Extracellular Polymeric Substances (EPS) as Microalgal Bioproducts: A Review of Factors Affecting EPS Synthesis and Application in Flocculation Processes
Abstract
:1. Introduction
2. Characteristics of Extracellular Polymeric Substances
3. Effect of Culture Conditions on the EPS Synthesis Process
3.1. Effect of Light
3.2. Effect of Temperature
3.3. Effect of Growth Phase
3.4. Cultivation Systems
4. Optimization of the Growth Medium for Production of Extracellular Polymeric Substances
4.1. Nitrogen
4.2. Phosphorus
4.3. Carbon
4.4. Wastewater
4.5. Metals
4.6. Effect of pH
5. Flocculation
5.1. Extracellular Polymeric Substances in Flocculation
5.2. Mechanism of EPS-Dependent Flocculation
5.2.1. Double Layer Compression (DLVO Theory)
5.2.2. Charge Neutralization
5.2.3. Bridging
5.3. Bioflocculation
5.4. Autoflocculation
6. Applications of Extracellular Polymeric Substances in Biomass Harvesting and Heavy Metal Removal
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Magierek, E.; Krzemińska, I. Effect of stress conditions on improvement of lipid and carbohydrate accumulation under photoautotrophic cultivation of Chlorophyta. Phycologia 2018, 57, 601–618. [Google Scholar] [CrossRef]
- Delattre, C.; Pierre, G.; Laroche, C.; Michaud, P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol. Adv. 2016, 34, 1159–1179. [Google Scholar] [CrossRef] [PubMed]
- Naveed, S.; Li, C.; Lu, X.; Chen, S.; Yin, B.; Zhang, C.; Ge, Y. Microalgal extracellular polymeric substances and their interactions with metal(loid)s: A review. Crit. Rev. Environ. Sci. Technol. 2019, 1769–1802. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, J.; Zeng, G.; Gu, Y.; Chen, Y.; Hu, Y.; Tang, B.; Zhou, J.; Yang, Y.; Shi, L. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview. Chemosphere 2017, 180, 396–411. [Google Scholar] [CrossRef] [PubMed]
- Casillo, A.; Lanzetta, R.; Parrilli, M.; Corsaro, M.M. Exopolysaccharides from marine and marine thermophilic bacteria: Stuctures, properties, ecological roles and application. Mar. Drugs 2018, 16, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, R.; Zheng, Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol. Adv. 2016, 34, 1225–1244. [Google Scholar] [CrossRef] [PubMed]
- Paniagua-Michel, J.; Olmos-Soto, J.; Morales-Guerrero, E.R. Algal and microbial exopolysaccharides: New insights as biosurfactants and bioemulsifiers. Adv. Food Nutr. Res. 2014, 73, 221–257. [Google Scholar]
- Gaignard, C.; Laroche, C.; Pierre, G.; Dubessay, P.; Delattre, C.; Gardarin, C.; Gourvil, P.; Probert, I.; Dubuffet, A.; Michaud, P. Screening of marine microalgae: Investigation of new exopolysaccharide producers. Algal Res. 2019, 44, 101711. [Google Scholar] [CrossRef]
- Li, Y.; Xin, M.; Fan, S.; Ma, J.; Liu, K.; Yu, F. Variation in extracellular polymeric substances from Enterobacter sp. and their Pb2+ adsorption behaviors. ACS Omega 2021, 6, 9617–9628. [Google Scholar]
- Pan, M.; Zhu, L.; Chen, L.; Qiu, Y.; Wang, J. Detection techniques for extracellular polymeric substances in biofilms: A review. BioResources 2016, 11, 8092–8115. [Google Scholar]
- Wang, Q.; Pang, W.; Mao, Y.; Ge, S.; Yu, H.; Dai, C.; Zhao, M. Changes of exteacellular polymeric substancje (EPS) during Microcystis aeruginosa blooms at different levels of nutrients in a eutrophic microcosmic simulation device. Pol. J. Environ. Stud. 2020, 29, 349–360. [Google Scholar] [CrossRef]
- Pierre, G.; Delattre, C.; Dubessay, P.; Jubeau, S.; Vialleix, C.; Cadoret, J.P.; Probert, I.; Michaud, P. What is in store for EPS microalgae in the next decade? Molecules 2019, 24, 4296. [Google Scholar] [CrossRef] [Green Version]
- Rossi, F.; de Philippis, R. Exocellular Polysaccharides in Microalgae and Cyanobacteria: Chemical Features, Role and Enzymes and Genes Involved in Their Biosynthesis. In The Physiology of Microalgae; Borowitzka, M., Beardall, J., Raven, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 6, pp. 565–590. [Google Scholar]
- Halaj, M.; Paulovičová, E.; Paulovičová, L.; Jantová, S.; Cepák, V.; Lukavský, J.; Capek, P. Extracellular biopolymers produced by Dictyosphaerium family—Chemical and immunomodulative properties. Int. J. Biol. Macromol. 2019, 121, 1254–1263. [Google Scholar] [CrossRef]
- Villarcorte, L.O.; Ekowai, Y.; Neu, T.R.; Kleijn, J.M.; Winters, H.; Amy, G.; Schippers, J.C.; Kennedy, M.D. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae. Water Res. 2015, 73, 216–230. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A.; Wan, C.; Guo, S.-L.; Zhao, X.-Q.; Huang, Z.-Y.; Yang, Y.-L.; Chang, J.-S.; Bai, F.-W. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7. J. Biosci. Bioeng. 2014, 118, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.-L.; Zhao, X.-Q.; Wan, C.; Huang, Z.-Y.; Yang, Y.-L.; Alam, M.A.; Ho, S.-H.; Bai, F.-W.; Chang, J.-S. Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest. Bioresour. Technol. 2013, 145, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Jha, B. Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresour. Technol. 2009, 100, 3382–3386. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, J.D.; Moers, A.; Griekspoor, Y.; van den Broek, L.A.M.; Springer, J.; Sijtsma, L.; Sipkema, D.; Wijffels, R.H.; Barbosa, M.J. Effect of removal of bacteria on the biomass and extracellular carbohydrate productivity of Botryococcus braunii. J. Appl. Phycol. 2019, 31, 3453–3463. [Google Scholar] [CrossRef] [Green Version]
- García-Cubero, R.; Cabanelas, I.T.D.; Sijtsma, L.; Kleinegris, D.M.M.; Barbosa, M.J. Production of exopolysaccharide by Botryococcus braunii CCALA 778 under laboratory simulated Mediterranean climate conditions. Algal Res. 2018, 29, 330–336. [Google Scholar] [CrossRef]
- Barclay, W.R.; Lewin, R.A. Microalgal polysaccharide production for the conditioning of agricultural soils. Plant Soil 1985, 88, 159–169. [Google Scholar] [CrossRef]
- Hu, C.; Liu, Y.; Paulsen, B.S.; Petersen, D.; Klavenes, D. Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of fine sand grain. Carbohydr. Polym. 2003, 54, 33–42. [Google Scholar] [CrossRef]
- Halaj, M.; Paulovičová, E.; Paulovičová, L.; Jantová, S.; Cepák, V.; Lukavský, J.; Capek, P. Biopolymer of Dictyosphaerium chlorelloides—Chemical characterization and biological effects. Int. J. Biol. Macromol. 2018, 113, 1248–1257. [Google Scholar] [CrossRef] [PubMed]
- Goo, B.G.; Baek, G.; Choi, D.J.; Park, Y.I.; Synytsya, A.; Bleha, R.; Seong, D.H.; Lee, C.-G.; Park, J.K. Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Bioresour. Technol. 2013, 129, 343–350. [Google Scholar] [PubMed]
- Trabelsi, L.; Chaieb, O.; Mnari, A.; Abid-Essafi, S.; Aleya, L. Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. BMC Complement. Altern. Med. 2016, 16, 210. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, C.; Liu, H.; Su, J.; Lan, C.Q.; Zhong, M.; Hu, X. Production, isolation and bioactive estimation of extracellular polysaccharides of green microalga Neochloris oleoabundans. Algal Res. 2020, 48, 101883. [Google Scholar] [CrossRef]
- Lv, J.; Guo, B.; Feng, J.; Liu, Q.; Nan, F.; Liu, X.; Xie, S. Integration of wastewater treatment and flocculation for harvesting biomass for lipid production by a newly isolated self-flocculating microalga Scenedesmus rubescens SX. J. Clean. Prod. 2019, 240, 118211. [Google Scholar] [CrossRef]
- Badireddy, A.R.; Chellam, S.; Gassman, P.L.; Engelhard, M.H.; Lea, A.S.; Rosso, K.M. Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. Water Res. 2010, 44, 4505–4516. [Google Scholar] [CrossRef]
- Pignolet, O.; Jubeau, S.; Vaca-Garcia, C.; Michaud, P. Highly valuable microalgae: Biochemical and topological aspects. J. Ind. Microbiol. Biotechnol. 2013, 40, 781–796. [Google Scholar] [CrossRef] [Green Version]
- Cybulska, J.; Halaj, M.; Cepák, V.; Lukavský, J.; Capek, P. Nanostructure features of microalgae biopolymer. Starch/Stärke 2016, 68, 629–636. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Nguyen, T.D.P.; Vo, C.T.; Nguyen-Sy, T.; Tran, T.N.T.; Le, T.V.A.; Chiu, C.-Y.; Sankaran, R.; Show, P.L. Utilization of microalgae for self-regulation of extracellular polymeric substance production. Biochem. Eng. J. 2020, 159, 107616. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, C.; Zhao, L.; Zhang, Y.; Yang, J.; Song, L.; Yang, S. Bioflocculant produced by Chlamydomonas reinhardtii. J. Appl. Phycol. 2012, 24, 1245–1251. [Google Scholar] [CrossRef]
- Liu, G.; Miao, X. Switching cultivation for enhancing biomass and lipid production with extracellular polymeric substance as co-products in Heynigia riparia SX01. Bioresour. Technol. 2017, 227, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, B.S.; Aslaksen, T.; Freire-Nordi, C.S.; Vieira, A.A. Extracellular polysaccharides from Ankistrodesmus densus (Chlorophyceae). J. Phycol. 1998, 34, 638–641. [Google Scholar] [CrossRef]
- Kumar, D.; Kvíderová, J.; Kaštánek, P.; Lukavský, J. The green alga Dictyosphaerium chlorelloides biomass and polysaccharides production determined using cultivation in crossed gradients of temperature and light. Eng. Life Sci. 2017, 17, 1030–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzemińska, I.; Nosalewicz, A.; Reszczyńska, E.; Pawlik-Skowrońska, B. Enhanced light-induced biosynthesis of fatty acids suitable for biodiesel production by the yellow-green alga Eustigmatos magnus. Energies 2020, 13, 6098. [Google Scholar] [CrossRef]
- Li, W.; Xu, X.; Fujibayashi, M.; Niu, Q.; Tanaka, N.; Nishimura, O. Response of microalgae to elevated CO2 and temperature: Impact of climate change on freshwater ecosystems. Environ. Sci. Pollut. Res. Int. 2016, 23, 19847–19860. [Google Scholar] [CrossRef] [PubMed]
- Liqin, S.; Wang, C.; Lei, S. Effects of light regime on extracellular polysaccharide production by Porphyridium cruentum cultured in flat plate photobioreactors. In Proceedings of the 2nd International Conference on Bioinformatics and Biomedical Engineering, Shanghai, China, 16–18 May 2008; pp. 1488–1491. [Google Scholar] [CrossRef]
- You, T.; Barnett, S.M. Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochem. Eng. J. 2004, 19, 251–258. [Google Scholar] [CrossRef]
- Clément-Larosière, B.; Lopes, F.; Gonçalves, A.; Taidi, B.; Benedetti, M.; Minier, M.; Pareau, D. Carbon dioxide biofixation by Chlorella vulgaris at different CO2 concentrations and light intensities. Eng. Life Sci. 2014, 14, 509–519. [Google Scholar] [CrossRef]
- Pereira, S.; Zille, A.; Micheletti, E.; Moradas-Ferreira, P.; De Philippis, R.; Tamagnini, P. Complexity of cyanobacterial exopolysaccharides: Composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol. Rev. 2009, 33, 917–941. [Google Scholar] [CrossRef]
- Gris, B.; Sforza, E.; Morosinotto, T.; Bertucco, A.; La Rocca, N. Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum. J. Appl. Phycol. 2017, 29, 1781–1790. [Google Scholar] [CrossRef]
- Moreno, J.; Vargas, M.A.; Olivares, H.; Rivas, J.; Guerrero, M.G. Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. J. Biotechnol. 1998, 60, 175–182. [Google Scholar] [CrossRef]
- Chentir, I.; Hamdi, M.; Doumandji, A.; HadjSadok, A.; Ouada, H.B.; Nasri, M.; Jridi, M. Enhancement of extracellular polymeric substances (EPS) production in Spirulina (Arthrospira sp.) by two-step cultivation process and partial characterization of their polysaccharidic moiety. Int. J. Biol. Macromol. 2017, 105 Pt 2, 1412–1420. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Xia, L.; Zhou, X.; Zhang, D.; Hu, C. Effects of light intensity on components and topographical structures of extracellular polysaccharides from the cyanobacteria Nostoc sp. J. Microbiol. 2014, 52, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Lupi, F.M.; Fernandes, H.M.L.; Tomé, M.M.; Sá-Correia, I.; Novais, J.M. Influence of nitrogen source and photoperiod on exopolysaccharide synthesis by the microalga Botryococcus braunii UC 58. Enzym. Microb. Technol. 1994, 16, 546–550. [Google Scholar] [CrossRef]
- Coward, T.; Fuentes-Grünewald, C.; Silkina, A.; Oatley-Radcliffe, D.L.; Llewellyn, G.; Lovitt, R.W. Utilising light-emitting diodes of specific narrow wavelengths for the optimization and co-production of multiple high-value compounds in Porphyridium purpureum. Bioresour. Technol. 2016, 221, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Medina-Cabrera, E.V.; Rühmann, B.; Schmid, J.; Sieber, V. Optimization of growth and EPS production in two Porphyridum strains. Bioresour. Technol. Rep. 2020, 11, 100486. [Google Scholar] [CrossRef]
- Dayanada, C.; Sarada, R.; Usharani, M.; shamala, T.; Ravishankar, G. Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenergy 2007, 31, 87–93. [Google Scholar] [CrossRef]
- Córdoba-Castro, N.M.; Montenegro-Jaramillo, A.M.; Pireto, R.E.; González-Mariño, G.E. Analysis of the effect of the interactionsamong three processing variables for the production of exopolysaccharides in the microalgae Scenedesmus obliquus (UTEX 393). Vitae Revista de la Facultad de Quimica Farmaceutica 2012, 19, 60–69. [Google Scholar]
- Shen, Y.; Fan, Z.; Chen, C.; Xu, X. An auto-flocculation strategy for Chlorella vulgaris. Biotechnol. Lett. 2015, 37, 75–80. [Google Scholar] [CrossRef]
- Mezhoud, N.; Zili, F.; Bouzidi, N.; Helaoui, F.; Ammar, J.; Ouada, H.B. The effects of temperature and light intensity on growth, reproduction and EPS synthesis of a thermophilic strain related to the genus Graesiella. Bioprocess Biosyst. Eng. 2014, 37, 2271–2280. [Google Scholar] [CrossRef] [PubMed]
- Lupi, F.M.; Fernandes, H.M.L.; Sá-Correia, I.; Novais, J.M. Temperature profiles of cellular growth and exopolysaccharide synthesis by Botryococus braunii Kütz. UC 58. J. Appl. Phycol. 1991, 3, 35–42. [Google Scholar] [CrossRef]
- Raungsomboon, S.; Chidthaisong, A.; Bunnag, B.; Inthorn, D.; Harvey, N.W. Production, composition and Pb2+ adsorption characteristics of capsular polysaccharides extracted from a cyanobacterium Gloeocapsa gelatinosa. Water Res. 2006, 4, 3759–3766. [Google Scholar] [CrossRef] [PubMed]
- Penna, A.; Berluti, S.; Penna, N.; Magnani, M. Influence of nutrient ratios on the in vitro extracellular polysaccharide production by marine diatoms from the Adriatic Sea. J. Plankton Res. 1999, 21, 1681–1690. [Google Scholar] [CrossRef] [Green Version]
- Villay, A.; Laroche, C.; Roriz, D.; El Alaoui, H.; Delbac, F.; Michaud, P. Optimisation of culture parameters for exopolysaccharides production by the microalga Rhodella violacea. Bioresour. Technol. 2013, 146, 732–735. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ji, L.; Chen, C.; Zhao, S.; Sun, M.; Gao, Z.; Wu, H.; Fan, J. Efficient accumulation of high-value bioactive substances by carbon to nitrogen ratio regulation in marine microalgae Porphyridium purpureum. Bioresour. Technol. 2020, 309, 123362. [Google Scholar] [CrossRef]
- Soanen, N.; Da Silva, E.; Gardarin, C.; Michaud, P.; Laroche, C. Improvement of exopolysaccharide production by Porphyridium marinum. Bioresour. Technol. 2016, 213, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Angelis, S.; Novak, A.C.; Sydney, E.B.; Soccol, V.T.; Carvalho, J.C.; Pandey, A.; Noseda, M.D.; Tholozan, J.L.; Lorquin, J.; Soccol, C.R. Co-culture of microalgae, cyanobacteria, and macromycetes for exopolysaccharides production: Process preliminary optimization and partial characterization. Appl. Biochem. Biotechnol. 2012, 167, 1092–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, W.H. Bacterial utilization of algal extracellular products. 3. The specificity of algal-bacterial interaction. Limnol. Oceanogr. 1983, 28, 1131–1143. [Google Scholar] [CrossRef]
- Fernandes, H.L.; Tomé, M.M.; Lupi, F.M.; Fialho, A.M.; Sá-Correia, I.; Novais, J.M. Biosynthesis of high concentrations of an exopolysaccharide during the cultivation of the microalga Botryococcus braunii. Biotechnol. Lett. 1989, 11, 433–436. [Google Scholar] [CrossRef]
- Bafana, A. Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii. Carbohydr. Polym. 2013, 95, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Arad, S.; Friedman, O.; Rotem, A. Effect of nitrogen on polysaccharide production in a Porphyridium sp. Appl. Environ. Microbiol. 1988, 54, 2411–2414. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, M.; Takagi, A.; Ota, S.; Kawano, S.; Sasaki, S.; Asayama, M. Coproduction of lipids and extracellular polysaccharides from the novelgreen alga Parachlorella sp. BX1.5 depending on cultivation conditions. Biotechnol. Rep. 2020, 25, e00392. [Google Scholar]
- Bayona, K.C.D.; Garcés, L.A. Effect of different media on exopolysaccharide and biomass production by the green microalga Botryococcus braunii. J. Appl. Phycol. 2014, 26, 2087–2095. [Google Scholar] [CrossRef]
- Wang, M.; Kuo-Dahab, W.C.; Dolan, S.; Park, C. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment. Bioresour. Technol. 2014, 154, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Razaghi, A.; Godhe, A.; Albers, E. Effect of nitrogen on growth and carbohydrate formation in Porphyridium cruteum. Cent. Eur. J. Biol. 2014, 9, 156–162. [Google Scholar]
- Nur, M.M.A.; Swaminathan, M.K.; Boelen, P.; Buma, A.G.J. Sulfated exopolysaccharide production and nutrient removal by the marine diatom Phaeodactylum tricornutum growing on palm oil mill effluent. J. Appl. Phycol. 2019, 31, 2335–2348. [Google Scholar] [CrossRef] [Green Version]
- Magaletti, E.; Urbani, R.; Sist, P.; Ferrari, C.R.; Cicero, A.M. Abundance and chemical characterization of extracellular carbohydrates released by the marine diatom Cylindrotheca fusiformis under N- and P-limitation. Eur. J. Phycol. 2004, 39, 133–142. [Google Scholar] [CrossRef]
- Deb, D.; Mallick, N.; Bhadoria, P.B.S. Analytical studies on carbohydrates of two cyanobacterial species for enhanced bioethanol production along with poly-β-hydroxybutyrate, C-phycocyanin, sodium copper chlorophyllin, and exopolysaccharides as co-products. J. Clean. Prod. 2019, 221, 695–709. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Chen, F. Production and characterization of exopolysaccharides from Chlorella zofingiensis and Chlorella vulgaris with anti-colorectal cancer activity. Int. J. Biol. Macromol. 2019, 134, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Cheirsilp, B.; Mandik, Y.I.; Prasertsan, P. Evaluation of optimal conditions for cultivation of marine Chlorella sp. as potential sources of lipids, exopolymeric substances and pigments. Aquac. Int. 2016, 24, 313–326. [Google Scholar] [CrossRef]
- Wu, N.; Li, Y.; Lan, C.Q. Production and rheological studies of microalgal extracellular biopolymer from lactose using the green alga Neochloris oleoabundans. J. Polym. Environ. 2011, 19, 935–942. [Google Scholar] [CrossRef]
- Ding, Z.; Jia, S.; Han, P.; Yuan, N.; Tan, N. Effects of carbon sources on growth and extracellular polysaccharide production of Nostoc flagelliforme under heterotrophic high-cell-density fed-batch cultures. J. Appl. Phycol. 2013, 25, 1017–1021. [Google Scholar] [CrossRef]
- Přibyl, P.; Cepák, V. Screening for heterotrophy in microalgae of various taxonomic positions and potential of mixotrophy for production of high-value compounds. J. Appl. Phycol. 2019, 31, 1555–1564. [Google Scholar] [CrossRef]
- Choi, W.J.; Chae, A.N.; Song, K.G.; Park, J.; Lee, B.C. Effect of trophic conditions on microalga growth, nutrient removal, algal organic matter, and energy storage products in Scenedesmus (Acutodesmus) obliquus KGE-17 cultivation. Bioprocess Biosyst. Eng. 2019, 42, 1225–1234. [Google Scholar] [CrossRef]
- Vo, H.N.P.; Ngo, H.H.; Guo, W.; Liu, Y.; Chang, S.W.; Nguyen, D.D.; Zhang, X.; Liang, H.; Xue, S. Selective carbon sources and salinities enhance enzymes and extracellular polymeric substances extrusion of Chlorella sp. for potential co-metabolism. Bioresour. Technol. 2020, 303, 122877. [Google Scholar] [CrossRef]
- Fabergas, J.; Garcia, D.; Morales, E.D.; Lamela, T.; Otelo, A. Mixotrophic production of phycoerythrin and exopolysaccharide by the microalga Porphyridium cruentum. Cryptogam. Algol. 1999, 20, 89–94. [Google Scholar] [CrossRef]
- Staats, N.; Stal, L.J.; Mur, L.R. Exopolysaccharide production by the epipelic diatom Cylindrotheca closterium: Effects of nutrient conditions. J. Exp. Mar. Biol. Ecol. 2000, 249, 13–27. [Google Scholar] [CrossRef]
- Ge, S.; Champagne, P. Nutrient removal, microalgal biomass growth, harvesting and lipid yield in response to centrate wastewater loadings. Water Res. 2016, 88, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Park, C. Investigation of anaerobic digestion of Chlorella sp. and Micractinium sp. grown in high-nitrogen wastewater and their co-digestion with waste activated sludge. Biomass Bioenergy 2015, 80, 30–37. [Google Scholar] [CrossRef]
- Ozturk, S.; Aslim, B.; Suludere, Z.; Tan, S. Metal removal of cyanobacterial exopolysaccharides by uronic acid content and monosaccharide composition. Carbohydr. Polym. 2014, 101, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, F.; Liu, N.; Ge, F.; Xiao, H.; Yang, Y. Role of extracellular polymeric substances from Chlorella vulgaris in the removal of ammonium and orthophosphate under the stress of cadmium. Bioresour. Technol. 2015, 190, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Mona, S.; Kaushik, A. Chromium and cobalt sequestration using exopolysaccharides produced by freshwater cyanobacterium Nostoc linckia. Ecol. Eng. 2015, 82, 121–125. [Google Scholar] [CrossRef]
- De Philippis, R.; Sili, C.; Tassinato, G.; Vincenzini, M.; Materassi, R. Effects of growth conditions on exopolysaccharide production by Cyanospira capsulate. Bioresour. Technol. 1991, 38, 101–104. [Google Scholar] [CrossRef]
- Aljuboori, A.H.R.; Uemura, Y.; Thanh, N.T. Flocculation and mechanism of self-flocculating lipid producer microalga Scenedesmus quadricauda for biomass harvesting. Biomass Bioenergy 2016, 93, 38–42. [Google Scholar] [CrossRef]
- Sharma, B.R.; Dhuldhoya, N.C.; Merchant, U.C. Flocculants—An ecofriendly approach. J. Polym. Environ. 2006, 14, 195–202. [Google Scholar] [CrossRef]
- Salim, S.; Bosma, R.; Vermuë, M.H.; Wijffels, R.H. Harvesting of microalgae by bio-flocculation. J. Appl. Phycol. 2011, 23, 849–855. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.B.; Bai, R.B.; Hu, X.M.; Luo, Q. Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Appl. Microbiol. Biotechnol. 2003, 60, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Suresha, P.R.; Badiger, M.V. Flocculation of kaolin from aqueous suspension using low dosages of acrylamide-based cationic flocculants. J. Appl. Polym. Sci. 2018, 136, 47286. [Google Scholar] [CrossRef]
- Dobrowolski, R.; Szcześ, A.; Czemierska, M.; Jarosz-Wikołazka, A. Studies of cadmium(II), lead(II), nickel(II), cobalt(II) and chromium(VI) sorption on extracellular polymeric substances produced by Rhodococcus opacus and Rhodococcus rhodochrous. Bioresour. Technol. 2017, 225, 113–120. [Google Scholar] [CrossRef]
- More, T.T.; Yadav, J.S.S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Extracellular polymeric substances of bacteria and their potential environmental applications. J. Environ. Manag. 2014, 144, 1–25. [Google Scholar] [CrossRef]
- Tepe, Y.; Çebi, A. Acrylamide in environmental water: A review on sources, exposure, and public health risks. Expo Health 2019, 11, 3–12. [Google Scholar] [CrossRef]
- Vandamme, D.; Foubert, I.; Muylaert, K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 2013, 31, 233–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyatt, N.B.; Gloe, L.M.; Brady, P.V.; Hewson, J.C.; Grillet, A.M.; Hankins, M.G.; Pohl, P.I. Critical conditions for ferric chloride-induced flocculation of freshwater algae. Biotechnol. Bioeng. 2012, 109, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Hong, C.; Zheng, B.; Lu, F.; Jiang, D.; Qin, W. Bioflocculants’ production in a biomass-degrading bacterium using untreated corn stover as carbon source and use of bioflocculants for microalgae harvest. Biotechnol. Biofuels 2017, 10, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Zhao, C.; Jiang, J.; Lu, Q.; Hao, Y.; Wang, L.; Liu, C. Bioflocculant production from untreated corn stover using Cellulosimicrobium cellulans L804 isolate and its application to harvesting microalgae. Biotechnol. Biofuels 2015, 8, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, H.; Fang, H.; Huang, L.; He, G.; Reible, D. A review on sediment bioflocculation: Dynamics, influencing factors and modeling. Sci. Total Environ. 2018, 642, 1184–1200. [Google Scholar] [CrossRef]
- Salehizadeh, H.; Shojaosadati, S.A. Extracellular biopolymeric flocculants: Recent trends and biotechnological importance. Biotechnol. Adv. 2001, 19, 371–385. [Google Scholar] [CrossRef]
- Tang, W.; Song, L.; Li, D.; Qiao, J.; Zhao, T.; Zhao, H. Production, characterization, and flocculation mechanism of cation independent, pH tolerant, and thermally stable bioflocculant from Enterobacter sp. ETH-2. PLoS ONE 2014, 9, e114591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndikumbwimana, T.; Zeng, X.; Murwanashyaka, T.; Manirafasha, E.; He, N.; Shao, W.; Lu, Y. Harvesting of freshwater microalgae with microbial bioflocculant: A pilot-scale study. Biotechnol. Biofuels 2016, 9, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Tao, Y.; Wua, J.; Zhu, Y.; Gao, B.; Tang, Y.; Li, A.; Zhang, C.; Zhang, Y. Effective flocculation of target microalgae with self-flocculating microalgae induced by pH decrease. Bioresour. Technol. 2014, 167, 367–375. [Google Scholar] [CrossRef]
- Czemierska, M.; Szcześ, A.; Hołysz, L.; Wiater, A.; Jarosz-Wilkołazka, A. Characterisation of exopolymer R-202 isolated from Rhodococcus rhodochrous and its flocculating properties. Eur. Polym. J. 2017, 88, 21–33. [Google Scholar] [CrossRef]
- Surendhiran, D.; Vijay, M. Influence of bioflocculation parameters on harvesting Chlorella salina and its optimization using response surface methodology. J. Environ. Chem. Eng. 2013, 1, 1051–1056. [Google Scholar] [CrossRef]
- Lv, J.; Guo, J.; Feng, J.; Liu, Q.; Xie, S. A comparative study on flocculating ability and growth potential of two microalgae in simulated secondary effluent. Bioresour. Technol. 2016, 205, 111–117. [Google Scholar] [CrossRef]
- Augustine, A.; Tanwar, A.; Tremblay, R.; Kumar, S. Flocculation processes optimization for reuse of culture medium without pH neutralization. Algal Res. 2019, 39, 101437. [Google Scholar] [CrossRef]
- Brady, P.V.; Pohl, P.I.; Hewson, J.C. A coordination chemistry model of algal autoflocculation. Algal Res. 2014, 5, 226–230. [Google Scholar] [CrossRef]
- Salim, S.; Kosterink, N.R.; Tchetkoua Wacka, N.D.; Vermuë, M.H.; Wijffels, R.H. Mechanism behind autoflocculation of unicellular green microalgae Ettlia texensis. J. Biotechnol. 2014, 174, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Sobeck, D.C.; Higgins, M.J. Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res. 2002, 36, 527–528. [Google Scholar] [CrossRef]
- Gregory, J.; Duan, J. Hydrolyzing metal salts as coagulants. Pure Appl. Chem. 2001, 73, 2017–2026. [Google Scholar] [CrossRef] [Green Version]
- Bolto, B.; Gregory, J. Organic polyelectrolytes in water treatment. Water Res. 2007, 41, 2301–2324. [Google Scholar] [CrossRef] [PubMed]
- Higgins, M.J.; Tom, L.A.; Sobeck, D.C. Case study I: Application of the divalent cation bridging theory to improve biofloc properties and industrial activated sludge system performance-direct addition of divalent cations. Water Environ. Res. 2004, 76, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A.; Vandamme, D.; Chun, W.; Zhao, X.; Foubert, I.; Wang, Z.; Muylaert, K.; Yuan, Z. Bioflocculation as an innovative harvesting strategy for microalgae. Rev. Environ. Sci. Biotechnol. 2016, 15, 573–583. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Gnansounou, E.; Sukumaran, R.K.; Sindhu, R.; Pandey, A.; Sahoo, D. Bioflocculation: An alternative strategy for harvesting of microalgae—An overview. Bioresour. Technol. 2017, 242, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, A.; de la Noüe, J. Harvesting of Scenedesmus obliquus in wastewaters: Auto- or bioflocculation? Biotechnol. Bioeng. 1987, 30, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.-A.T.; Seymour, J.R.; Siboni, N.; Evenhuis, C.R.; Tamburic, B. Photosynthetic carbon uptake induces autoflocculation of the marine microalga Nannochloropsis oculata. Algal Res. 2017, 26, 302–311. [Google Scholar] [CrossRef]
- Chen, Z.; Shao, S.; He, Y.; Luo, Q.; Zheng, M.; Zheng, M.; Chen, B.; Wang, M. Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1. Bioresour. Technol. 2020, 302, 122806. [Google Scholar] [CrossRef] [PubMed]
- Ummalyma, S.B.; Mathew, A.K.; Pandey, A.; Sukumaran, R.K. Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation. Bioresour. Technol. 2016, 213, 216–221. [Google Scholar] [CrossRef]
- Salim, S.; Vermuë, M.H.; Wijffels, R.H. Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresour. Technol. 2012, 118, 49–55. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Y.; Liu, L.; Jiang, X.; Zhang, K.; Zheng, T.; Wang, H. First evidence of bioflocculant from Shinella albus with flocculation activity on harvesting of Chlorella vulgaris biomass. Bioresour. Technol. 2016, 218, 807–815. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Y.; Liu, L.; Li, P.; Yan, Y.; Chen, T.; Zheng, T.; Wang, H. Flocculation mechanism of Aspergillus niger on harvesting of Chlorella vulgaris biomass. Algal Res. 2017, 25, 402–412. [Google Scholar] [CrossRef]
- Zhou, W.; Min, M.; Hu, B.; Ma, X.; Liu, Y.; Wang, Q.; Shi, J.; Chen, P.; Ruan, R. Filamentous fungi assisted bio-flocculation: A novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells. Sep. Purif. Technol. 2013, 107, 158–165. [Google Scholar] [CrossRef]
- Shahadat, M.; Teng, T.T.; Rafatullah, M.; Shaikh, A.A.; Sreekrishnan, T.R. Bacterial bioflocculants: A review of recent advances and perspectives. Chem. Eng. J. 2017, 328, 1139–1152. [Google Scholar] [CrossRef]
- Ndikumbwimana, T.; Zheng, X.; Liu, Y.; Chang, J.S.; Lu, Y. Harvesting of microalgae Desmodesmus sp. F51 by bioflocculation with bacterial bioflocculant. Algal Res. 2014, 6, 186–193. [Google Scholar] [CrossRef]
- González-Fernández, C.; Ballesteros, M. Microalgae autoflocculation: An alternative to high-energy consuming harvesting methods. J. Appl. Phycol. 2013, 25, 991–999. [Google Scholar] [CrossRef]
- Molina Grima, E.; Belarbi, E.-H.; Acien Fernandez, F.G.; Robles Medina, A.; Chisti, Y. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol. Adv. 2003, 20, 491–515. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, B.; Wang, D.; Ma, T.; Xia, T.; Yu, D. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS). Water Res. 2016, 88, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Freire-Nordi, C.S.; Vieira, A.A.H.; Nascimento, O.R. The metal binding capacity of Anabaena spiroides extracellular polysaccharide: An EPR study. Process Biochem. 2005, 40, 2215–2224. [Google Scholar] [CrossRef]
- Lombardi, A.T.; Hidalgo, T.M.R.; Vieira, A.A.H. Copper complexing properties of dissolved organic materials exuded by the freshwater microalgae Scenedesmus acuminatus (Chlorophyceae). Chemosphere 2005, 60, 453–459. [Google Scholar] [CrossRef]
- Kaplan, D.; Christiaen, D.; Arad, S. Chelating properties of extracellular polysaccharides from Chlorella spp. Appl. Environ. Microbiol. 1987, 53, 2953–2956. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, A.T.; Vieira, A.A.H. Lead- and copper-complexing extracellular ligands released by Kirchneriella aperta (Chloroccocales, Chlorophyta). Phycologia 1999, 38, 283–288. [Google Scholar] [CrossRef]
- Zheng, S.; Zhoub, Q.; Chen, C.; Yang, F.; Cai, Z.; Li, D.; Geng, Q.; Feng, Y.; Wang, H. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris. Sci. Total Environ. 2019, 660, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, F.; Liu, Y.; Huang, F.; Zhang, C. Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa. Sci. Total Environ. 2020, 704, 135368. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Liu, N.; Lin, D.; Qu, R.; Zhou, Q.; Ge, F. The complexation with proteins in extracellular polymeric substances alleviates the toxicity of Cd (II) to Chlorella vulgaris. Environ. Pollut. 2020, 263, 114102. [Google Scholar] [CrossRef] [PubMed]
Species | fuc | gal | ara | glc | man | xyl | rib | rha | fru | UA | glcA | galA | glcN | Other | Source |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Botryococcus braunic CCALA 778 | 13 | 26 | 2 | 42 | 15 | 2 | 1 | <1 | 2 | 1 | [19] | ||||
Botryococcus brauni CCALA 778 | 31 | 51 | 4 | 3 | 9 | OMe | [20] | ||||||||
Chlamydomonas mexicana | 23.7 | 18.4 | 14.8 | 27.8 | 4.5 | 5 | 2.3 | 3.3 | 12.8 | [21] | |||||
Chlamydomonas sajao | 77.6 | 13.5 | 3.8 | 1. | 7.5 | 2.3 | 12.9 | [21] | |||||||
Desmococcus olivaceus | 28.8 | 13.1 | 27.6 | 5.9 | 12.4 | 7 | trace | trace | [22] | ||||||
Dictiosphaerium chlorelloides | trace | 42 b | 2.4 | 8 b | 13.7 | 4 b | 18.5 | UH 12 | [23] | ||||||
Dictiosphaerium tetrachlorum Ruzicka | 11.6 | 46.6 | 8 | 1 | 7.8 | 2.9 | 12 | 4.8 a | 1.6 a | OMe | [14] | ||||
Dictiosphaerium tetrachlorum Fott | 15.7 | 32.8 b | 1.3 | 8.9 | 2.2 | 18.7 | 2.5 | 12.4 a | 0.8 a | OMe | [14] | ||||
Dictiosphaerium pulchellum | 6.9 | 35 b | 2.2 | 6.4 | 2.9 | 9.8 | 16.6 | 5.2 a | 1.4 a | OMe | [14] | ||||
Dunaliella tertiolecta UTEX LB 999 | 89 | [24] | |||||||||||||
Graeciella sp. | 32 | 16.3 | 12.5 | 12.1 | 11.5 | 10.3 | 2.7 | 2.3 | 23 | [25] | |||||
Neochloris oleoabundans | 18.9 | 4.6 | 40.7 | 19 | 8.7 | 6.9 | 1.2 | [26] |
Species | Light Intensity | EPS Production | References |
---|---|---|---|
Porphyridium curentum | 30 µ Em−2 s−1 | 0.56 ± 0.06 (g L−1) | [39] |
40 µ Em−2 s−1 | 0.66 ± 0.08 (g L−1) | ||
50 µ Em−2 s−1 | 0.79 ± 0.06 (g L−1) | ||
60 µ Em−2 s−1 | 0.82 ± 0.10 (g L−1) | ||
80 µ Em−2 s−1 | 0.95 ± 0.09 (g L−1) | ||
100 µ Em−2 s−1 | 0.77 ± 0.07 (g L−1) | ||
150 µ Em−2 s−1 | 0.31 ± 0.06 (g L−1) | ||
Porphyridium cruentum | 39 µ Em−2 s−1 | 0.18 (g L−1) | [40] |
48 µ Em−2 s−1 | 0.30 (g L−1) | ||
60 µ Em−2 s−1 | 0.55 (g L−1) | ||
70 µ Em−2 s−1 | 0.95 (g L−1) | ||
90 µ Em−2 s−1 | 0.45 (g L−1) | ||
Chlorella vulgaris | 50 μmol m−2 s−1 | 6.79 ± 0.3 (pg CO2 cell−1) | [41] |
120 μmol m−2 s−1 | 5.58 ± 0.27 (pg CO2 cell−1) | ||
180 μmol m−2 s−1 | 4.58 ± 0.32 (pg CO2 cell−1) | ||
Cyanobacterium aponinum | 15 μmol m−2 s−1 | ~84 (mg g DW−1) | [43] |
40 μmol m−2 s−1 | ~83 (mg g DW−1) | ||
70 μmol m−2 s−1 | ~80 (mg g DW−1) | ||
100 μmol m−2 s−1 | ~70 (mg g DW−1) | ||
150 μmol m−2 s−1 | ~60 (mg g DW−1) | ||
300 μmol m−2 s−1 | ~60 (mg g DW−1) | ||
500 μmol m−2 s−1 | ~70 (mg g DW−1) | ||
650 μmol m−2 s−1 | ~63 (mg g DW−1) | ||
Anabaena sp. ATCC 33047 | 115 µ Em−2 s−1 | ~2 (g L−1) | [44] |
185 µ Em−2 s−1 | ~3 (g L−1) | ||
345 µ Em−2 s−1 | ~2.5 (g L−1) | ||
460 µ Em−2 s−1 | ~12.5 (g L−1) | ||
920 µ Em−2 s−1 | ~12 (g L−1) | ||
1840 µ Em−2 s−1 | ~11 (g L−1) | ||
Spirulina sp. | 10 μmol m−2 s−1 | 0.152 (g g−1) | [45] |
65 μmol m−2 s−1 | 0.192 (g g−1) | ||
120 μmol m−2 s−1 | 0.454 (g g−1) |
Species | Temperature (°C) | EPS Production | References |
---|---|---|---|
Graesiella sp. | 40 | 11.7 mg L−1 day−1 | [53] |
Dictyosphaerium chlorelloides | 25.7 | 1075 mg L−1 | [36] |
Botryococcus braunii UC 58 | 25–30 | 4500–5500 mg L−1 | [54] |
Species | Culture Conditions | FE [%] * | Settling Time [min] | Source |
---|---|---|---|---|
Chlorella vulgaris JSC-7 | BBM medium, 28 °C, 11/13 h light/dark cycle, light intensity 25 µmol m−2s−1 | 76.3 | 30 | [16] |
Chlorococcum sp. GD | Simulated secondary effluent, 25 °C, 14/10 h light/dark cycle, light intensity 3000 lux | 84.4 47.7 | 180 30 | [106] |
Scenedesmus obliquus AS-6-1 | DM medium, 28 °C, 14/10 h light/dark cycle, light intensity 60 µmol m−2s−1 | 80–85 | 30 | [17] |
Scenedesmus quadricauda | BG-11 medium, 26 °C, continuous illumination, light intensity 10,000 lux, aeration min−1, initial pH 7.1, ZnCl2, photobioreactor | 86.7 | 30 | [87] |
Neochloris texensis | Freshwater medium, 25 °C, aeration 3 L min−1 with 2% CO2, light intensity 50 µmol m−2 s−1, | 55 | 20 | [120] |
Tetraselmis suecica | Marine medium containing NaCl, 25 °C, aeration 3 L min−1 with 2% CO2, light intensity 50 µmol m−2 s−1, 100 rpm | 72 | 20 | [120] |
Ankistrodesmus falcatus | Freshwater, 25 °C, aeration 3 L min−1 with 2% CO2, 16/8 h light/dark, light intensity 50 µmol m−2 s−1, 100 rpm | 50 | 20 | [120] |
Chlorococcum sp. | MA medium, pH 6.8, 30 °C, 14/10 h light/dark cycle, 3 weeks | 75 | 10 | [119] |
Nannochloropsis oculata | F medium, 20 °C, 12/12 h light/dark cycle, light intensity 500 µmol m−2 s−1, 8 days, aeration with 400 ppm CO2, 110 rpm (flocculating pH 10.4 at the end) | 90 | 10 | [117] |
Scenedesmus rubescens SX | Synthetic wastewater, pH 7.8, 25 °C, 14/10 h light/dark cycle, light intensity 55.5 µmol m−2 s−1, 160 rpm, 8 days | 81–90.9 | 180 | [27] |
Desmodesmus sp. PW1 | Piggery wastewater, 25 °C, 150 rpm, continuous illumination | ~90 | 150 | [118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babiak, W.; Krzemińska, I. Extracellular Polymeric Substances (EPS) as Microalgal Bioproducts: A Review of Factors Affecting EPS Synthesis and Application in Flocculation Processes. Energies 2021, 14, 4007. https://doi.org/10.3390/en14134007
Babiak W, Krzemińska I. Extracellular Polymeric Substances (EPS) as Microalgal Bioproducts: A Review of Factors Affecting EPS Synthesis and Application in Flocculation Processes. Energies. 2021; 14(13):4007. https://doi.org/10.3390/en14134007
Chicago/Turabian StyleBabiak, Wioleta, and Izabela Krzemińska. 2021. "Extracellular Polymeric Substances (EPS) as Microalgal Bioproducts: A Review of Factors Affecting EPS Synthesis and Application in Flocculation Processes" Energies 14, no. 13: 4007. https://doi.org/10.3390/en14134007
APA StyleBabiak, W., & Krzemińska, I. (2021). Extracellular Polymeric Substances (EPS) as Microalgal Bioproducts: A Review of Factors Affecting EPS Synthesis and Application in Flocculation Processes. Energies, 14(13), 4007. https://doi.org/10.3390/en14134007