, 179, 115663. [Google Scholar] [CrossRef]
- Feiock, R.C.; Stream, C. Environmental protection versus economic development: A false trade-off? Public Adm. Rev. 2001, 61, 313–321. [Google Scholar] [CrossRef]
- Wallander, J.L.; Schmitt, M.; Koot, H.M. Quality of life measurement in children and adolescents: Issues, instruments, and applications. J. Clin. Psychol. 2001, 57. [Google Scholar] [CrossRef]
- McGregor, S.L.; Goldsmith, E. Expanding Our Understanding of Quality of Life, Standard of Living, and Well-Being. J. Fam. Consum. Sci. 1998, 90, 2–6. [Google Scholar]
- Nakamura, K.; Morita, H.; Vichiensan, V.; Togawa, T.; Hayashi, Y. Comparative analysis of QOL in station areas between cities at different development stages, Bangkok and Nagoya. Transp. Res. Procedia 2017, 25. [Google Scholar] [CrossRef]
- European Mobility Week. Available online: https://ec.europa.eu/inea/en/news-events/events/european-mobility-week-2017 (accessed on 3 April 2021).
- Transport Publiczny. Available online: https://www.transport-publiczny.pl/wiadomosci/komentarz-wybory-wygrali-ci-ktorzy-rozwijaja-komunikacje-miejska-60073.html (accessed on 28 February 2021). (In Polish).
- Kułyk, P.; Augustowski, Ł. Conditions of the Occurrence of the Environmental Kuznets Curve in Agricultural Production of Central and Eastern European Countries. Energies 2020, 13, 5478. [Google Scholar] [CrossRef]
- Parzentny, H.R.; Róg, L. Distribution and Mode of Occurrence of Co, Ni, Cu, Zn, As, Ag, Cd, Sb, Pb in the Feed Coal, Fly Ash, Slag, in the Topsoil and in the Roots of Trees and Undergrowth Downwind of Three Power Stations in Poland. Minerals 2021, 11, 133. [Google Scholar] [CrossRef]
- Frankowski, J. Attention: Smog alert! Citizen engagement for clean air and its consequences for fuel poverty in Poland. Energy Build. 2020, 207, 109525. [Google Scholar] [CrossRef]
- Czyżewski, B.; Trojanek, R.; Dzikuć, M.; Czyżewski, A. Cost-effectiveness of the common agricultural policy and environmental policy in country districts: Spatial spillovers of pollution, bio-uniformity and green schemes in Poland. Sci. Total Environ. 2020, 726, 138254. [Google Scholar] [CrossRef]
- Adrian, Ł.; Piersa, P.; Szufa, S.; Romanowska-Duda, Z.; Grzesik, M.; Cebula, A.; Kowalczyk, S.; Ratajczyk-Szufa, J. Experimental research and thermographic analysis of heat transfer processes in a heat pipe heat exchanger utilizing as a working fluid R134A. In Renewable Energy Sources: Engineering, Technology, Innovation; Springer: Berlin/Heidelberg, Germany, 2018; pp. 413–421. [Google Scholar] [CrossRef]
- Dzikuć, M.; Łasiński, K. Technical and economic aspects of low emission reduction in Poland. Int. J. Appl. Mech. Eng. 2017, 22, 1107–1112. [Google Scholar] [CrossRef] [Green Version]
- Cicconi, P.; Landi, D.; Germani, M. An Ecodesign approach for the lightweight engineering of cast iron parts. Int. J. Adv. Manuf. Technol. 2018, 99, 2365–2388. [Google Scholar] [CrossRef]
- Cicconi, P.; Landi, D.; Germani, M. A Virtual Modelling of a Hybrid Road Tractor for Freight Delivery. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Phoenix, AZ, USA, 11–17 November 2016. [Google Scholar] [CrossRef]
- Meyers, J.C. The Great Transition: A Cost-Benefit Analysis of Transitioning from Diesel Fuel Buses to Zero Emission Electric Buses for the NFTA in The Buffalo-Niagara Falls MSA. Appl. Econ. Theses 2021, 44, 51–53. [Google Scholar]
- Deliali, A.; Chhan, D.; Oliver, J.; Sayess, R.; Godri Pollitt, K.J.; Christofa, E. Transitioning to zero-emission bus fleets: State of practice of implementations in the United States. Transp. Rev. 2021, 41, 164–191. [Google Scholar] [CrossRef]
- Pelletier, S.; Jabali, O.; Mendoza, J.E.; Laporte, G. The electric bus fleet transition problem. Transp. Res. Part C Emerg. Technol. 2019, 109, 174–193. [Google Scholar] [CrossRef]
- Holland, S.P.; Mansur, E.T.; Muller, Z.Z.; Yatesd, A.J. The environmental benefits of transportation electrification: Urban buses. Energy Policy 2021, 148, 111921. [Google Scholar] [CrossRef]
- Dydkowski, G.; Gnap, J.; Urbanek, A. Electrification of Public Transport Bus Fleet: Identification of Business and Financing Models. Commun. Sci. Lett. Univ. Zilina 2021, 23. [Google Scholar] [CrossRef]
- Lorenzi, G.; Baptista, P. Promotion of renewable energy sources in the Portuguese transport sector: A scenario analysis. J. Clean. Prod. 2018, 186, 918–932. [Google Scholar] [CrossRef]
- Barisa, A.; Rosa, M. Scenario analysis of CO2 emission reduction potential in road transport sector in Latvia. Energy Procedia 2018, 147, 86–95. [Google Scholar] [CrossRef]
- Song, H.; Deng, S.X.; Lu, Z.Z.; Li, J.H.; Ba, L.M.; Wang, J.F.; Sun, Z.G.; Li, G.H.; Jiang, C.; Hao, Y.Z. Scenario analysis of vehicular emission abatement procedures in Xi’an, China. Environ. Pollut. 2021, 269, 116187. [Google Scholar] [CrossRef]
- Idris, A.M.; Ramli, A.F.; Burok, N.A.; Nabil, N.H.M.; Muis, Z.A.; Shin, H.W. The Integration of Electric Vehicle with Power Generation Sector: A Scenario Analysis Based on Supply and Demand in Malaysia. Mater. Today Proc. 2019, 19, 1687–1692. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Lian, Y.; Han, S. Factors and scenario analysis of transport carbon dioxide emissions in rapidly-developing cities. Transp. Res. Part D Transp. Environ. 2020, 80, 102252. [Google Scholar] [CrossRef]
- Shayegan, S.; Pearson, P.J.G.; Hart, D. Hydrogen for buses in London: A scenario analysis of changes over time in refuelling infrastructure costs. Int. J. Hydrogen Energy 2009, 34, 8415–8427. [Google Scholar] [CrossRef]
- Dzikuć, M.; Adamczyk, J.; Piwowar, A. Problems associated with the emissions limitations from road transport in the Lubuskie Province (Poland). Atmos. Environ. 2017, 160, 1–8. [Google Scholar] [CrossRef]
- Viesi, D.; Crema, L.; Testi, M. The Italian hydrogen mobility scenario implementing the European directive on alternative fuels infrastructure (DAFI 2014/94/EU). Int. J. Hydrogen Energy 2017, 42, 27354–27373. [Google Scholar] [CrossRef]
- Tucki, L. A Computer Tool for Modelling CO2 Emissions in Driving Cycles for Spark Ignition Engines Powered by Biofuels. Energies 2021, 14, 1400. [Google Scholar] [CrossRef]
- Dzikuć, M.; Kuryło, P.; Dudziak, R.; Szufa, S.; Dzikuć, M.; Godzisz, K. Selected Aspects of Combustion Optimization of Coal in Power Plants. Energies 2020, 13, 2208. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu (accessed on 14 March 2021).
- Zięba, K.; Szostak, E.; Czekońska, K.; Miśkowiec, P.; Moos-Matysik, A.; Nyczyk-Malinowska, A.; Szentgyörgyi, H. Usefulness of bee bread and capped brood for the assessment of monocyclic aromatic hydrocarbon levels in the environment. Environmental 2020, 265, 114882. [Google Scholar] [CrossRef]
- Blazy, R. Living environment quality determinants, including PM2.5 and PM10 dust pollution in the context of spatial issues-the case of Radzionkow. Buildings 2020, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Piwowar, A. Agricultural biogas—An important element in the circular and low-carbon development in Poland. Energies 2020, 13, 1733. [Google Scholar] [CrossRef] [Green Version]
- Standar, A.; Kozera, A.; Satoła, Ł. The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland. Energies 2021, 14, 450. [Google Scholar] [CrossRef]
- Wyrobek, J.; Popławski, Ł.; Dzikuć, M. Analysis of Financial Problems of Wind Farms in Poland. Energies 2021, 14, 1239. [Google Scholar] [CrossRef]
- European Commission. Multiannual Financial Framework 2021–2027 Total Allocations per Heading. Available online: https://ec.europa.eu/info/strategy/recovery-plan-europe_en (accessed on 27 May 2021).
- European Environment Agency. Available online: https://www.eea.europa.eu (accessed on 8 March 2021).
- Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/tran_hv_psmod/default/table?lang=en (accessed on 3 April 2021).
- Kii, M. Reductions in CO2 emissions from passenger cars under demography and technology scenarios in Japan by 2050. Sustainability 2020, 12, 919. [Google Scholar] [CrossRef]
- Matsuhashi, K.; Ariga, T. Estimation of passenger car CO2 emissions with urban population density scenarios for low carbon transportation in Japan. IATSS Res. 2009, 39. [Google Scholar] [CrossRef] [Green Version]
- Kamakate, F.; Schipper, L. Trends in truck freight energy use and carbon emissions in selected OECD countries from 1973 to 2005. Energy Policy 2009, 37. [Google Scholar] [CrossRef]
- Burchart-Korol, D.; Jursova, S.; Folęga, P.; Korol, J.; Pustejovska, P.; Blaut, A. Environmental life cycle assessment of electric vehicles in Poland and the Czech Republic. J. Clean. Prod. 2018, 202, 476–487. [Google Scholar] [CrossRef]
- European Commission. Questions and Answers: Sustainable and Smart Mobility Strategy; European Commission: Brussels, Belgium, 2020; Available online: https://ec.europa.eu/commission/presscorner (accessed on 11 March 2021).
- Brodny, J.; Tutak, M. The analysis of similarities between the European Union countries in terms of the level and structure of the emissions of selected gases and air pollutants into the atmosphere. J. Clean. Prod. 2021, 279, 123641. [Google Scholar] [CrossRef] [PubMed]
- Szufa, S.; Piersa, P.; Adrian, Ł.; Czerwińska, J.; Lewandowski, A.; Lewandowska, W.; Sielski, J.; Dzikuć, M.; Wróbel, M.; Jewiarz, M.; et al. Sustainable Drying and Torrefaction Processes of Miscanthus for Use as a Pelletized Solid Biofuel and Biocarbon-Carrier for Fertilizers. Molecules 2021, 26, 1014. [Google Scholar] [CrossRef] [PubMed]
- Kryszak, D.; Bartoszewicz, A.; Szufa, S.; Piersa, P.; Obraniak, A.; Olejnik, T.P. Modeling of Transport of Loose Products with the Use of the Non-Grid Method of Discrete Elements (DEM). Processes 2020, 8, 1489. [Google Scholar] [CrossRef]
- Ochnio, L.; Koszela, G.; Rokicki, T. Impact of road transport on air pollution in EU countries. Rocz. Ochr. Srodowiska 2020, 22, 1058–1073. [Google Scholar]
- Statistical Office in Szczecin. Transport—Activity Results in 2019. Available online: https://szczecin.stat.gov.pl/en/publications/transport-martime-economy-shipping/transport-activity-results-in-2019,12,4.html (accessed on 10 February 2021).
- Rusak, Z. Powrót do przyszłości czyli hybrydowy Citaro napędzany ogniwami paliwowymi. Autobusy Tech. Eksploat. Syst. Transp. 2010, 11, 12–17. (In Polish) [Google Scholar]
- Pourahmadiyan, A.; Ahmadia, P.; Kjeang, E. Dynamic simulation and life cycle greenhouse gas impact assessment of CNG, LNG, and diesel-powered transit buses in British Columbia, Canada. Transp. Res. Part D Transp. Environ. 2021, 92, 102724. [Google Scholar] [CrossRef]
- IGKM. Raport o Gazomobilności. Available online: https://igkm.pl/raport-o-gazomobilnosci-w-komunikacji-miejskiej (accessed on 20 February 2021). (In Polish).
- Sauer, D.U.; Rohlfs, W.; Sinhuber, P.; Rogge, M. Energy consumption, battery size, battery type and charging infrastructure—Optimal eÖPNV mobility through integral analysis. In Proceedings of the 4th VDV Conference Electric Buses—Market of the Future, Berlin, Germany, 18–19 February 2013. [Google Scholar]
- Sinhuber, P.; Rohlfs, W.; Sauer, D.U. Study on power and energy demand for sizing the energy storage systems for electrified local public transport buses. In Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC), Seoul, Korea, 9–12 October 2012; pp. 315–320. [Google Scholar]
- Rogge, M.; Wollny, S.; Sauer, D.U. Fast charging battery buses for the electrification of urban public transport—A feasibility study focusing on charging infrastructure and energy storage requirements. Energies 2015, 8, 4587–4606. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.; Soban, D.; Smyth, B.M.; Best, R. A probabilistic fleet analysis for energy consumption, life cycle cost and greenhouse gas emissions modelling of bus technologies. Appl. Energy 2020, 261, 114422. [Google Scholar] [CrossRef]
- Pamucar, D.; Iordache, M.; Deveci, M.; Schitea, D.; Iordache, I. A new hybrid fuzzy multi-criteria decision methodology model for prioritizing the alternatives of the hydrogen bus development: A case study from Romania. Int. J. Hydrogen Energy 2021, in press. [Google Scholar] [CrossRef]
- Liu, X.; Reddi, K.; Elgowainy, A.; Lohse-Busch, H.; Wang, M.; Rustagi, N. Comparison of well-to-wheels energy use and emissions of a hydrogen fuel cell electric vehicle relative to a conventional gasoline-powered internal combustion engine vehicle. Int. J. Hydrogen Energy 2020, 45, 972–983. [Google Scholar] [CrossRef]
- European Energy Agency. The First and Last Mile—The Key to Sustainable Urban Transport. Available online: https://www.eea.europa.eu//publications/the-first-and-last-mile (accessed on 10 February 2021).
- Bartłomiejczyk, M.; Kołacz, R. The reduction of auxiliaries power demand: The challenge for electromobility in public transportation. J. Clean. Prod. 2021, 252, 119776. [Google Scholar] [CrossRef]
- EUR-Lex. Directive (EU) 2019/1161. Available online: https://eur-lex.europa.eu/eli/dir/2019/1161/oj (accessed on 10 February 2021).
- IGKM. IGKM Apeluje do Premiera w Sprawie Ustawy o Elektromobilnosci. Available online: https://www.igkm.pl/2021/01/24/igkm-apeluje-do-premiera-w-sprawie-ustawy-o-elektromobilnosci/ (accessed on 10 February 2021). (In Polish).
- Mrówczyńska, M.; Skiba, M.; Sztubecka, M.; Bazan-Krzywoszańska, A.; Kazak, J.K.; Gajownik, P. Scenarios as a tool supporting decisions in urban energy policy: The analysis using fuzzy logic, multi-criteria analysis and GIS tools. Renew. Sustain. Energy 2021, 137, 110598. [Google Scholar] [CrossRef]
- NFOSIGW. Zielony Transport Publiczny. Available online: http://nfosigw.gov.pl/oferta-finansowania/srodki-krajowe/programy-priorytetowe/zielony-transport-publiczny-faza-i/nabor--zielony-transport-publiczny-faza-i (accessed on 10 February 2021). (In Polish)
- Rekordową sprzedaż 1560 Autobusów i Trolejbusów w 2020 r. Available online: https://transinfo.pl/infobus/rekord-solarisa-1560-autobusow-i-trolejbusow-w-2020-r-film (accessed on 4 March 2021). (In Polish).
- Denis, M.; Cysek-Pawlak, M.M.; Krzysztofik, S.; Majewska, A. Sustainable and vibrant cities. Opportunities and threats to the development of Polish cities. Cities 2021, 109, 103014. [Google Scholar] [CrossRef]
- Kułyk, P.; Dubicki, P. The Role of Green Areas in the City Ecosystem, 2019. In Proceedings of the 33rd International Business Information Management Association Conference—IBIMA: Education Excellence and Innovation Management through Vision, Granada, Spain, 10–11 April 2019; International Business Information Management Association (IBIMA): King of Prussia, PA, USA, 2019; pp. 895–901. [Google Scholar]
- Sun, R.; Chen, Y.; Dubey, A.; Pugliese, P. Hybrid electric buses fuel consumption prediction based on real-world driving data. Transp. Res. Part D Transp. Environ. 2021, 91, 102637. [Google Scholar] [CrossRef]
- Zhang, Z.; He, H.; Guo, J.; Han, R. Velocity prediction and profile optimization based real-time energy management strategy for Plug-in hybrid electric buses. Appl. Energy 2020, 280, 116001. [Google Scholar] [CrossRef]
- Gis, M. Analiza Porównawcza Emisji Spalin Autobusów Miejskich z Silnikami Zasilanymi Olejem Napędowym Oraz Paliwami Alternatywnymi; Comparative Analysis of Exhaust Emissions from Citybuses with Diesel Fuel Engines and Alternative Fuels; Politechnika Poznańska: Poznań, Poland, 2018; pp. 22–24. (In Polish) [Google Scholar]
- Mahmoud, M.; Garnett, R.; Ferguson, M.; Kanaroglou, P. Electric buses: A review of alternative powertrains. Renew. Sustain. Energy Rev. 2016, 62, 673–684. [Google Scholar] [CrossRef]
- Alwesabi, Y.; Wang, Y.; Avalos, R.; Liu, Z. Electric bus scheduling under single depot dynamic wireless charging infrastructure planning. Energy 2020, 213, 118855. [Google Scholar] [CrossRef]
- Ma, X.; Miao, R.; Wu, X.; Liu, X. Examining influential factors on the energy consumption of electric and diesel buses: A data-driven analysis of large-scale public transit network in Beijing. Energy 2021, 216, 119196. [Google Scholar] [CrossRef]
- Wang, J.; Kang, L.; Liu, Y. Optimal scheduling for electric bus fleets based on dynamic programming approach by considering battery capacity fade. Renew. Sustain. Energy Rev. 2020, 130, 109978. [Google Scholar] [CrossRef]
- Dzikuć, M.; Piwowar, A.; Szufa, S.; Adamczyk, J.; Dzikuć, M. Potential and Scenarios of Variants of Thermo-Modernization of Single-Family Houses: An Example of the Lubuskie Voivodeship. Energies 2021, 14, 191. [Google Scholar] [CrossRef]
- Khan, M.I. Policy options for the sustainable development of natural gas as transportation fuel. Energy Policy 2017, 110, 126–136. [Google Scholar] [CrossRef]
Specification | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2019/2007 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Final Energy Consumption in Households per Capita (in kg of Oil Equivalent) | % | |||||||||||||
Poland | 508 | 516 | 524 | 578 | 528 | 546 | 537 | 499 | 499 | 521 | 525 | 512 | 479 | −5.7 |
EU 28 | 583 | 612 | 604 | 644 | 576 | 603 | 608 | 533 | 554 | 568 | 564 | 556 | 554 | −5.0 |
Greenhouse gas emissions per capita (in Mg CO2 equivalent per capita) | 2018/2007 (%) | |||||||||||||
Poland | 11 | 10.8 | 10.3 | 10.9 | 10.8 | 10.6 | 10.6 | 10.2 | 10.3 | 10.6 | 11 | 11 | no data | 0 |
EU 28 | 10.6 | 10.4 | 9.6 | 9.8 | 9.5 | 9.3 | 9.1 | 8.7 | 8.8 | 8.7 | 8.8 | 8.6 | no data | −18.9 |
City | Amount | Share in the Bus Fleet * |
---|---|---|
Warsaw | 201 CNG, 35 LNG | 12% |
Tychy | 135 CNG | 75% |
Rzeszow | 102 CNG | 48% |
Czestochowa | 49 CNG | 25% |
Radom | 37 CNG | 22% |
Tarnow | 33 CNG | 35% |
Gdynia | 32 CNG | 13% |
Myslowice | 30 CNG | No data |
Bielsko-Biala | 26 CNG | No data |
Lubin | 25 CNG | No data |
Other cities | 112 CNG | - |
City | Amount | Share in the Bus Fleet * |
---|---|---|
Warsaw | 161 | 8% |
Zielona Gora | 43 | 48% |
Krakow | 29 | 5% |
Jaworzno | 24 | 35% |
Poznan | 21 | 6.5% |
Other cities | 138 | - |
Type of a Bus | Price in PLN |
---|---|
CNG/LNG | 1,100,000 |
Electric | 2,100,000 |
Hydrogen | 3,000,000 |
Description | Diesel Buses | CNG-Powered Buses | LNG-Powered Buses | Hydrogen Buses | Electric Buses | Hybrid Buses | |
---|---|---|---|---|---|---|---|
Electricity Generated from Conventional Raw Materials (Coal, Gas) | Electricity Generated from Renewable Energy | ||||||
Greenhouse gas emissions from the tank to the wheels (expressed as CO2 eq in g/km) | 1004 | 1014 | 1014 | 0 | 0 | 0 | 552 |
Greenhouse gas emissions from the source to the wheels (expressed as the CO2 eq in g/km) | 1222 | 1171 | 1171 | 320 | 720 | 20 | 672 |
The share of buses in December 2020 (%) | 86.33 | 6.51 | 0.29 | 0 | 2.84 | 0.62 | 3.41 |
The number of buses (December 2020) | 10360 | 781 | 35 | 0 | 341 | 74 * | 409 |
Buses participation (scenario I—pessimistic) | 80.11 | 7.47 | 1.01 | 0.93 | 5.48 | 1.37 | 3.63 |
Buses participation (scenario II—realistic) | 76.43 | 8.02 | 1.29 | 1.33 | 7.05 | 1.79 | 4.09 |
Buses participation (scenario III—optimistic) | 73.02 | 8.37 | 1.55 | 1.75 | 8.67 | 2.19 | 4.45 |
Number of buses (scenario I—pessimistic) | 9614 | 896 | 121 | 112 | 657 | 164 ** | 436 |
Number of buses (scenario II—realistic) | 9171 | 962 | 155 | 160 | 846 | 215 ** | 491 |
Number of buses (scenario III—optimistic) | 8762 | 1004 | 186 | 210 | 1040 | 263 ** | 535 |
Description | Number of km Traveled per Year | Greenhouse Gas Emissions from the Tank to the Wheels (Expressed as CO2 eq in Mg) | Greenhouse Gas Emissions from the Source to the Wheels (Expressed as the CO2 eq in Mg) | |||||
---|---|---|---|---|---|---|---|---|
Scenario I (Pessimistic) | Scenario II (Realistic) | Scenario III (Optimistic) | Scenario I (Pessimistic) | Scenario II (Realistic) | Scenario III (Optimistic) | |||
Buses with diesel engines | 72,590 | 700,672 | 668,386 | 638,578 | 852,810 | 813,513 | 777,233 | |
CNG-powered buses | 65,951 | 70,809 | 73,901 | 76,163 | 81,773 | 85,343 | ||
LNG-powered buses | 8906 | 11,409 | 13,691 | 10,285 | 13,175 | 15,811 | ||
Hydrogen buses | 0 | 0 | 0 | 2602 | 3717 | 4878 | ||
Electric buses | Electricity generated from conventional raw materials (coal, gas) | 0 | 0 | 0 | 34,338 | 44,216 | 54,355 | |
Electricity generated on the basis of renewable energy | 0 | 0 | 0 | 238 | 312 | 382 | ||
Hybrid buses | 17,470 | 19,674 | 21,437 | 21,268 | 23,951 | 26,098 | ||
Total | 793,000 | 770,278 | 749,606 | 997,704 | 980,658 | 964,099 |
Description | Greenhouse Gas Emissions from the Tank to the Wheels (Expressed as CO2 eq in Mg) | Greenhouse Gas Emissions from the Source to the Wheels (Expressed as the CO2 eq in Mg) | GHG Emissions Difference from Tank to Wheels 2024/2020 (Expressed as the CO2 eq in Mg) | GHG Emissions Difference from Source to Wheel 2024/2020 (Expressed as the CO2 eq in Mg) | |||||
---|---|---|---|---|---|---|---|---|---|
Scenario I (Pessimistic) | Scenario II (Realistic) | Scenario III (Optimistic) | Scenario I (Pessimistic) | Scenario II (Realistic) | Scenario III (Optimistic) | ||||
Buses with diesel engines | 755,041 | 918,984 | −54,369 | −86,655 | −116,463 | −66,174 | −105,470 | −141,751 | |
CNG-powered buses | 57,486 | 66,387 | 8465 | 13,323 | 16,414 | 9775 | 15,386 | 18,956 | |
LNG-powered buses | 2576 | 2975 | 6330 | 8833 | 11,115 | 7310 | 10,200 | 12,835 | |
Hydrogen buses | 0 | 0 | 0 | 0 | 0 | 2602 | 3717 | 4878 | |
Electric buses | Electricity generated from conventional raw materials (coal, gas) | 0 | 17,822 | 0 | 0 | 0 | 16,516 | 26,394 | 36,533 |
Electricity generated on the basis of renewable energy | 0 | 107 | 0 | 0 | 0 | 131 | 205 | 274 | |
Hybrid buses | 16,388 | 19,951 | 1082 | 3286 | 5049 | 1317 | 4000 | 6146 | |
Total | 831,492 | 1,026,227 | −38,492 | −61,214 | −83,885 | −28,523 | −45,569 | −62,128 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzikuć, M.; Miśko, R.; Szufa, S. Modernization of the Public Transport Bus Fleet in the Context of Low-Carbon Development in Poland. Energies 2021, 14, 3295. https://doi.org/10.3390/en14113295
Dzikuć M, Miśko R, Szufa S. Modernization of the Public Transport Bus Fleet in the Context of Low-Carbon Development in Poland. Energies. 2021; 14(11):3295. https://doi.org/10.3390/en14113295
Chicago/Turabian StyleDzikuć, Maciej, Rafał Miśko, and Szymon Szufa. 2021. "Modernization of the Public Transport Bus Fleet in the Context of Low-Carbon Development in Poland" Energies 14, no. 11: 3295. https://doi.org/10.3390/en14113295
APA StyleDzikuć, M., Miśko, R., & Szufa, S. (2021). Modernization of the Public Transport Bus Fleet in the Context of Low-Carbon Development in Poland. Energies, 14(11), 3295. https://doi.org/10.3390/en14113295