Deep Learning for High-Impedance Fault Detection: Convolutional Autoencoders
Abstract
:1. Introduction
2. Unsupervised Learning with Autoencoders
3. Convolutional Autoencoder for HIF Detection
3.1. Data Preprocessing
3.2. Offline Training
3.3. HIF Detection
4. Evaluation
4.1. Study System
4.2. CAE-HIFD Model Training
4.3. Effects of CAE-HIFD’s Components
4.4. CAE-HIFD Response to Different Case Studies
4.4.1. Case Study I—Close-in HIF
4.4.2. Case Study II—Remote HIF
4.4.3. Case Study III—Capacitor Switching
4.4.4. Case Study IV—Non-linear Load
4.4.5. Case Study V—Transformer Energization
4.4.6. Case Study VI—Intermittent HIFs
4.4.7. Case Study VII—Frequency Deviations
4.5. Comparison with Other Approaches
4.6. Robustness of the Proposed CAE-HIF against Noise
4.7. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CAE-HIFD | Convolutional Autoencoder framework for HIF Detection |
CAE | Convolutional Autoencoder |
HIF | High-Impedance Fault |
EMD | Empirical Mode Decomposition |
VMD | Variational Mode Decomposition |
ML | Machine Learning |
SVM | Support Vector Machine |
SNR | Signal to Noise Ratio |
DWT | Discrete Wavelet Transform |
WT | Wavelet Transform |
CNN | Convolutional Neural Network |
CC | Cross-Correlation |
MSE | Mean Squared Error |
ReLU | Rectified Linear Unit |
K | Kurtosis |
Acc | Accuracy |
Dep | Dependability |
Saf | Safety |
Sen | sensibility |
TP | True Positives |
TN | True Negatives |
FN | False Negatives |
FP | False Positives |
GSCV | Grid Search Cross-Validation |
ANN | Artificial Neural Network |
GRU-AE | Gated Recurrent Units Autoencoder |
Appendix A
Node | Load Model | Phase 1 (kW) | Phase 1 (kVar) | Phase 2 (kW) | Phase 2 (kVar) | Phase 3 (kW) | Phase 3 (kVar) |
---|---|---|---|---|---|---|---|
634 | Y-PQ | 160 | 110 | 120 | 90 | 120 | 90 |
645 | Y-PQ | 0 | 0 | 170 | 125 | 0 | 0 |
646 | D-Z | 0 | 0 | 230 | 132 | 0 | 0 |
652 | Y-Z | 128 | 86 | 0 | 0 | 0 | 0 |
671 | D-PQ | 385 | 220 | 385 | 220 | 385 | 220 |
675 | Y-PQ | 485 | 190 | 68 | 60 | 290 | 212 |
692 | D-I | 0 | 0 | 0 | 0 | 170 | 151 |
611 | Y-I | 0 | 0 | 0 | 0 | 170 | 80 |
Total | 1158 | 606 | 973 | 627 | 1135 | 735 |
Node A | Node B | Length (ft) | Phasing |
---|---|---|---|
632 | 645 | 500 | C, B, N |
632 | 633 | 500 | C, A, B, N |
633 | 634 | 0 | Transformer |
645 | 646 | 300 | C, B, N |
650 | 632 | 2000 | B, A, C, N |
684 | 652 | 800 | A, N |
632 | 671 | 2000 | B, A, C, N |
671 | 684 | 300 | A, C, N |
671 | 680 | 1000 | B, A, C, N |
671 | 692 | 0 | Switch |
684 | 611 | 300 | C, N |
692 | 675 | 500 | A, B, C, N |
References
- Wang, B.; Geng, J.; Dong, X. High-Impedance Fault Detection Based on Nonlinear Voltage–Current Characteristic Profile Identification. IEEE Trans. Smart Grid 2018, 9, 3783–3791. [Google Scholar] [CrossRef]
- Gautam, S.; Brahma, S.M. Detection of High Impedance Fault in Power Distribution Systems Using Mathematical Morphology. IEEE Trans. Power Syst. 2013, 28, 1226–1234. [Google Scholar] [CrossRef]
- Cui, Q.; El-Arroudi, K.; Weng, Y. A Feature Selection Method for High Impedance Fault Detection. IEEE Trans. Power Deliv. 2019, 34, 1203–1215. [Google Scholar] [CrossRef] [Green Version]
- Ghaderi, A.; Ginn, H.L., III; Mohammadpour, H.A. High impedance fault detection: A review. Electr. Power Syst. Res. 2017, 143, 376–388. [Google Scholar] [CrossRef]
- Wang, X.; Gao, J.; Wei, X.; Song, G.; Wu, L.; Liu, J.; Zeng, Z.; Kheshti, M. High Impedance Fault Detection Method Based on Variational Mode Decomposition and Teager–Kaiser Energy Operators for Distribution Network. IEEE Trans. Smart Grid 2019, 10, 6041–6054. [Google Scholar] [CrossRef]
- Chaitanya, B.K.; Yadav, A.; Pazoki, M. An Intelligent Detection of High-Impedance Faults for Distribution Lines Integrated With Distributed Generators. IEEE Syst. J. 2020, 14, 870–879. [Google Scholar] [CrossRef]
- Wang, B.; Ni, J.; Geng, J.; Lu, Y.; Dong, X. Arc flash fault detection in wind farm collection feeders based on current waveform analysis. J. Mod. Power Syst. Clean Energy 2017, 5, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Lee, I. High-Impedance Fault Detection Using Third-Harmonic Current; Final Report. Technical Report; Hughes Aircraft Co.: Malibu, CA, USA, 1982. [Google Scholar]
- Emanuel, A.E.; Cyganski, D.; Orr, J.A.; Shiller, S.; Gulachenski, E.M. High impedance fault arcing on sandy soil in 15 kV distribution feeders: Contributions to the evaluation of the low frequency spectrum. IEEE Trans. Power Deliv. 1990, 5, 676–686. [Google Scholar] [CrossRef]
- Jeerings, D.I.; Linders, J.R. Unique aspects of distribution system harmonics due to high impedance ground faults. IEEE Trans. Power Deliv. 1990, 5, 1086–1094. [Google Scholar] [CrossRef]
- Jeerings, D.I.; Linders, J.R. A practical protective relay for down-conductor faults. IEEE Trans. Power Deliv. 1991, 6, 565–574. [Google Scholar] [CrossRef]
- Yu, D.C.; Khan, S.H. An adaptive high and low impedance fault detection method. IEEE Trans. Power Deliv. 1994, 9, 1812–1821. [Google Scholar] [CrossRef]
- Milioudis, A.N.; Andreou, G.T.; Labridis, D.P. Detection and Location of High Impedance Faults in Multiconductor Overhead Distribution Lines Using Power Line Communication Devices. IEEE Trans. Smart Grid 2015, 6, 894–902. [Google Scholar] [CrossRef]
- Mortazavi, S.H.; Moravej, Z.; Shahrtash, S.M. A Searching Based Method for Locating High Impedance Arcing Fault in Distribution Networks. IEEE Trans. Power Deliv. 2019, 34, 438–447. [Google Scholar] [CrossRef]
- Sedighi, A.R.; Haghifam, M.R.; Malik, O.P.; Ghassemian, M.H. High impedance fault detection based on wavelet transform and statistical pattern recognition. EEE Trans. Power Deliv. 2005, 20, 2414–2421. [Google Scholar] [CrossRef]
- Soheili, A.; Sadeh, J. Evidential reasoning based approach to high impedance fault detection in power distribution systems. IET Gener. Transm. Distrib. 2017, 11, 1325–1336. [Google Scholar] [CrossRef]
- Girgis, A.A.; Chang, W.; Makram, E.B. Analysis of high-impedance fault generated signals using a Kalman filtering approach. IEEE Trans. Power Deliv. 1990, 5, 1714–1724. [Google Scholar] [CrossRef]
- Chakraborty, S.; Das, S. Application of Smart Meters in High Impedance Fault Detection on Distribution Systems. IEEE Trans. Smart Grid 2019, 10, 3465–3473. [Google Scholar] [CrossRef]
- Xue, S.; Cheng, X.; Lv, Y. High Resistance Fault Location of Distribution Network Based on EEMD. In Proceedings of the 9th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2017; Volume 1, pp. 322–326. [Google Scholar]
- Yao, W.; Gao, X.; Wang, S.; Liu, Y. Distribution High Impedance Fault Detection Using the Fault Signal Reconstruction Method. In Proceedings of the IEEE 3rd Conference on Energy Internet and Energy System Integration, Changsha, China, 8–10 November 2019; pp. 2573–2577. [Google Scholar]
- Baqui, I.; Zamora, I.; Mazón, J.; Buigues, G. High impedance fault detection methodology using wavelet transform and artificial neural networks. Electr. Power Syst. Res. 2011, 81, 1325–1333. [Google Scholar] [CrossRef]
- Tonelli-Neto, M.S.; Decanini, J.G.M.S.; Lotufo, A.D.P.; Minussi, C.R. Fuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders. Int. J. Electr. Power Energy Syst. 2017, 11, 1557–1565. [Google Scholar] [CrossRef] [Green Version]
- Moravej, Z.; Mortazavi, S.H.; Shahrtash, S.M. DT-CWT based event feature extraction for high impedance faults detection in distribution system. Int. Trans. Electr. Energy Syst. 2015, 25, 3288–3303. [Google Scholar] [CrossRef]
- Wang, S.; Dehghanian, P. On the Use of Artificial Intelligence for High Impedance Fault Detection and Electrical Safety. IEEE Trans. Ind. Appl. 2020, 56, 7208–7216. [Google Scholar] [CrossRef]
- Veerasamy, V.; Wahab, N.I.A.; Ramachandran, R.; Thirumeni, M.; Subramanian, C.; Othman, M.L.; Hizam, H. High-impedance fault detection in medium-voltage distribution network using computational intelligence-based classifiers. Neural Comput. Appl. 2019, 31, 9127–9143. [Google Scholar] [CrossRef]
- Sheng, Y.; Rovnyak, S.M. Decision tree-based methodology for high impedance fault detection. IEEE Trans. Power Deliv. 2004, 19, 533–536. [Google Scholar] [CrossRef]
- Veerasamy, V.; Wahab, N.I.A.; Othman, M.L.; Padmanaban, S.; Sekar, K.; Ramachandran, R.; Hizam, H.; Vinayagam, A.; Islam, M.Z. LSTM Recurrent Neural Network Classifier for High Impedance Fault Detection in Solar PV Integrated Power System. IEEE Access 2021, 9, 32672–32687. [Google Scholar] [CrossRef]
- L’Heureux, A.; Grolinger, K.; Elyamany, H.F.; Capretz, M.A.M. Machine Learning With Big Data: Challenges and Approaches. IEEE Access 2017, 5, 7776–7797. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Ghosh, A.; Grolinger, K. Edge-Cloud Computing for IoT Data Analytics: Embedding Intelligence in the Edge with Deep Learning. IEEE Trans. Ind. Inform. 2020. [Google Scholar] [CrossRef]
- Fan, C.; Xiao, F.; Zhao, Y.; Wang, J. Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data. Appl. Energy 2018, 211, 1123–1135. [Google Scholar] [CrossRef]
- Araya, D.B.; Grolinger, K.; ElYamany, H.F.; Capretz, M.A.; Bitsuamlak, G. An ensemble learning framework for anomaly detection in building energy consumption. Energy Build. 2017, 144, 191–206. [Google Scholar] [CrossRef]
- Li, S.; He, H.; Li, J. Big data driven lithium-ion battery modeling method based on SDAE-ELM algorithm and data pre-processing technology. Appl. Energy 2019, 242, 1259–1273. [Google Scholar] [CrossRef]
- Masci, J.; Meier, U.; Cireşan, D.; Schmidhuber, J. Stacked convolutional auto-encoders for hierarchical feature extraction. In Proceedings of the International Conference on Artificial Neural Networks, Espoo, Finland, 14–17 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 52–59. [Google Scholar]
- Hossain, M.S.; Al-Hammadi, M.; Muhammad, G. Automatic Fruit Classification Using Deep Learning for Industrial Applications. IEEE Trans. Ind. Inform. 2019, 15, 1027–1034. [Google Scholar] [CrossRef]
- Ince, T.; Kiranyaz, S.; Eren, L.; Askar, M.; Gabbouj, M. Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks. IEEE Trans. Ind. Electron. 2016, 63, 7067–7075. [Google Scholar] [CrossRef]
- Wang, K.; Qi, X.; Liu, H. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network. Appl. Energy 2019, 251, 113315. [Google Scholar] [CrossRef]
- Gholamiangonabadi, D.; Kiselov, N.; Grolinger, K. Deep Neural Networks for Human Activity Recognition With Wearable Sensors: Leave-One-Subject-Out Cross-Validation for Model Selection. IEEE Access 2020, 8, 133982–133994. [Google Scholar] [CrossRef]
- Chi, C.Y.; Feng, C.C.; Chen, C.H.; Chen, C.Y. Blind Equalization and System Identification: Batch Processing Algorithms, Performance and Applications; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Kersting, W.H. Radial distribution test feeders. IEEE Trans. Power Syst. 1991, 6, 975–985. [Google Scholar] [CrossRef]
- Soheili, A.; Sadeh, J.; Bakhshi, R. Modified FFT based high impedance fault detection technique considering distribution non-linear loads: Simulation and experimental data analysis. Int. J. Electr. Power Energy Syst. 2018, 94, 124–140. [Google Scholar] [CrossRef]
- Kavi, M.; Mishra, Y.; Vilathgamuwa, M.D. High-impedance fault detection and classification in power system distribution networks using morphological fault detector algorithm. IET Gener. Transm. Distrib. 2018, 12, 3699–3710. [Google Scholar] [CrossRef]
- Ghaderi, A.; Mohammadpour, H.A.; Ginn, H.L.; Shin, Y. High-Impedance Fault Detection in the Distribution Network Using the Time-Frequency-Based Algorithm. IEEE Trans. Power Deliv. 2015, 30, 1260–1268. [Google Scholar] [CrossRef]
Surfaces | R1 () | R2 () | V1 (V) | V2 (V) |
---|---|---|---|---|
Wet Sand | 138 ± 10% | 138 ± 10% | 900 ± 150 | 750 ± 150 |
Tree Branch | 125 ± 20% | 125 ± 20% | 1000 ± 100 | 500 ± 50 |
Dry Sod | 98 ± 10% | 98 ± 10% | 1175 ± 175 | 1000 ± 175 |
Dry Grass | 70 ± 10% | 70 ± 10% | 1400 ± 200 | 1200 ± 200 |
Wet Sod | 43 ± 10% | 43 ± 10% | 1550 ± 250 | 1300 ± 250 |
Wet Grass | 33 ± 10% | 33 ± 10% | 1750 ± 350 | 1400 ± 350 |
Rein. Concrete | 23 ± 10% | 23 ± 10% | 2000 ± 500 | 1500 ± 500 |
Model | Acc | Saf | Sen | Sec | Dep |
---|---|---|---|---|---|
Proposed CAE-HIFD | 100 | 100 | 100 | 100 | 100 |
CAE with CC, K | 51.19 | 100 | 51.10 | 0.37 | 100 |
CAE with K, Diff | 48.29 | 4.76 | 50.10 | 0.40 | 92.67 |
CAE with CC, Diff | 96.38 | 100 | 93.31 | 92.70 | 100 |
CAE with CC | 51.10 | 100 | 50.64 | 1.84 | 100 |
CAE with Diff | 48.9 | 37.93 | 49.51 | 4.04 | 93.43 |
CAE with K | 89.64 | 96.67 | 84.16 | 82.77 | 96.35 |
Model | Acc | Saf | Sen | Sec | Dep |
---|---|---|---|---|---|
Other Approaches-Supervised | |||||
DWT+SVM [6] | 97.97 | 100 | 97.78 | 78.99 | 100 |
DWT+ANN [21] | 97.72 | 100 | 97.55 | 76.47 | 100 |
Variants of our approach-Unsupervised | |||||
Train on non-faults | |||||
GRU-AE | 99.92 | 100 | 96.92 | 99.92 | 100 |
Proposed CAE-HIFD | 100 | 100 | 100 | 100 | 100 |
Train on faults | |||||
GRU-AE | 34.61 | 32.24 | 83.22 | 97.52 | 5.66 |
Proposed CAE-HIFD | 100 | 100 | 100 | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rai, K.; Hojatpanah, F.; Badrkhani Ajaei, F.; Grolinger, K. Deep Learning for High-Impedance Fault Detection: Convolutional Autoencoders. Energies 2021, 14, 3623. https://doi.org/10.3390/en14123623
Rai K, Hojatpanah F, Badrkhani Ajaei F, Grolinger K. Deep Learning for High-Impedance Fault Detection: Convolutional Autoencoders. Energies. 2021; 14(12):3623. https://doi.org/10.3390/en14123623
Chicago/Turabian StyleRai, Khushwant, Farnam Hojatpanah, Firouz Badrkhani Ajaei, and Katarina Grolinger. 2021. "Deep Learning for High-Impedance Fault Detection: Convolutional Autoencoders" Energies 14, no. 12: 3623. https://doi.org/10.3390/en14123623
APA StyleRai, K., Hojatpanah, F., Badrkhani Ajaei, F., & Grolinger, K. (2021). Deep Learning for High-Impedance Fault Detection: Convolutional Autoencoders. Energies, 14(12), 3623. https://doi.org/10.3390/en14123623