Macroeconomic Efficiency of Photovoltaic Energy Production in Polish Farms
Abstract
:1. Introduction
- −
- Elimination of the effect of these elements on flows of values, which constitute cash transfers;
- −
- Correction of the amounts of flows of values based on the value of externalities.
2. Materials and Methods
2.1. Indicators in the Evaluation of Investment Economic Efficiency
- Net present value—constitutes the difference between the sum of discounted future cash flows generated by the project and the value of incurred investment outlays. NPV is calculated according to the following formula [75]:
- Internal rate of return—indicates the value of the discount rate, in which the net present value of investment (NPV) is 0 [77]. This means that IRR determines the maximum level of capital acquisition cost, in which the project remains economically efficient. Mathematically, IRR may be calculated using the following formula:
- Payback period—defines the period of time needed to generate sufficient, positive cash flows by the investment project, to cover the initial investment outlays together with all the earlier negative flows. This is a period, in which the project’s accumulated present net value of cash flows, is zero. A project is acceptable if the period of return is shorter than the period of its economic utility or is shorter than the period of return of incurred outlays accepted by the investor [77,78].
2.2. Technical Characteristics of Analysed Variants
- Location of the installations—with 16 locations analysed—in accordance with the administrative division of Poland into 16 provinces. The analyses conducted at the level of provinces result from the different characteristics of farms in various regions of Poland and the diversification of provinces in terms of the operator involved in the distribution of electricity. Depending on the geographical location of the province, the solar radiation density also varies. Therefore, the conducted analyses differentiate the economic efficiency of photovoltaic installations depending on environmental and climatic conditions;
- Farm types—for each location, three farm types most commonly found in Poland, were selected:
- (a)
- Type A—farms specialising in field crops, including, e.g., farms specialising in growing cereals and oil crops;
- (b)
- Type B—dairy cow farms;
- (c)
- Type C—mixed production farms.
2.3. Investment Outlays and Operating Costs of Photovoltaic Installations
- Rated power: 385 W;
- Maximum power: 291 W;
- Module efficiency: 20.7%;
- Temperature coefficient of power: −0.350%/°C;
- Inverter type—5.0 kW, three-phase.
- Costs related to the installation insurance—according to the terms and conditions of the insurance applied by an insurance company operating in Poland, the premium ranges from 0.6 to 0.72% of the installation value [96].
- Costs of repairs and costs related to the elimination of breakdowns—for the first 12 years of the installation operation, such works are performed based on the warranty granted by the firm installing the solar panels. At the expiry of the warranty period, it may be extended for another few years. The cost of servicing is EUR 30/year.
- Costs of solar panel disposal—the cost of solar panel disposal was established based on the current price list of a firm providing such services and amounts to EUR 0.33/kg. This cost includes the cost of transport amounting to EUR 0.55/km [97]. It was assumed in this study that the mean distance, which decommissioned solar panels that need to be transported, is 100 km.
3. Results and Discussion
- Explanatory variables:
- X1—mean farm area in the province, with the range of variation from 7.5 to 55.4 [ha];
- X2—mean stocking per farm in the province, with the range of variation from 0.4 to 12.1 [LU/farm].
- For a type A farm Y ̂= 365∙X_1 R^2 = 0.85;
- For a type B farm Y ̂= 555∙X_2 R^2 = 0.95;
- For a type C farm Y ̂= 583∙X_1 R^2 = 0.94;
- For all the farms regardless of their type:
- Farm size in the case of farms specialising in plant production (type A) and mixed production farms (type C);
- Stocking rate in the case of dairy cattle farms (type B);
- Both the farm size and stocking rate in the case of analysis covering all the farms regardless of their type.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Owusu, P.A.; Asumadu-Sarkodie, S. A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Maśloch, P.; Maśloch, G.; Kuźmiński, Ł.; Wojtaszek, H.; Miciuła, I. Autonomous Energy Regions as a Proposed Choice of Selecting Selected EU Regions—Aspects of Their Creation and Management. Energies 2020, 13, 6444. [Google Scholar] [CrossRef]
- Li, Z.; Yano, A.; Cossu, M.; Yoshioka, H.; Kita, I.; Ibaraki, Y. Electrical Energy Producing Greenhouse Shading System with a Semi-Transparent Photovoltaic Blind Based on Micro-Spherical Solar Cells. Energies 2018, 11, 1681. [Google Scholar] [CrossRef] [Green Version]
- Samadi, S. The Social Costs of Electricity Generation—Categorising Different Types of Costs and Evaluating Their Respective Relevance. Energies 2017, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- Solarin, S.A. An Environmental Impact Assessment of Fossil Fuel Subsidies in Emerging and Developing Economies. Environ. Impact Assess. Rev. 2020, 85, 106443. [Google Scholar] [CrossRef]
- Perera, F. Pollution from Fossil-Fuel Combustion Is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. Int. J. Environ. Res. Public Health 2018, 15, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GUS. Energia 2021. Enegry 2021. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/energia-2021-folder,1,9.html (accessed on 15 July 2021).
- Ślusarz, G.; Gołębiewska, B.; Cierpiał-Wolan, M.; Twaróg, D.; Gołębiewski, J.; Wójcik, S. The Role of Agriculture and Rural Areas in the Development of Autonomous Energy Regions in Poland. Energies 2021, 14, 4033. [Google Scholar] [CrossRef]
- Gulaliyev, M.G.; Mustafayev, E.R.; Mehdiyeva, G.Y. Assessment of Solar Energy Potential and Its Ecological-Economic Efficiency: Azerbaijan Case. Sustainability 2020, 12, 1116. [Google Scholar] [CrossRef] [Green Version]
- Górnowicz, R.; Castro, R. Optimal Design and Economic Analysis of a PV System Operating under Net Metering or Feed-In-Tariff Support Mechanisms: A Case Study in Poland. Sustain. Energy Technol. Assess. 2020, 42, 100863. [Google Scholar] [CrossRef]
- Brodziński, Z.; Brodzińska, K.; Szadziun, M. Photovoltaic Farms—Economic Efficiency of Investments in North-East Poland. Energies 2021, 14, 2087. [Google Scholar] [CrossRef]
- Santos, A.Q.; Ma, Z.; Olsen, C.G.; Jørgensen, B.N. Framework for Microgrid Design Using Social, Economic, and Technical Analysis. Energies 2018, 11, 2832. [Google Scholar] [CrossRef] [Green Version]
- Paska, J.; Surma, T. Electricity Generation from Renewable Energy Sources in Poland. Renew. Energy 2014, 71, 286–294. [Google Scholar] [CrossRef]
- Piotrowska–Woroniak, J.; Woroniak, G.; Załuska, W. Energy Production from PV and Carbon Reduction in Great Lakes Region of Masuria Poland: A Case Study of Water Park in Elk. Renew. Energy 2015, 83, 1315–1325. [Google Scholar] [CrossRef]
- Iwaszczuk, N.; Trela, M. Analysis of the Impact of the Assumed Moment of Meeting Total Energy Demand on the Profitability of Photovoltaic Installations for Households in Poland. Energies 2021, 14, 1637. [Google Scholar] [CrossRef]
- Chmielowiec, K.; Topolski, Ł.; Piszczek, A.; Hanzelka, Z. Photovoltaic Inverter Profiles in Relation to the European Network Code NC RfG and the Requirements of Polish Distribution System Operators. Energies 2021, 14, 1486. [Google Scholar] [CrossRef]
- Olczak, P.; Olek, M.; Matuszewska, D.; Dyczko, A.; Mania, T. Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland. Energies 2021, 14, 499. [Google Scholar] [CrossRef]
- Dusonchet, L.; Telaretti, E. Comparative Economic Analysis of Support Policies for Solar PV in the Most Representative EU Countries. Renew. Sustain. Energy Rev. 2015, 42, 986–998. [Google Scholar] [CrossRef]
- da Silva, P.P.; Dantas, G.; Pereira, G.I.; Câmara, L.; De Castro, N.J. Photovoltaic Distributed Generation–An International Review on Diffusion, Support Policies, and Electricity Sector Regulatory Adaptation. Renew. Sustain. Energy Rev. 2019, 103, 30–39. [Google Scholar] [CrossRef]
- Valiño, L.; Sarasa, C.; Duarte, R. Economy-Wide Effects of a Sustainable Pathway in the Pig Sector: A Case Study in Aragon (Spain). J. Environ. Manag. 2019, 239, 84–89. [Google Scholar] [CrossRef]
- Nacer, T.; Hamidat, A.; Nadjemi, O.; Bey, M. Feasibility Study of Grid Connected Photovoltaic System in Family Farms for Electricity Generation in Rural Areas. Renew. Energy 2016, 96, 305–318. [Google Scholar] [CrossRef]
- Bey, M.; Hamidat, A.; Benyoucef, B.; Nacer, T. Viability Study of the Use of Grid Connected Photovoltaic System in Agriculture: Case of Algerian Dairy Farms. Renew. Sustain. Energy Rev. 2016, 63, 333–345. [Google Scholar] [CrossRef]
- Touil, S.; Richa, A.; Fizir, M.; Bingwa, B. Shading Effect of Photovoltaic Panels on Horticulture Crops Production: A Mini Review. Rev. Environ. Sci. Bio Technol. 2021, 20, 1–16. [Google Scholar]
- Alhammami, H.; An, H. Techno-Economic Analysis and Policy Implications for Promoting Residential Rooftop Solar Photovoltaics in Abu Dhabi, UAE. Renew. Energy 2021, 167, 359–368. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The Potential of Agrivoltaic Systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Schindele, S.; Trommsdorff, M.; Schlaak, A.; Obergfell, T.; Bopp, G.; Reise, C.; Braun, C.; Weselek, A.; Bauerle, A.; Högy, P. Implementation of Agrophotovoltaics: Techno-Economic Analysis of the Price-Performance Ratio and Its Policy Implications. Appl. Energy 2020, 265, 114737. [Google Scholar] [CrossRef]
- GUS. Statistical Yearbook of Agriculture 2020. Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/rocznik-statystyczny-rolnictwa-2020,6,14.html (accessed on 13 July 2021).
- GUS. Rolnictwo w 2019 Roku. Available online: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/rolnictwo/rolnictwo-w-2019-roku,3,16.html (accessed on 14 July 2021).
- Chel, A.; Kaushik, G. Renewable Energy for Sustainable Agriculture. Agron. Sustain. Dev. 2011, 31, 91–118. [Google Scholar] [CrossRef]
- Ibrik, I. Micro-Grid Solar Photovoltaic Systems for Rural Development and Sustainable Agriculture in Palestine. Agronomy 2020, 10, 1474. [Google Scholar] [CrossRef]
- Querikiol, E.M.; Taboada, E.B. Performance Evaluation of a Micro Off-Grid Solar Energy Generator for Islandic Agricultural Farm Operations Using HOMER. J. Renew. Energy 2018, 2018, 2828173. [Google Scholar] [CrossRef] [Green Version]
- Kyriakarakos, G.; Balafoutis, A.T.; Bochtis, D. Proposing a Paradigm Shift in Rural Electrification Investments in Sub-Saharan Africa through Agriculture. Sustainability 2020, 12, 3096. [Google Scholar] [CrossRef] [Green Version]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining Solar Photovoltaic Panels and Food Crops for Optimising Land Use: Towards New Agrivoltaic Schemes. Renew. Energy 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- Patel, M.T.; Khan, M.R.; Sun, X.; Alam, M.A. A Worldwide Cost-Based Design and Optimization of Tilted Bifacial Solar Farms. Appl. Energy 2019, 247, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Trommsdorff, M.; Kang, J.; Reise, C.; Schindele, S.; Bopp, G.; Ehmann, A.; Weselek, A.; Högy, P.; Obergfell, T. Combining Food and Energy Production: Design of an Agrivoltaic System Applied in Arable and Vegetable Farming in Germany. Renew. Sustain. Energy Rev. 2021, 140, 110694. [Google Scholar] [CrossRef]
- El Kolaly, W.; Ma, W.; Li, M.; Darwesh, M. The Investigation of Energy Production and Mushroom Yield in Greenhouse Production Based on Mono Photovoltaic Cells Effect. Renew. Energy 2020, 159, 506–518. [Google Scholar] [CrossRef]
- Friman-Peretz, M.; Ozer, S.; Geoola, F.; Magadley, E.; Yehia, I.; Levi, A.; Brikman, R.; Gantz, S.; Levy, A.; Kacira, M. Microclimate and Crop Performance in a Tunnel Greenhouse Shaded by Organic Photovoltaic Modules–Comparison with Conventional Shaded and Unshaded Tunnels. Biosyst. Eng. 2020, 197, 12–31. [Google Scholar] [CrossRef]
- Amaducci, S.; Yin, X.; Colauzzi, M. Agrivoltaic Systems to Optimise Land Use for Electric Energy Production. Appl. Energy 2018, 220, 545–561. [Google Scholar] [CrossRef]
- Khan, F.; Waqas, Q.; Basak, J.K.; Okyere, F.G.; Park, J.; Arulmozhi, E.; Lee, Y.J.; Kim, H.T. Control Indoor Thermal Environment Using MOACON System and Solar Panel in Experimental Pig Barn. J. Korean Soc. Agric. Mach. 2018, 23, 126. [Google Scholar]
- Kwak, Y.; Shin, H.; Kang, M.; Mun, S.-H.; Jo, S.-K.; Kim, S.-H.; Huh, J.-H. Energy Modeling of Pig Houses: A South Korean Feasibility Study. Energy Strategy Rev. 2021, 36, 100672. [Google Scholar] [CrossRef]
- Hassanien, R.H.E.; Li, M.; Yin, F. The Integration of Semi-Transparent Photovoltaics on Greenhouse Roof for Energy and Plant Production. Renew. Energy 2018, 121, 377–388. [Google Scholar] [CrossRef]
- Cho, J.; Park, S.M.; Park, A.R.; Lee, O.C.; Nam, G.; Ra, I.-H. Application of Photovoltaic Systems for Agriculture: A Study on the Relationship between Power Generation and Farming for the Improvement of Photovoltaic Applications in Agriculture. Energies 2020, 13, 4815. [Google Scholar] [CrossRef]
- Neto, A.J.S.; de Carvalho Lopes, D. Technical Analysis of Photovoltaic Energy Generation for Supplying the Electricity Demand in Brazilian Dairy Farms. Environ. Dev. Sustain. 2021, 23, 1355–1370. [Google Scholar] [CrossRef]
- Cui, Y.; Theo, E.; Gurler, T.; Su, Y.; Saffa, R. A Comprehensive Review on Renewable and Sustainable Heating Systems for Poultry Farming. Int. J. Low Carbon Technol. 2020, 15, 121–142. [Google Scholar] [CrossRef]
- Bogdan, A.V.; Bogdan, V.A.; Garkavyi, K.A. Optimization of Power and Place of Connection of Photovoltaic System for Power Supply of Poultry Farm. In Proceedings of the 2018 International Ural Conference on Green Energy (UralCon), Chelyabinsk, Russia, 4–8 October 2018; pp. 57–62. [Google Scholar]
- Cossu, M.; Yano, A.; Solinas, S.; Deligios, P.A.; Tiloca, M.T.; Cossu, A.; Ledda, L. Agricultural Sustainability Estimation of the European Photovoltaic Greenhouses. Eur. J. Agron. 2020, 118, 126074. [Google Scholar] [CrossRef]
- Moretti, S.; Marucci, A. A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production. Energies 2019, 12, 2589. [Google Scholar] [CrossRef] [Green Version]
- Ntinas, G.K.; Neumair, M.; Tsadilas, C.D.; Meyer, J. Carbon Footprint and Cumulative Energy Demand of Greenhouse and Open-Field Tomato Cultivation Systems under Southern and Central European Climatic Conditions. J. Clean. Prod. 2017, 142, 3617–3626. [Google Scholar] [CrossRef]
- Premier, A. A Review of the Attributes of Successful Agriphotovoltaic. In Proceedings of the APRU 2020 Sustainable Cities and Landscapes PhD Symposium, Virtual Event, 14–18 December 2020; pp. 1–8. [Google Scholar]
- Samuelson, P.A.; Nordhaus, W.D. Economics; Mcgraw-Hill Irwin: New York, NY, USA, 2010. [Google Scholar]
- Setiawan, I. Maqashid Sharia’s Criticism of the Pareto Optimum Theory. Muqtasid: J. Ekon. Dan Perbank. Syariah 2020, 11, 14–28. [Google Scholar] [CrossRef]
- Begg, D.; Fischer, S.; Dornbusch, R. Economics; McGraw-Hill Education: Maidenhead, UK, 2008. [Google Scholar]
- Ledyard, J.O. Market failure. In Allocation, Information and Markets; Springer: Berlin, Germany, 1989; pp. 185–190. [Google Scholar]
- Medema, S.G. The Hesitant Hand: Mill, Sidgwick, and the Evolution of the Theory of Market Failure. Hist. Political Econ. 2007, 39, 331–358. [Google Scholar] [CrossRef] [Green Version]
- Loiseau, E.; Saikku, L.; Antikainen, R.; Droste, N.; Hansjürgens, B.; Pitkänen, K.; Leskinen, P.; Kuikman, P.; Thomsen, M. Green Economy and Related Concepts: An Overview. J. Clean. Prod. 2016, 139, 361–371. [Google Scholar] [CrossRef]
- Ekins, P.; Zenghelis, D. The Costs and Benefits of Environmental Sustainability. Sustain. Sci. 2021, 16, 949–965. [Google Scholar] [CrossRef]
- Georgeson, L.; Maslin, M.; Poessinouw, M. The Global Green Economy: A Review of Concepts, Definitions, Measurement Methodologies and Their Interactions. Geo Geogr. Environ. 2017, 4, e00036. [Google Scholar] [CrossRef]
- Cavallo, M. Industrial Symbiosis and Productive Areas. Environ. Eng. Manag. J. 2013, 12, 265–268. [Google Scholar]
- Permanent Secretariat of the Alpine Convention. Greening the Economy in the Alpine Region. Report on the State of the Alps. Alpine Convention; Alpine Signals—Special Edition 6; Permanent Secretariat of the Alpine Convention: Innsbruck, Austria, 2017. [Google Scholar]
- Sulich, A.; Zema, T. Green Jobs, a New Measure of Public Management and Sustainable Development. Eur. J. Environ. Sci. 2018, 8, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Bowen, A.; Hepburn, C. Green Growth: An Assessment. Oxf. Rev. Econ. Policy 2014, 30, 407–422. [Google Scholar] [CrossRef]
- Smulders, S.; Toman, M.; Withagen, C. Growth Theory and ‘Green Growth. Oxf. Rev. Econ. Policy 2014, 30, 423–446. [Google Scholar] [CrossRef] [Green Version]
- Hickel, J.; Kallis, G. Is Green Growth Possible? New Political Econ. 2020, 25, 469–486. [Google Scholar] [CrossRef]
- Chang, R.-D.; Zuo, J.; Zhao, Z.-Y.; Zillante, G.; Gan, X.-L.; Soebarto, V. Evolving Theories of Sustainability and Firms: History, Future Directions and Implications for Renewable Energy Research. Renew. Sustain. Energy Rev. 2017, 72, 48–56. [Google Scholar] [CrossRef]
- Mealy, P.; Teytelboym, A. Economic Complexity and the Green Economy. Res. Policy 2020, 103948. [Google Scholar] [CrossRef]
- Hudson, R. Life on the Edge: Navigating the Competitive Tensions between the ‘Social’and the ‘Economic’ in the Social Economy and in Its Relations to the Mainstream. J. Econ. Geogr. 2009, 9, 493–510. [Google Scholar] [CrossRef] [Green Version]
- Knutel, B.; Pierzyńska, A.; Dębowski, M.; Bukowski, P.; Dyjakon, A. Assessment of Energy Storage from Photovoltaic Installations in Poland Using Batteries or Hydrogen. Energies 2020, 13, 4023. [Google Scholar] [CrossRef]
- Andrews, R.W.; Pollard, A.; Pearce, J.M. The Effects of Snowfall on Solar Photovoltaic Performance. Sol. Energy 2013, 92, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Heidari, N.; Gwamuri, J.; Townsend, T.; Pearce, J.M. Impact of Snow and Ground Interference on Photovoltaic Electric System Performance. IEEE J. Photovolt. 2015, 5, 1680–1685. [Google Scholar] [CrossRef] [Green Version]
- Heijman, W.J.M. Applied Macroeconomics; Cereales: Wageningen, The Netherlands, 2000. [Google Scholar]
- Garrido, A.; Gil, M.; Gómez-Ramos, A. Disentangling the Social, Macro and Microeconomic Effects of Agricultural Droughts: An Application to Spanish Irrigated Agriculture. Options Mediterr. 2010, 95, 149–158. [Google Scholar]
- Wilson, J.R.; Boncoeur, J. Micro-Economic Efficiencies and Macro-Economic Inefficiencies: Theoretical Reflections on Renewable Resource Policies in Very Poor Countries. In Proceedings of the 10th Biannual Conference of the IIFET, Corvallis, OR, USA, 10–14 July 2020. [Google Scholar]
- Zeraatpisheh, M.; Arababadi, R.; Saffari Pour, M. Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs. Energies 2018, 11, 3271. [Google Scholar] [CrossRef] [Green Version]
- Solorzano, V.; Garcia, L.; Ramos, M.; Vargas, O. Economic Value Added (EVA) as an Indicator for Financial Decisions: An Application to the Province of Santa Elena, Ecuador. Ecorfan J. 2013, 4, 1077–1086. [Google Scholar]
- Maroyi, V. Capital Budgeting Practices: A South African Perspective. Unpubl. Master’s Thesis, Wagening University, Wagening, The Netherlands, 2011. [Google Scholar]
- IFAD Economic and Financial Analysis of Rural Investment Projects. IFAD’S Internal Guidelines. 2015. International Fund for Agricultural Development. Available online: https://www.google.com/search?client=firefox-b-d&q=Economic+and+Financial+Analysis+of+rural+investment+projects.+IFAD%E2%80%99S+Internal+guidelines+%5B2015%5D+International+Fund+for+Agricultural+Development (accessed on 17 July 2021).
- Vélez Pareja, I. Ranking and Optimal Selection of Investments with Internal Rate of Return and Benefit-Cost Ratio: A Revision. Contaduría y Administración 2012, 57, 29–51. [Google Scholar]
- Bhandari, S.B. Discounted Payback Period-Some Extensions. J. Bus. Behav. Sci. 2009, 21, 28–38. [Google Scholar]
- Spackman, M. Discount Rates and Rates of Return in the Public Sector: Economic Issues; HM Treasury: London, UK, 1991.
- Spackman, M. Time Discounting and of the Cost of Capital in Government. Fisc. Stud. 2004, 25, 467–518. [Google Scholar] [CrossRef]
- A Social Time Preference Rate for Use in Long-Term Discounting, A Report for ODPM. 2002. Available online: https://www.google.com/search?client=firefox-b-d&q=A+social+time+preference+rate+for+use+in+long-term+discounting%2C+a+report+for+ODPM+%5B2002%5D+Oxera (accessed on 27 July 2021).
- Evans, D.J. The Elasticity of Marginal Utility of Consumption: Estimates for 20 OECD Countries. Fisc. Stud. 2005, 26, 197–224. [Google Scholar] [CrossRef]
- Freeman, M.; Groom, B.; Spackman, M. Social Discount Rates for Cost-Benefit Analysis: A Report for HM Treasury; HM Treasury: London, UK, 2018.
- Agriculture and Rural Development. Farm Accountancy Data Network. European Commission. Available online: Https://Ec.Europa.Eu/Agriculture/Rica/Database/Report—SzukajwGoogle (accessed on 27 July 2021).
- Marks-Bielska, R.; Bielski, S.; Pik, K.; Kurowska, K. The Importance of Renewable Energy Sources in Poland’s Energy Mix. Energies 2020, 13, 4624. [Google Scholar] [CrossRef]
- Trela, M.; Dubel, A. Comparing the Support Systems for Renewable Energy Sources in Poland Green Certificates vs Auction Systems. Polityka Energetyczna Energy Policy J. 2017, 20, 105–116. [Google Scholar]
- Śleszyński, P.; Nowak, M.; Brelik, A.; Mickiewicz, B.; Oleszczyk, N. Planning and Settlement Conditions for the Development of Renewable Energy Sources in Poland: Conclusions for Local and Regional Policy. Energies 2021, 14, 1935. [Google Scholar] [CrossRef]
- Kwaśniewski, D.; Akdeniz, C.; Durmaz, F.; Kömekçi, F. Economic Analysis of the Photovoltaic Installation Use Possibilities in Farms. Agric. Eng. 2020, 24, 47–60. [Google Scholar]
- GUS. Zużycie Energii w Gospodarstwach Domowych w 2018 Roku. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/zuzycie-energii-w-gospodarstwach-domowych-w-2018-roku,12,1.html (accessed on 27 July 2021).
- Photovoltaics PV Calculator. Available online: https://www.hewalex.pl/fotowoltaika/kalkulator/ (accessed on 14 July 2021).
- Half-Yearly Price Indices of Consumer Goods and Services from 1989. Available online: https://stat.gov.pl/en/topics/prices-trade/price-indices/price-indices-of-consumer-goods-and-services/half-yearly-price-indices-of-consumer-goods-and-services-from-1989/ (accessed on 14 July 2021).
- European Union. Consumer Price Index (Cpi). 1999–2021 Data. 2022–2023 Forecast. Available online: https://tradingeconomics.com/european-union/consumer-price-index-cpi (accessed on 14 July 2021).
- Kurs Euro 2021-06—Dane Archiwalne, Średnie—EUR-PLN.Pl. Available online: https://eur-pln.pl/2021/6/ (accessed on 14 July 2021).
- Bukowski, M.; Majewski, J.; Sobolewska, A. Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland. Energies 2021, 14, 126. [Google Scholar] [CrossRef]
- Księżopolski, K.; Drygas, M.; Pronińska, K.; Nurzyńska, I. The Economic Effects of New Patterns of Energy Efficiency and Heat Sources in Rural Single-Family Houses in Poland. Energies 2020, 13, 6358. [Google Scholar] [CrossRef]
- Vienna Insurance Group. Ubezpieczenie Instalacji Energii Odnawialnej. Wiener TU S.A. Available online: https://www.wiener.pl/ubezpieczenie-instalacji-energii-odnawialnej (accessed on 14 July 2021).
- GLOBEnergia. Recykling Modułów PV w Polsce—Ile Kosztuje? Co Się Odzyskuje? Available online: https://globenergia.pl/recykling-modulow-pv-w-polsce-ile-kosztuje-co-sie-odzyskuje/ (accessed on 14 July 2021).
- Gaj, K. Three-Year Exploitation Tests of a Photovoltaic Plant in a Zero-Energy Single-Family House under the Polish Conditions. J. Ecol. Eng. 2020, 21, 160–168. [Google Scholar] [CrossRef]
- Chwieduk, D.; Bujalski, W.; Chwieduk, B. Possibilities of Transition from Centralized Energy Systems to Distributed Energy Sources in Large Polish Cities. Energies 2020, 13, 6007. [Google Scholar] [CrossRef]
- Dubel, A.; Trela, M. Financial Efficiency Analysis of PV Plants in Poland under the Evolving Support Scheme. Ekon. I Środowisko Econ. Environ. 2019, 71, 18. [Google Scholar]
- Drzymała, A.J.; Korzeniewska, E. Economic Efficiency of a Photovoltaic Power Plants. In Proceedings of the 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine, 23–25 September 2019; pp. 238–241. [Google Scholar]
- Elamim, A.; Hartiti, B.; Haibaoui, A.; Lfakir, A.; Thevenin, P. Comparative Study of Photovoltaic Solar Systems Connected to the Grid: Performance Evaluation and Economic Analysis. Energy Procedia 2019, 159, 333–339. [Google Scholar] [CrossRef]
- Soliński, B.; Kapała, J. Efektywność Ekonomiczna Funkcjonowania Mikroinstalacji Fotowoltaicznych Wykorzystywanych Przez Prosumenta. Economic Cost-Effectiveness of Photovoltaic Micro-Installations Used by Prosumer. Probl. Drob. Gospod. Rol. Probl. Small Agric. Hold. 2017, 4, 105–116. [Google Scholar]
- Bartecka, M.; Terlikowski, P.; Kłos, M.; Michalski, Ł. Sizing of Prosumer Hybrid Renewable Energy Systems in Poland. Bull. Pol. Acad. Sciences. Tech. Sci. 2020, 68, 721–731. [Google Scholar]
- Gradziuk, P.; Gradziuk, B. Economic Profitability of Investment in a Photovoltaic Plant in South-East Poland. Ann. Pol. Assoc. Agric. Agrobus. Econ. 2019, 21, 124–133. [Google Scholar] [CrossRef]
- Bertsch, V.; Di Cosmo, V. Are renewables profitable in 2030? In A Comparison between Wind and Solar across Europe; Fondazione Eni Enrico Mattei: Milan, Italy, 2018. [Google Scholar]
- Ayadi, O.; Al-Assad, R.; Al Asfar, J. Techno-Economic Assessment of a Grid Connected Photovoltaic System for the University of Jordan. Sustain. Cities Soc. 2018, 39, 93–98. [Google Scholar] [CrossRef]
- Awomewe, A.F.; Ogundele, O.O. The Importance of the Payback Method in Capital Budgeting Decision. Master’s Thesis, Blekinge Institute of Technology, Karlshamn, Sweden, 2008. [Google Scholar]
- Gnatowska, R.; Moryń-Kucharczyk, E. The Place of Photovoltaics in Poland’s Energy Mix. Energies 2021, 14, 1471. [Google Scholar] [CrossRef]
- Klepacka, A.M.; Pawlik, K. Zwrot z Inwestycji Farmy Fotowoltaicznej w Ramach Zmieniających Się Przepisów. Zagadnienia Ekon. Rolnej 2018, 3, 168–192. [Google Scholar] [CrossRef]
- Ismail, E.A.; Hashim, S.M. An economic evaluation of grid connected photovoltaic system for a residential house in khartoum. In Proceedings of the 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), Khartoum, Sudan, 12–14 August 2018; pp. 1–6. [Google Scholar]
- Umargono, E.; Suseno, J.E.; Gunawan, S.V. K-means clustering optimization using the elbow method and early centroid determination based on mean and median formula. In Proceedings of the 2nd International Seminar on Science and Technology (ISSTEC 2019), Yogyakarta, Indonesia, 25 November 2019; pp. 121–129. [Google Scholar]
Type of Accounting | Value | Type of Farms | Average | ||
---|---|---|---|---|---|
A | B | C | |||
macroeconomic | Minimum | 21.3% | 25.7% | 22.0% | 21.3% |
Average | 25.1% | 29.5% | 26.0% | 26.9% | |
Maximum | 27.0% | 32.5% | 27.8% | 32.5% | |
microeconomic | Minimum | 13.6% | 16.0% | 14.1% | 13.6% |
Average | 16.6% | 19.8% | 17.3% | 17.9% | |
Maximum | 18.7% | 22.9% | 20.0% | 22.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukowski, M.; Majewski, J.; Sobolewska, A. Macroeconomic Efficiency of Photovoltaic Energy Production in Polish Farms. Energies 2021, 14, 5721. https://doi.org/10.3390/en14185721
Bukowski M, Majewski J, Sobolewska A. Macroeconomic Efficiency of Photovoltaic Energy Production in Polish Farms. Energies. 2021; 14(18):5721. https://doi.org/10.3390/en14185721
Chicago/Turabian StyleBukowski, Marcin, Janusz Majewski, and Agnieszka Sobolewska. 2021. "Macroeconomic Efficiency of Photovoltaic Energy Production in Polish Farms" Energies 14, no. 18: 5721. https://doi.org/10.3390/en14185721
APA StyleBukowski, M., Majewski, J., & Sobolewska, A. (2021). Macroeconomic Efficiency of Photovoltaic Energy Production in Polish Farms. Energies, 14(18), 5721. https://doi.org/10.3390/en14185721