Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass and Preparation
2.2. Torrefaction Experiments
2.3. Biomass Characterization
2.4. Thermogravimetric Analyses
2.5. Kinetic Analyses
3. Results
3.1. Torrefaction Process
3.2. Physicochemical Characterization
3.3. Inorganic Composition
3.4. Thermogravimetric Analyses and Pyrolysis Kinetic
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Messerli, P.; Murniningtyas, E.; Eloundou-Enyegue, P.; Foli, E.G.; Furman, E.; Glassman, A.; Hernández Licona, G.; Kim, E.M.; Lutz, W.; Moatti, J.-P. Global Sustainable Development Report 2019: The Future Is Now–Science for Achieving Sustainable Development; United Nations: New York, NY, USA, 2019. [Google Scholar]
- FAO. The State of the World’ s Forests—Forest Pathways to Sustainable Development; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- EPE. Potential Energético de Resíduos Florestais do Manejo Sustentável e de Resíduos da Industrialização da Madeira; Ministério de Minas e Energia: Brasilia, Brazil, 2018. [Google Scholar]
- Álvarez, A.; Nogueiro, D.; Pizarro, C.; Matos, M.; Bueno, J.L. Non-oxidative torrefaction of biomass to enhance its fuel properties. Energy 2018, 158, 1–8. [Google Scholar] [CrossRef]
- Cao, L.; Yuan, X.; Jiang, L.; Li, C.; Xiao, Z.; Huang, Z.; Chen, X.; Zeng, G.; Li, H. Thermogravimetric characteristics and kinetics analysis of oil cake and torrefied biomass blends. Fuel 2016, 175, 129–136. [Google Scholar] [CrossRef]
- Agbor, E.; Zhang, X.; Kumar, A. A review of biomass co-firing in North America. Renew. Sustain. Energy Rev. 2014, 40, 930–943. [Google Scholar] [CrossRef]
- Kumar, L.; Koukoulas, A.A.; Mani, S.; Satyavolu, J. Integrating torrefaction in the wood pellet industry: A Critical Review. Energy Fuels 2017, 31, 37–54. [Google Scholar] [CrossRef]
- Arteaga-Pérez, L.E.; Segura, C.; Bustamante-García, V.; Cápiro, O.G.; Jiménez, R. Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: Focus on volatile evolution vs. feasible temperatures. Energy 2015, 93, 1731–1741. [Google Scholar] [CrossRef]
- Bergman, P.C.; Boersma, A.; Zwart, R.; Kiel, J. Torrefaction for Biomass Co-Firing in Existing Coal-Fired Power Stations; Energy Research Centre of the Netherlands, ECN-C-05-013: Petten, The Netherlands, 2005. [Google Scholar]
- Acharya, B.; Dutta, A. Fuel property enhancement of lignocellulosic and nonlignocellulosic biomass through torrefaction. Biomass Convers. Biorefinery 2016, 6, 139–149. [Google Scholar] [CrossRef]
- Nanou, P.; Carbo, M.C.; Kiel, J.H. Detailed mapping of the mass and energy balance of a continuous biomass torrefaction plant. Biomass Bioenergy 2016, 89, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Bach, Q.-V.; Skreiberg, Ø. Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. Renew. Sustain. Energy Rev. 2016, 54, 665–677. [Google Scholar] [CrossRef]
- He, C.; Tang, C.; Li, C.; Yuan, J.; Tran, K.-Q.; Bach, Q.-V.; Qiu, R.; Yang, Y. Wet torrefaction of biomass for high quality solid fuel production: A review. Renew. Sustain. Energy Rev. 2018, 91, 259–271. [Google Scholar] [CrossRef]
- Cardona, S.; Gallego, L.J.; Valencia, V.; Martínez, E.; Rios, L.A. Torrefaction of eucalyptus-tree residues: A new method for energy and mass balances of the process with the best torrefaction conditions. Sustain. Energy Technol. Assess. 2019, 31, 17–24. [Google Scholar] [CrossRef]
- Normark, M.; Pommer, L.; Gräsvik, J.; Hedenström, M.; Gorzsás, A.; Winestrand, S.; Jönsson, L.J. Biochemical conversion of torrefied Norway spruce after pretreatment with acid or ionic liquid. BioEnergy Res. 2016, 9, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Sarvaramini, A.; Gravel, O.; Larachi, F. Torrefaction of ionic-liquid impregnated lignocellulosic biomass and its comparison to dry torrefaction. Fuel 2013, 103, 814–826. [Google Scholar] [CrossRef]
- Gomes, P. A Algarobeira [Prosopis Juliflora]; Ministério da Agricultura, Pecuária e Abastecimento—MAPA: Brasília, Brazil, 1961. [Google Scholar]
- Pasiecznik, N.M.; Felker, P.; Harris, P.J.; Harsh, L.; Cruz, G.; Tewari, J.; Cadoret, K.; Maldonado, L.J. The Prosopis Juliflora-Prosopis Pallida Complex: A Monograph; HDRA Coventry: Coventry, UK, 2001; Volume 172. [Google Scholar]
- Lima, P.C.F. Manejo de Áreas Individuais de Algaroba: Relatório Final; EMBRAPA—Brazilian Agricultural Research Corporation: Petrolina, Brazil, 2005; p. 71. [Google Scholar]
- Patel, B.; Gami, B.; Bhimani, H. Improved fuel characteristics of cotton stalk, prosopis and sugarcane bagasse through torrefaction. Energy Sustain. Dev. 2011, 15, 372–375. [Google Scholar] [CrossRef]
- Eseltine, D.; Thanapal, S.S.; Annamalai, K.; Ranjan, D. Torrefaction of woody biomass (Juniper and Mesquite) using inert and non-inert gases. Fuel 2013, 113, 379–388. [Google Scholar] [CrossRef]
- Natarajan, P.; Suriapparao, D.V.; Vinu, R. Microwave torrefaction of Prosopis juliflora: Experimental and modeling study. Fuel Process. Technol. 2018, 172, 86–96. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Dunnu, G.; Maier, J.; Scheffknecht, G. Ash fusibility and compositional data of solid recovered fuels. Fuel 2010, 89, 1534–1540. [Google Scholar] [CrossRef]
- Karampinis, E.; Vamvuka, D.; Sfakiotakis, S.; Grammelis, P.; Itskos, G.; Kakaras, E. Comparative study of combustion properties of five energy crops and Greek lignite. Energy Fuels 2012, 26, 9. [Google Scholar] [CrossRef]
- Dhyani, V.; Bhaskar, T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Dhyani, V.; Bhaskar, T. Kinetic analysis of biomass pyrolysis. In Waste Biorefinery; Elsevier: Amsterdam, The Netherlands, 2018; pp. 39–83. [Google Scholar]
- Doddapaneni, T.R.K.C.; Konttinen, J.; Hukka, T.I.; Moilanen, A. Influence of torrefaction pretreatment on the pyrolysis of Eucalyptus clone: A study on kinetics, reaction mechanism and heat flow. Ind. Crops Prod. 2016, 92, 244–254. [Google Scholar] [CrossRef]
- Barzegar, R.; Yozgatligil, A.; Olgun, H.; Atimtay, A.T. TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres. J. Energy Inst. 2020, 93, 889–898. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Basu, P.; Rao, S.; Dhungana, A. An investigation into the effect of biomass particle size on its torrefaction. Can. J. Chem. Eng. 2013, 91, 466–474. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D.H.; Liang, D.T. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy Fuels 2006, 20, 6. [Google Scholar] [CrossRef]
- Chen, W.-H.; Kuo, P.-C. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 2011, 36, 6451–6460. [Google Scholar] [CrossRef]
- Saeed, M.A.; Ahmad, S.W.; Kazmi, M.; Mohsin, M.; Feroze, N. Impact of torrefaction technique on the moisture contents, bulk density and calorific value of briquetted biomass. Pol. J. Chem. Technol. 2015, 17, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Nhuchhen, D.R.; Basu, P.; Acharya, B. A comprehensive review on biomass torrefaction. Int. J. Renew. Energy Biofuels 2014, 2014, 1–56. [Google Scholar] [CrossRef]
- Aydemir, D.; Gunduz, G.; Ozden, S. The influence of thermal treatment on color response of wood materials. Color Res. Appl. 2012, 37, 148–153. [Google Scholar] [CrossRef]
- Pelaez-Samaniego, M.R.; Yadama, V.; Lowell, E.; Espinoza-Herrera, R. A review of wood thermal pretreatments to improve wood composite properties. Wood Sci. Technol. 2013, 47, 1285–1319. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Ramachandran, S.; Subbiah, S. Determination of kinetic parameters in the pyrolysis operation and thermal behavior of Prosopis juliflora using thermogravimetric analysis. Bioresour. Technol. 2017, 233, 413–422. [Google Scholar] [CrossRef]
- Suriapparao, D.V.; Pradeep, N.; Vinu, R. Bio-oil production from Prosopis juliflora via microwave pyrolysis. Energy Fuels 2015, 29, 2571–2581. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Vassilev, V.S. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 2015, 158, 330–350. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Ramachandran, S.; Subbiah, S. Modeling, experimental validation and optimization of Prosopis juliflora fuelwood pyrolysis in fixed-bed tubular reactor. Bioresour. Technol. 2018, 264, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Naseeruddin, S.; Yadav, K.S.; Sateesh, L.; Manikyam, A.; Desai, S.; Rao, L.V. Selection of the best chemical pretreatment for lignocellulosic substrate Prosopis juliflora. Bioresour. Technol. 2013, 136, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.C.D.; Lima, P.C.F. Comparação da qualidade da madeira de seis espécies de algarobeira para a produção de energia. Embrapa Semiárido-Artigo em Periódico Indexado 2002, 45, 99–106. [Google Scholar]
- Thrän, D.; Witt, J.; Schaubach, K.; Kiel, J.; Carbo, M.; Maier, J.; Ndibe, C.; Koppejan, J.; Alakangas, E.; Majer, S. Moving torrefaction towards market introduction–Technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project. Biomass Bioenergy 2016, 89, 184–200. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-H.; Peng, J.; Bi, X.T. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 2015, 44, 847–866. [Google Scholar] [CrossRef]
- Bach, Q.-V.; Tran, K.-Q.; Khalil, R.A.; Skreiberg, Ø.; Seisenbaeva, G. Comparative assessment of wet torrefaction. Energy Fuels 2013, 27, 6743–6753. [Google Scholar] [CrossRef]
- Ho, S.-H.; Zhang, C.; Chen, W.-H.; Shen, Y.; Chang, J.-S. Characterization of biomass waste torrefaction under conventional and microwave heating. Bioresour. Technol. 2018, 264, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Dai, G.; Ru, B.; Zhao, Y.; Wang, X.; Zhou, J.; Luo, Z.; Cen, K. Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors. Bioresour. Technol. 2016, 218, 1106–1114. [Google Scholar] [CrossRef]
- Neupane, S.; Adhikari, S.; Wang, Z.; Ragauskas, A.J.; Pu, Y. Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis. Green Chem. 2015, 17, 2406–2417. [Google Scholar] [CrossRef]
- Mei, Y.; Che, Q.; Yang, Q.; Draper, C.; Yang, H.; Zhang, S.; Chen, H. Torrefaction of different parts from a corn stalk and its effect on the characterization of products. Ind. Crops Prod. 2016, 92, 26–33. [Google Scholar] [CrossRef]
- Hakkou, M.; Pétrissans, M.; Gérardin, P.; Zoulalian, A. Investigations of the reasons for fungal durability of heat-treated beech wood. Polym. Degrad. Stab. 2006, 91, 393–397. [Google Scholar] [CrossRef]
- Ahmed, M.T.; Hasan, Y.; Islam, S.; Rahman, M. Analysis of Fuel Properties for Peat: A Case Study. IOSR J. Appl. Chem. 2019, 12, 26–43. [Google Scholar] [CrossRef]
- Lau, H.S.; Ng, H.K.; Gan, S.; Jourabchi, S.A. Torrefaction of oil palm fronds for co-firing in coal power plants. Energy Procedia 2018, 144, 75–81. [Google Scholar] [CrossRef]
- Ohliger, A.; Förster, M.; Kneer, R. Torrefaction of beechwood: A parametric study including heat of reaction and grindability. Fuel 2013, 104, 607–613. [Google Scholar] [CrossRef]
- Zhang, Y.; Ashizawa, M.; Kajitani, S.; Miura, K. Proposal of a semi-empirical kinetic model to reconcile with gasification reactivity profiles of biomass chars. Fuel 2008, 87, 475–481. [Google Scholar] [CrossRef]
- Vamvuka, D.; Kakaras, E. Ash properties and environmental impact of various biomass and coal fuels and their blends. Fuel Process. Technol. 2011, 92, 570–581. [Google Scholar] [CrossRef]
- Dayton, D.; Jenkins, B.; Turn, S.; Bakker, R.; Williams, R.; Belle-Oudry, D.; Hill, L. Release of inorganic constituents from leached biomass during thermal conversion. Energy Fuels 1999, 13, 860–870. [Google Scholar] [CrossRef]
- Collard, F.-X.; Blin, J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sustain. Energy Rev. 2014, 38, 594–608. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Mythili, R.; Subramanian, P.; Uma, D. Biofuel production from Prosopis juliflora in fluidized bed reactor. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 741–746. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, S.; Liu, L.; Li, X.; Chen, H.; Yang, H.; Wang, X. Combustion behaviours of tobacco stem in a thermogravimetric analyser and a pilot-scale fluidized bed reactor. Bioresour. Technol. 2012, 110, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Di Blasi, C. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 2008, 34, 47–90. [Google Scholar] [CrossRef]
- White, J.E.; Catallo, W.J.; Legendre, B.L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrolysis 2011, 91, 1–33. [Google Scholar] [CrossRef]
- Mamvura, T.; Danha, G. Biomass torrefaction as an emerging technology to aid in energy production. Heliyon 2020, 6, e03531. [Google Scholar] [CrossRef]
- Arteaga-Pérez, L.E.; Grandón, H.; Flores, M.; Segura, C.; Kelley, S.S. Steam torrefaction of Eucalyptus globulus for producing black pellets: A pilot-scale experience. Bioresour. Technol. 2017, 238, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Sajdak, M.; Kmieć, M.; Micek, B.; Hrabak, J. Determination of the optimal ratio of coal to biomass in the co-firing process: Feed mixture properties. Int. J. Environ. Sci. Technol. 2019, 16, 2989–3000. [Google Scholar] [CrossRef] [Green Version]
- Grammelis, P.; Skodras, G.; Kakaras, E. Effects of biomass co-firing with coal on ash properties. Part I: Characterisation and PSD. Fuel 2006, 85, 2310–2315. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Wright, C.T.; Hess, J.R.; Kenney, K.L. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod. Biorefining 2011, 5, 683–707. [Google Scholar] [CrossRef]
Process Yield | PJ230 | PJ270 | PJ310 |
---|---|---|---|
Mass Yields (%) | 88.2 ± 0.6 | 77.1 ± 1.2 | 64.5 ± 1.2 |
Liquid Yields (%) | 10.3 ± 1.1 | 15.5 ± 1.5 | 23.4 ± 1.9 |
Bulk Density * (g/cm) | 0.807 ± 0.012 | 0.722 ± 0.025 | 0.659 ± 0.029 |
Samples | C | H | N | O | O/C | H/C |
---|---|---|---|---|---|---|
PJ105 | 46.30 ± 0.10 | 7.49 ± 0.05 | 0.25 ± 0.02 | 42.99 ± 0.50 | 0.70 | 1.94 |
PJ230 | 53.84 ± 0.15 | 6.45 ± 0.07 | 0.24 ± 0.02 | 36.21 ± 0.45 | 0.50 | 1.44 |
PJ270 | 61.24 ± 0.08 | 5.64 ± 0.10 | 0.10 ± 0.04 | 29.04 ± 0.90 | 0.36 | 1.11 |
PJ310 | 63.65 ± 0.05 | 5.23 ± 0.50 | 0.08 ± 0.04 | 26.62 ± 0.85 | 0.31 | 0.99 |
Biomass | SiO2 | K2O | CaO | MgO | Na2O | P2O5 | Al2O3 | Fe2O3 | SO3 | Others | B/A | AI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PJ105 | 0.034 | 0.512 | 1.654 | 0.142 | 0.009 | 0.054 | 0.022 | 0.398 | 0.026 | 0.028 | 0.274 | 0.507 |
PJ230 | 0.043 | 0.547 | 2.128 | 0.124 | 0.008 | 0.042 | 0.025 | 0.318 | 0.012 | 0.011 | 0.382 | 0.391 |
PJ270 | 0.052 | 0.629 | 2.725 | 0.136 | 0.010 | 0.047 | 0.025 | 0.313 | 0.014 | 0.030 | 0.348 | 0.382 |
PJ310 | 0.056 | 0.723 | 3.066 | 0.135 | 0.011 | 0.048 | 0.026 | 0.305 | 0.014 | 0.036 | 0.355 | 0.368 |
Devolatilization (%) | ||||
---|---|---|---|---|
Heating Rate | PJ105 | PJ230 | PJ270 | PJ310 |
5 | 78.5 | 77.4 | 57.4 | 39.8 |
10 | 77.6 | 74.6 | 56.6 | 40.7 |
20 | 77.4 | 74.3 | 55.6 | 40.4 |
30 | 75.1 | 74.1 | 54.8 | 40.3 |
Sample | FWO Model | KAS Model | ||||
---|---|---|---|---|---|---|
Ea (kJ/kmol) | A (s−1) | R2 | Ea (kJ/kmol) | A (s−1) | R2 | |
PJ105 | 144.8 | 2.70 × 1015 | 0.9958 | 142.4 | 4.19 × 106 | 0.9952 |
PJ230 | 149.7 | 4.16 × 1015 | 0.9982 | 147.5 | 6.16 × 106 | 0.9979 |
PJ270 | 180.2 | 1.17 × 1028 | 0.9653 | 179.2 | 1.40 × 1019 | 0.9616 |
PJ310 | 261.0 | 3.82 × 1025 | 0.9611 | 263.1 | 3.39 × 1016 | 0.9677 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carneiro-Junior, J.A.d.M.; de Oliveira, G.F.; Alves, C.T.; Andrade, H.M.C.; Beisl Vieira de Melo, S.A.; Torres, E.A. Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction. Energies 2021, 14, 3465. https://doi.org/10.3390/en14123465
Carneiro-Junior JAdM, de Oliveira GF, Alves CT, Andrade HMC, Beisl Vieira de Melo SA, Torres EA. Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction. Energies. 2021; 14(12):3465. https://doi.org/10.3390/en14123465
Chicago/Turabian StyleCarneiro-Junior, José Airton de Mattos, Giulyane Felix de Oliveira, Carine Tondo Alves, Heloysa Martins Carvalho Andrade, Silvio Alexandre Beisl Vieira de Melo, and Ednildo Andrade Torres. 2021. "Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction" Energies 14, no. 12: 3465. https://doi.org/10.3390/en14123465
APA StyleCarneiro-Junior, J. A. d. M., de Oliveira, G. F., Alves, C. T., Andrade, H. M. C., Beisl Vieira de Melo, S. A., & Torres, E. A. (2021). Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction. Energies, 14(12), 3465. https://doi.org/10.3390/en14123465