Bicycle Traffic Model for Sustainable Urban Mobility Planning
Abstract
:1. Introduction
- Why is it important to consider a modal shift in urban transport modelling, and how can the experience from Gdynia help in the development of a bicycle traffic model that takes into account the modal shift?
- What data can be used to develop a bicycle traffic model, and what are the elements of the model to predict the choice of particular routes by cyclists?
2. Modelling of Bicycle Traffic and Modal Shift in Cities: A Review
2.1. Measures Influencing Travel Demand and Modal Shift in Cycling
- Improving cycling parking facilities [89];
2.2. Modelling of Transport in Cities
2.3. Modelling of Bicycle Traffic
3. Methodology of the Model of Bicycle Traffic Development
3.1. Bicycle Network Model
- Longitudinal gradient;
- Available cycling infrastructure with a specification of link types: bicycle path, walking and cycling route (pavement), asphalt road on which bicycle traffic is present, together with motorised vehicles, according to general principles;
- The surface of the bicycle route, which is divided into the following types: asphalt, concrete blocks, and flagstones.
- —average speed of link i;
- —slope of link i;
- —type of road of link i;
- —type of surface of link i.
- —travel time on bicycle routes between transport zones;
- —length of bicycle route link i;
- —average speed at link i.
3.2. Modelling of Demand for Bicycle Trips
- The start time of the trip and trip duration time;
- Origin and destination transport zones (TAZs), connected to the network through centroid connectors;
- Travel motivation;
- Modes of transport chosen by the respondents (who are also divided into groups, e.g., by age).
3.3. Modelling of Modal Split
- —the probability of choosing the nth mode of transport belonging to the gth group of transport modes;
- —utility of the nth mode of transport belonging to the gth group of transport modes;
- ,—model scaling coefficients.
- —measurable utility of transport modes m;
- —random variable with a logistical distribution reflecting values not included in the utility Vmij.
- —travel distance (km);
- —calculated time of cycling trip (min);
- —calculated travel time by private transport (min);
- —perceived travel time by public transport (min);
- βi—equation coefficients.
3.4. Bicycle Traffic Assignment
4. Testing the Model on the Gdynia Case Study
4.1. Data Sources
- The biannual transport survey (conducted by the local public transport authority) was used to calibrate and verify the sum of all trips and the modal split [191];
- Data collected during the European Cycling Challenge 2016 and 2017 (Global Positioning System track of 20,136 trips made within the competition, with speed estimation) were used to verify the spatial distribution of bicycle trips and bicycle traffic assignment, calibration, and speed verification;
- Data collected during the local cycling competition for companies in 2016 and 2017 (general information about all trips made within the competition)—necessary for the selection of transport system improvement scenarios;
- Surveys conducted amongst participants in a local cycling competition for companies in 2016 (1146 bicycle trips) were used to parameterise sections and select improvement scenarios;
- Cyclist traffic research (bicycle traffic volumes) in key city locations (at bicycle route sections and street intersections), along with surveys dedicated to FLOW in 2016 (1208 bicycle trips), were used for calibration and travel matrix verification, travel motivation, bicycle traffic volumes, and parameterisation of sections;
- Statistics for individual transport areas in 2016 (e.g., number of inhabitants in particular transport areas, total number of workplaces, number of people aged 6 and over, number of study places in schools, area of service and commercial buildings, number of workplaces in the service sector) were used to update the transport demand model.
4.2. Survey Results
4.3. Scenarios of the Development of the Bicycle Network in Gdynia
- Scenario 1—bicycle overpass between Hutnicza and Wisniewskiego streets;
- Scenario 2—bicycle connection between the city centre and Oksywie across the harbour channel;
- Scenario 3—bicycle path along Wielkopolska and Zwyciestwa streets;
- Scenario 4—seaside bicycle path in Orlowo district;
- Scenario 5—17 December Avenue, a new path in the city centre;
- Scenario 6—completion of bicycle paths in the city centre.
4.4. Results of Research Carried Out Using the Bicycle Traffic Model
4.5. Model Verification
5. Discussion
5.1. Considering the Modal Shift towards Cycling in Mobility Planning in the Example of Gdynia
5.2. Aspects of Bicycle Traffic Modelling
5.2.1. Data
5.2.2. Method of Model Development
5.2.3. Bicycle Network
5.2.4. Modal Split
5.2.5. Traffic Assignment
5.2.6. Results of the Gdynia Case Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferenchak, N.N.; Katirai, M. Pedestrian crossing behavior in relation to grouping and gender in a developing country context. J. Glob. Epidemiol. Environ. Health 2017, 1, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, L.; Wallbank, C.; Broughton, J.; Cuerden, R. Estimating the potential impact of vehicle secondary safety regulations and consumer testing programs on road casualties in emerging markets. J. Transp. Saf. Secur. 2017, 9, 149–177. [Google Scholar] [CrossRef]
- Eurostat. Passenger Cars, by Size and Type of Fuel Engin. 2021. Available online: http://ec.europa.eu/eurostat/data/database (accessed on 7 February 2021).
- Machado, C.A.S.; de Salles Hue, N.P.M.; Berssaneti, F.T.; Quintanilha, J.A. An overview of shared mobility. Sustainability 2018, 10, 4342. [Google Scholar] [CrossRef] [Green Version]
- Lerner, W. The Future of Urban Mobility. In Towards Networked, Multimodal Cities of 2050; 2011; Available online: https://robertoigarza.files.wordpress.com/2009/07/rep-the-future-of-urban-mobility-2050-little-2011.pdf (accessed on 7 August 2019).
- Schäfer, A.W. Long-term trends in domestic US passenger travel: The past 100 years and the next 90. Transportation 2017, 44, 293–310. [Google Scholar] [CrossRef]
- European Commission. Mobility and Transport Transport in the European Union Current Trends and Issues. 2019. Available online: https://ec.europa.eu/transport/sites/transport/files/2019-transport-in-the-eu-current-trends-and-issues.pdf (accessed on 20 March 2021).
- Buehler, R.; Pucher, J. Walking and Cycling in Western Europe and the United States: Trends, Policies and Lessons. TR News 280. May–June 2012. 2012. Available online: http://onlinepubs.trb.org/onlinepubs/trnews/trnews280WesternEurope.pdf (accessed on 20 March 2021).
- Vandenbulcke, G.; Dujardin, C.; Thomas, I.; de Geus, B.; Degraeuwe, B.; Meeusen, R.; Panis, L.I. Cycle commuting in Belgium: Spatial determinants and ‘re-cycling’ strategies. Transp. Res. Part A Policy Pract. 2011, 45, 118–137. [Google Scholar] [CrossRef] [Green Version]
- Pojani, D.; Stead, D. The Urban Transport Crisis in Emerging Economies: An Introduction; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Sims, R.; Schaeffer, R.; Creutzig, F.; Cruz-Núñez, X.; D’Agosto, M.; Dimitriu, D.; Meza, M.J.F.; Fulton, L.; Kobayashi, S.O.L.; McKinnon, A.; et al. Chapter 8: Transport. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 599–670. [Google Scholar]
- European Environment Agency (EEA). Total Greenhouse Gas Emission Trends and Projections in Europe. 2021. Available online: https://www.eea.europa.eu/data-and-maps/indicators/greenhouse-gas-emission-trends-7/assessment (accessed on 7 May 2021).
- Ajanovic, A.; Haas, R. The impact of energy policies in scenarios on GHG emission reduction in passenger car mobility in the EU-15. Renew. Sustain. Energy Rev. 2017, 68, 1088–1096. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Primary and Final Energy Consumption in the European Union. 2021. Available online: https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-11/assessment (accessed on 12 May 2021).
- European Commission DG MOVE. Study to Support an Impact Assessment of the Urban Mobility Package; Activity 31 Sustainable Urban Mobility Plans Final Report; European Commission DG MOVE: Brussels, Belgium, 2013. [Google Scholar]
- Hiselius, L.W.; Rosqvist, L.S. Mobility Management campaigns as part of the transition towards changing social norms on sustainable travel behavior. J. Clean. Prod. 2016, 123, 34–41. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A. IPCC Report Global Warming of 1.5 °C; 2018; Volume 2, Available online: https://www.ipcc.ch/sr15/ (accessed on 7 June 2021).
- Creutzig, F.; Roy, J.; Lamb, W.F.; Azevedo, I.M.L.; Bruine De Bruin, W.; Dalkmann, H.; Edelenbosch, O.Y.; Geels, F.W.; Grubler, A.; Hepburn, C.; et al. Towards demand-side solutions for mitigating climate change. Nat. Clim. Chang. 2018, 8, 268–271. [Google Scholar] [CrossRef] [Green Version]
- Gavanas, N.; Pozoukidou, G.; Verani, E. Integration of LUTI models into sustainable urban mobility plans (SUMPs). Eur. J. Environ. Sci. 2016, 6, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Alonso, A.; Monzón, A.; Wang, Y. Modelling Land Use and Transport Policies to Measure Their Contribution to Urban Challenges: The Case of Madrid. Sustainability 2017, 9, 378. [Google Scholar] [CrossRef] [Green Version]
- Wefering, F.; Rupprecht, S.; Bührmann, S.; Böhler-Baedeker, S.; Granberg, M.; Vilkuna, J.; Saarinen, S.; Backhaus, W.; Laubenheimer, M. Guidelines. Developing and Implementing a Sustainable Urban Mobility Plan; European Union, 2013; Available online: https://www.eltis.org/sites/default/files/guidelines-developing-and-implementing-a-sump_final_web_jan2014b.pdf (accessed on 20 March 2021).
- Kaziyeva, D.; Loidl, M.; Wallentin, G. Simulating Spatio-Temporal Patterns of Bicycle Flows with an Agent-Based Model. ISPRS Int. J. Geo-Inf. 2021, 10, 88. [Google Scholar] [CrossRef]
- Okraszewska, R.; Romanowska, A.; Wołek, M.; Oskarbski, J.; Birr, K.; Jamroz, K. Integration of a multilevel transport system model into sustainable Urban mobility planning. Sustainability 2018, 10, 479. [Google Scholar] [CrossRef] [Green Version]
- Daganzo, C.F. Fundamentals of Transportation and Traffic Operations, 1st ed.; Emerald Publishing: New York, NY, USA, 1 June 1997. [Google Scholar]
- Jacyna, M. Modelowanie i Ocena Systemów Transportowych; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2009. [Google Scholar]
- Cambridge Systematics Inc. Travel Model Improvement Program. In Travel Model Validation and Reasonability Checking Manual, 2nd ed.; Cambridge Systematics: Medford, MA, USA, 24 September 2010. [Google Scholar]
- Singh, R.; Dowling, R. Improved speed-flow relationships: Application to transportation planning models. In Proceedings of the Seventh TRB Conference on the Application of Transportation Planning Methods, Boston, MA, USA, 7–11 March 1999; pp. 340–349. [Google Scholar]
- Sivakumar, A. Modelling Transport: A Synthesis of Transport Modelling Methodologies; Imperial College London: London, UK, 2007. [Google Scholar]
- Givoni, M.; Beyazit, E.; Shiftan, Y. The use of state-of-the-art transport models by policymakers—Beauty in simplicity? Plan. Theory Pract. 2016, 17, 385–404. [Google Scholar] [CrossRef]
- Wang, B.; Shao, C.; Ji, X. Influencing mechanism analysis of holiday activity-travel patterns on transportation energy consumption and emissions in China. Energies 2017, 10, 897. [Google Scholar] [CrossRef]
- Neves, A.; Brand, C. Assessing the potential for carbon emissions savings from replacing short car trips with walking and cycling using a mixed GPS travel diary approach. Transp. Res. Part A Policy Pract. 2019, 123, 130–146. [Google Scholar] [CrossRef]
- Zhou, Y.; Dey, K.C.; Chowdhury, M.; Wang, K.C. Process for evaluating the data transfer performance of wireless traffic sensors for real-time intelligent transportation systems applications. IET Intell. Transp. Syst. 2017, 11, 18–27. [Google Scholar] [CrossRef]
- Faghih-Imani, A.; Anowar, S.; Miller, E.J.; Eluru, N. Hail a cab or ride a bike? A travel time comparison of taxi and bicycle-sharing systems in New York City. Transp. Res. Part A Policy Pract. 2017, 101, 11–21. [Google Scholar] [CrossRef]
- Brand, C.; Götschi, T.; Dons, E.; Gerike, R.; Anaya-Boig, E.; Avila-Palencia, I.; de Nazelle, A.; Gascon, M.; Gaupp-Berghausen, M.; Iacorossi, F.; et al. The climate change mitigation impacts of active travel: Evidence from a longitudinal panel study in seven European cities. Glob. Environ. Chang. 2021, 67, 102224. [Google Scholar] [CrossRef]
- Quarmby, S.; Santos, G.; Mathias, M. Air Quality Strategies and Technologies: A Rapid Review of the International Evidence. Sustainability 2019, 11, 2757. [Google Scholar] [CrossRef] [Green Version]
- Horton, D. Environmentalism and the bicycle. Env. Polit. 2006, 15, 41–58. [Google Scholar] [CrossRef]
- Amelung, D.; Fischer, H.; Herrmann, A.; Aall, C.; Louis, V.R.; Becher, H.; Wilkinson, P.; Sauerborn, R. Human health as a motivator for climate change mitigation: Results from four European high-income countries. Glob. Environ. Chang. 2019, 57, 101918. [Google Scholar] [CrossRef]
- Woodcock, J.; Abbas, A.; Ullrich, A.; Tainio, M.; Lovelace, R.; Sá, T.H.; Westgate, K.; Goodman, A. Development of the Impacts of Cycling Tool (ICT): A modelling study and web tool for evaluating health and environmental impacts of cycling uptake. PLoS Med. 2018, 15, e1002622. [Google Scholar] [CrossRef] [Green Version]
- Venturini, G.; Karlsson, K.; Münster, M. Impact and effectiveness of transport policy measures for a renewable-based energy system. Energy Policy 2019, 133, 110900. [Google Scholar] [CrossRef]
- Chapman, L. Transport and climate change: A review. J. Transp. Geogr. 2007, 15, 354–367. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, B.; Cai, J.; Wei, Y.M. Impacts of household income change on CO2 emissions: An empirical analysis of China. J. Clean. Prod. 2017, 157, 190–200. [Google Scholar] [CrossRef]
- Loidl, M.; Werner, C.; Heym, L.; Kofler, P.; Innerebner, G. Lifestyles and cycling behavior—Data from a cross-sectional study. Data 2019, 4, 140. [Google Scholar] [CrossRef] [Green Version]
- Thiel, C.; Perujo, A.; Mercier, A. Cost and CO2 aspects of future vehicle options in Europe under new energy policy scenarios. Energy Policy 2010, 38, 7142–7151. [Google Scholar] [CrossRef]
- Bozza, F.; De Bellis, V.; Malfi, E.; Teodosio, L.; Tufano, D. Optimal calibration strategy of a hybrid electric vehicle equipped with an ultra-lean pre-chamber SI engine for the minimization of CO2and pollutant emissions. Energies 2020, 13, 4008. [Google Scholar] [CrossRef]
- Yang, D.; Timmermans, H. Households transport-home energy conservation strategies in response to energy price policies: A stated adaptation experiment based on portfolio choices and cross effects designs. Int. J. Sustain. Transp. 2017, 11, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Gallo, M.; Marinelli, M. Sustainable mobility: A review of possible actions and policies. Sustainability 2020, 12, 7499. [Google Scholar] [CrossRef]
- Dillman, K.; Czepkiewicz, M.; Heinonen, J.; Fazeli, R.; Árnadóttir, Á.; Davíðsdóttir, B.; Shafiei, E. Decarbonization Scenarios for Reykjavik’s passenger transport: The combined effects of behavioural changes and technological developments. Sustain. Cities Soc. 2020, 65, 102614. [Google Scholar] [CrossRef]
- Heinonen, J.; Czepkiewicz, M.; Árnadóttir, Á.; Ottelin, J. Drivers of car ownership in a car-oriented city: A mixed-method study. Sustainability 2021, 13, 619. [Google Scholar] [CrossRef]
- Butler, L.; Yigitcanlar, T.; Paz, A. How can smart mobility innovations alleviate transportation disadvantage? Assembling a conceptual framework through a systematic review. Appl. Sci. 2020, 10, 6306. [Google Scholar] [CrossRef]
- Oliveira, F.; Nery, D.; Costa, D.G.; Silva, I.; Lima, L. A survey of technologies and recent developments for sustainable smart cycling. Sustainability 2021, 13, 3422. [Google Scholar] [CrossRef]
- Tønnesen, A.; Knapskog, M.; Uteng, T.P.; Øksenholt, K.V. The integration of active travel and public transport in Norwegian policy packages: A study on ‘access, egress and transfer’ and their positioning in two multilevel contractual agreements. Res. Transp. Bus. Manag. 2020, 40, 100546. [Google Scholar] [CrossRef]
- Gerboni, R.; Grosso, D.; Carpignano, A.; Dalla Chiara, B. Linking energy and transport models to support policy making. Energy Policy 2017, 111, 336–345. [Google Scholar] [CrossRef]
- Edelenbosch, O.Y.; McCollum, D.L.; van Vuuren, D.P.; Bertram, C.; Carrara, S.; Daly, H.; Fujimori, S.; Kitous, A.; Kyle, P.; Broin, E.Ó.; et al. Decomposing passenger transport futures: Comparing results of global integrated assessment models. Transp. Res. Part D Transp. Environ. 2017, 55, 281–293. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.; Gaupp-Berhausen, M.; Dons, E.; Standaert, A.; Laeremans, M.; Clark, A.; Anaya, E.; Cole-Hunter, T.; Avila-Palencia, I.; Rojas-Rueda, D.; et al. Physical activity of electric bicycle users compared to conventional bicycle users and non-cyclists: Insights based on health and transport data from an online survey in seven European cities. Transp. Res. Interdiscip. Perspect. 2019, 1, 100017. [Google Scholar] [CrossRef]
- Elliot, T.; McLaren, S.J.; Sims, R. Potential environmental impacts of electric bicycles replacing other transport modes in Wellington, New Zealand. Sustain. Prod. Consum. 2018, 16, 227–236. [Google Scholar] [CrossRef]
- Woodcock, J.; Edwards, P.; Tonne, C.; Armstrong, B.G.; Ashiru, O.; Banister, D.; Beevers, S.; Chalabi, Z.; Chowdhury, Z.; Cohen, A.; et al. Public health benefits of strategies to reduce greenhouse-gas emissions: Urban land transport. Lancet 2009, 374, 1930–1943. [Google Scholar] [CrossRef]
- Keall, M.D.; Shaw, C.; Chapman, R.; Howden-Chapman, P. Reductions in carbon dioxide emissions from an intervention to promote cycling and walking: A case study from New Zealand. Transp. Res. Part D Transp. Environ. 2018, 65, 687–696. [Google Scholar] [CrossRef]
- Le Gouais, A.; Panter, J.R.; Cope, A.; Powell, J.E.; Bird, E.L.; Woodcock, J.; Ogilvie, D.; Foley, L. A natural experimental study of new walking and cycling infrastructure across the United Kingdom: The Connect2 programme. J. Transp. Health 2021, 20, 100968. [Google Scholar] [CrossRef]
- Lovelace, R.; Beck, S.B.M.; Watson, M.; Wild, A. Assessing the energy implications of replacing car trips with bicycle trips in Sheffield, UK. Energy Policy 2011, 39, 2075–2087. [Google Scholar] [CrossRef] [Green Version]
- Coley, D. Emission factors for human activity. Energy Policy 2002, 30, 3–5. [Google Scholar] [CrossRef]
- Söderberg, A.; Adell, E.; Winslott Hiselius, L. What is the substitution effect of e-bikes? A randomised controlled trial. Transp. Res. Part D Transp. Environ. 2021, 90, 102648. [Google Scholar] [CrossRef]
- Jones, T.; Harms, L.; Heinen, E. Motives, perceptions and experiences of electric bicycle owners and implications for health, wellbeing and mobility. J. Transp. Geogr. 2016, 53, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Haustein, S.; Møller, M. Age and attitude: Changes in cycling patterns of different e-bike user segments. Int. J. Sustain. Transp. 2016, 10, 836–846. [Google Scholar] [CrossRef] [Green Version]
- Winslott Hiselius, L.; Svensson, Å. E-bike use in Sweden—CO2 effects due to modal change and municipal promotion strategies. J. Clean. Prod. 2017, 141, 818–824. [Google Scholar] [CrossRef]
- Cairns, S.; Behrendt, F.; Raffo, D.; Beaumont, C.; Kiefer, C. Electrically-assisted bikes: Potential impacts on travel behaviour. Transp. Res. Part A Policy Pract. 2017, 103, 327–342. [Google Scholar] [CrossRef] [Green Version]
- Kroesen, M. To what extent do e-bikes substitute travel by other modes? Evidence from the Netherlands. Transp. Res. Part D Transp. Environ. 2017, 53, 377–387. [Google Scholar] [CrossRef]
- Sun, Q.; Feng, T.; Kemperman, A.; Spahn, A. Modal shift implications of e-bike use in the Netherlands: Moving towards sustainability? Transp. Res. Part D Transp. Environ. 2020, 78, 102202. [Google Scholar] [CrossRef]
- Lee, J.S.; Jiang, J.W. Enhanced fuzzy-logic-based power-assisted control with user-adaptive systems for human-electric bikes. IET Intell. Transp. Syst. 2019, 13, 1492–1498. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, D.; Kim, Y.; Kim, S.; Shin, D. A power assistant algorithm based on human–robot interaction analysis for improving system efficiency and riding experience of e-bikes. Sustainability 2021, 13, 768. [Google Scholar] [CrossRef]
- Commission of the European Communities. Green Paper. Towards a New Culture for Urban Mobility; Commission of the European Communities: Brussels, Belgium, 2007. [Google Scholar]
- OECD/ECMT. Managing Urban Traffic Congestion; Paris, France, 2007; Available online: http://www.oecd-ilibrary.org/transport/managing-urban-traffic-congestion_9789282101506-en (accessed on 7 May 2021).
- Litman, T. Smart Congestion Relief. In Comprehensive Evaluation of Traffic Congestion Costs and Congestion Reduction Strategies; Victoria Transport Policy Institute, 24 April 2014; Available online: www.vtpi.org/cong_relief.pdf (accessed on 20 March 2020).
- ECF. Cycling Strategy: Recommendations for Delivering Green Growth and an Effective Mobility in 2030; European Transport Safety Council: Brussels, Belgium, 2017. [Google Scholar]
- Karanikola, P.; Panagopoulos, T.; Tampakis, S.; Tsantopoulos, G. Cycling as a smart and green mode of transport in small touristic cities. Sustainability 2018, 10, 268. [Google Scholar] [CrossRef] [Green Version]
- Pucher, J.; Dill, J.; Handy, S. Infrastructure, programs, and policies to increase bicycling: An international review. Prev. Med. 2010, 50, S106–S125. [Google Scholar] [CrossRef]
- Sallis, J.F.; Cerin, E.; Conway, T.L.; Adams, M.A.; Frank, L.D.; Pratt, M.; Salvo, D.; Schipperijn, J.; Smith, G.; Cain, K.L.; et al. Physical activity in relation to urban environments in 14 cities worldwide: A cross-sectional study. Lancet 2016, 387, 2207–2217. [Google Scholar] [CrossRef] [Green Version]
- Mertens, L.; Compernolle, S.; Deforche, B.; Mackenbach, J.D.; Lakerveld, J.; Brug, J.; Roda, C.; Feuillet, T.; Oppert, J.M.; Glonti, K.; et al. Built environmental correlates of cycling for transport across Europe. Health Place 2017, 44, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, H.R. Is the Kingdom of bicycles rising again? Cycling, gender, and class in postsocialist China. Transfers 2017, 7, 1–20. [Google Scholar] [CrossRef]
- Maheshwari, M.; Jana, A.; Bandyopadhyay, S. Optimizing the Modal Split to Reduce Carbon Dioxide Emission for Resource-Constrained Societies. Transp. Res. Procedia 2020, 48, 2063–2073. [Google Scholar] [CrossRef]
- Litman, T. Measuring Transportation—Traffic, Mobility and Accessibility, Institute of Transportation Engineers. ITE J. 2003, 73, 23–32. [Google Scholar]
- Holden, E.; Høyer, K.G. The ecological footprints of fuels. Transp. Res. Part D Transp. Environ. 2005, 10, 395–403. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Low-mobility: The future of transport. Futures 2008, 40, 865–872. [Google Scholar] [CrossRef]
- Mallus, M.; Colistra, G.; Atzori, L.; Murroni, M.; Pilloni, V. Dynamic carpooling in urban areas: Design and experimentation with a multi-objective route matching algorithm. Sustainability 2017, 9, 254. [Google Scholar] [CrossRef] [Green Version]
- de Koning, R.; Tan, W.G.Z.; Van Nes, A. Assessing spatial configurations and transport energy usage for planning sustainable communities. Sustainability 2020, 12, 8146. [Google Scholar] [CrossRef]
- Hickman, R.; Hall, P.; Banister, D. Planning more for sustainable mobility. J. Transp. Geogr. 2013, 33, 210–219. [Google Scholar] [CrossRef]
- Reisi, M.; Aye, L.; Rajabifard, A.; Ngo, T. Land-use planning: Implications for transport sustainability. Land Use Policy 2016, 50, 252–261. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development (OECD). Compact City Policies: A Comparative Assessment; OECD: Paris, France, 2012. [Google Scholar]
- Milakis, D.; Efthymiou, D.; Antoniou, C. Built environment, travel attitudes and travel behaviour: Quasi longitudinal analysis of links in the case of Greeks relocating FROM US to Greece. Sustainability 2017, 9, 1774. [Google Scholar] [CrossRef] [Green Version]
- Kamargianni, M. Investigating next generation’s cycling ridership to promote sustainable mobility in different types of cities. Res. Transp. Econ. 2015, 53, 45–55. [Google Scholar] [CrossRef]
- Tiwari, G.; Jain, D.; Ramachandra Rao, K. Impact of public transport and non-motorized transport infrastructure on travel mode shares, energy, emissions and safety: Case of Indian cities. Transp. Res. Part D Transp. Environ. 2016, 44, 277–291. [Google Scholar] [CrossRef]
- Harms, L.; Bertolini, L.; Brömmelstroet, M.T. Performance of municipal cycling policies in medium sized cities in the Netherlands since 2000. Transp. Rev. 2016, 36, 134–162. [Google Scholar] [CrossRef]
- Schmid-Querg, J.; Keler, A.; Grigoropoulos, G. The munich bikeability index: A practical approach for measuring urban bikeability. Sustainability 2021, 13, 428. [Google Scholar] [CrossRef]
- Jaszczak, A.; Morawiak, A.; Zukowska, J. Cycling as a sustainable transport alternative in polish cittaslow towns. Sustainability 2020, 12, 5049. [Google Scholar] [CrossRef]
- Clark, S.D.; Page, M.W. Cycling and urban traffic management and control systems. Transp. Res. Rec. 2000, 1705, 77–84. [Google Scholar] [CrossRef]
- Oskarbski, J.; Guminska, L.; Miszewski, M.; Oskarbska, I. Analysis of Signalized Intersections in the Context of Pedestrian Traffic. Transp. Res. Procedia 2016, 14, 2138–2147. [Google Scholar] [CrossRef] [Green Version]
- Portilla, C.; Valencia, F.; Espinosa, J.; Núñez, A.; De Schutter, B. Model-based predictive control for bicycling in urban intersections. Transp. Res. Part C Emerg. Technol. 2016, 70, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Pucher, J.R.; Buehler, R. City Cycling; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Garcia-Palomares, J.C.; Gutierrez, J.; Latorre, M. Optimizing the location of stations in bike-sharing programs: A GIS approach. Appl. Geogr. 2012, 35, 235–246. [Google Scholar] [CrossRef]
- Mora, R.; Moran, P. Public bike sharing programs under the prism of urban planning officials: The case of Santiago de Chile. Sustainability 2020, 12, 5720. [Google Scholar] [CrossRef]
- Shaaban, K. Why don’t people ride bicycles in high-income developing countries, and can bike-sharing be the solution? The case of qatar. Sustainability 2020, 12, 1693. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhang, Y.; Tian, L.; Zhou, N.; Li, Z.; Wang, M. Analysis of network structure of urban bike-sharing system: A case study based on real-time data of a public bicycle system. Sustainability 2019, 11, 5425. [Google Scholar] [CrossRef] [Green Version]
- Macioszek, E.; Świerk, P.; Kurek, A. The bike-sharing system as an element of enhancing sustainable mobility—A case study based on a city in Poland. Sustainability 2020, 12, 3285. [Google Scholar] [CrossRef] [Green Version]
- Żochowska, R.; Jacyna, M.; Kłos, M.J.; Soczówka, P. A GIS-based method of the assessment of spatial integration of bike-sharing stations. Sustainability 2021, 13, 3894. [Google Scholar] [CrossRef]
- Bąk, A.; Nosal Hoy, K.; Solecka, K. Multiple Criteria Evaluation of the Planned Bikesharing System in Jaworzno. In Smart and Green Solutions for Transport Systems. TSTP 2019. Advances in Intelligent Systems and Computing; Sierpiński, G., Ed.; Springer: Cham, Switzerland, 2020; Volume 1091, ISBN 978-3-030-35542-5. [Google Scholar] [CrossRef]
- Blitz, A.; Lanzendorf, M. Mobility design as a means of promoting non-motorised travel behaviour? A literature review of concepts and findings on design functions. J. Transp. Geogr. 2020, 87, 102778. [Google Scholar] [CrossRef]
- Börjesson, M.; Hamilton, C.J.; Näsman, P.; Papaix, C. Factors driving public support for road congestion reduction policies: Congestion charging, free public transport and more roads in Stockholm, Helsinki and Lyon. Transp. Res. A Policy Pract. 2015, 78, 452–462. [Google Scholar] [CrossRef]
- Morton, C.; Lovelace, R.; Anable, J. Exploring the effect of local transport policies on the adoption of low emission vehicles: Evidence from the London Congestion Charge and Hybrid Electric Vehicles. Transp. Policy 2017, 60, 34–46. [Google Scholar] [CrossRef]
- Piatkowski, D.P.; Marshall, W.E.; Krizek, K.J. Carrots versus sticks: Assessing intervention effectiveness and implementation challenges for active transport. J. Plan. Educ. Res. 2019, 39, 50–64. [Google Scholar] [CrossRef]
- Scarinci, R.; Rast, F.; Bierlaire, M. Needed reduction in mobility energy consumption to meet the goal of a 2000-watt society. Transp. Res. Part A Policy Pract. 2017, 101, 133–148. [Google Scholar] [CrossRef]
- Gerlough, D.L.; Huber, M.J. Traffic Flow Theory; TRB Special Report 165; Transportation Research Board National Research Council: Washington, DC, USA, 1975; ISBN 0309024595. [Google Scholar]
- Williams, H.C.W.L. On the Formation of Travel Demand Models and Economic Evaluation Measures of User Benefit. Environ. Plan. A Econ. Space 1977, 9, 285–344. [Google Scholar] [CrossRef]
- Jayakrisham, R.; Mahmassani, H.S.; Yu, T.Y. An evaluation tool for advanced traffic information and management systems in urban networks. Transp. Res. Part C Emerg. Technol. 1994, 2, 129–147. [Google Scholar] [CrossRef]
- May, A.D. Traffic Flow Fundamentals; Prentice-Hall: Englewood Cliffs, NJ, USA, 1990. [Google Scholar]
- Michalopoulos, P.G. Analysis of traffic flows at complex congested arterials. Transp. Res Rec 1988, 1194, 77–86. [Google Scholar]
- Cascetta, E. Transport Systems Analysis. Models and Applications, 2nd ed.; Springer Optimization and Its Application: New York, NY, USA, 2009; ISBN 9780387758565. [Google Scholar]
- de Ortuzar, J.D.; Willumsen, L.G.; Ortúzar, J.D.D.; Willumsen, L.G. Modelling Transport; John Wiley & Sons, Ltd: Hoboken, NJ, USA, April 2011; ISBN ISBN 9780470760390. [Google Scholar] [CrossRef]
- Barcelo, J. Fundamentals of Traffic Simulation (International Series in Operations Research & Management Science); Springer: New York, NY, USA; Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; London, UK, 2010; ISBN 9781441961419. [Google Scholar]
- Heller, B. Deliverable 4.1. Exploring prediction perspectives. An open, Sustainable, Ubiquitous Data and Service Ecosystem for Efficient, Effective, Safe, Resilient Mobility in Metropolitan Areas—SETA; European Commission: Sheffield, UK, 1 February 2016. [Google Scholar]
- Kaparias, I.; Zavitsas, K.; Bell, M.G.H. State-of-the-Art of Urban Traffic Management Policies and Technologies; Imperial College London: London, UK, 2010. [Google Scholar]
- May, A.D.; Shepherd, S.P.; Timms, P. Optimal transport strategies for European cities. Transportation 2000, 27, 285–315. [Google Scholar] [CrossRef]
- Boile, M.P.; Ozbay, K. The Future of Transportation Modeling; New Jersey Department of Transportation, Federal Highway Administration: West Trenton, Ewing Township, NJ, USA, 2005.
- Aziz, H.M.A.; Park, B.H.; Morton, A.; Stewart, R.N.; Hilliard, M.; Maness, M. A high resolution agent-based model to support walk-bicycle infrastructure investment decisions: A case study with New York City. Transp. Res. Part C Emerg. Technol. 2018, 86, 280–299. [Google Scholar] [CrossRef]
- Rybarczyk, G. Simulating bicycle wayfinding mechanisms in an urban environment. Urban Plan. Transp. Res. 2014, 2, 89–104. [Google Scholar] [CrossRef] [Green Version]
- Shan, X.; Li, Z.; Chen, X.; Ye, J. A Modified Cellular Automaton Approach for Mixed Bicycle Traffic Flow Modeling. Discret. Dyn. Nat. Soc. 2015, 2015, 213204. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Zilske, M.; Rao, K.R.; Nagel, K. An elegant and computationally efficient approach for heterogeneous traffic modelling using agent based simulation. Procedia Comput. Sci. 2015, 52, 962–967. [Google Scholar] [CrossRef] [Green Version]
- Kucharski, R.; Drabicki, A.; Żyłka, K.; Szarata, A. Multichannel queueing behaviour in urban bicycle traffic. Eur. J. Transp. Infrastruct. Res. 2019, 19, 116–141. [Google Scholar] [CrossRef]
- Nielsen, T.A.S.; Skov-Petersen, H. Bikeability—Urban structures supporting cycling. Effects of local, urban and regional scale urban form factors on cycling from home and workplace locations in Denmark. J. Transp. Geogr. 2018, 69, 36–44. [Google Scholar] [CrossRef]
- Di Mascio, P.; Fusco, G.; Grappasonni, G.; Moretti, L.; Ragnoli, A. Geometrical and functional criteria as a methodological approach to implement a new cycle path in an existing Urban Road Network: A Case study in Rome. Sustainability 2018, 10, 2951. [Google Scholar] [CrossRef] [Green Version]
- Shui, C.S.; Chan, W.L. Optimization of a bikeway network with selective nodes. Sustainability 2019, 11, 6531. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.J.; Shyu, G.S.; Fang, W.T.; Cheng, B.Y. Using multivariate statistical methods to analyze high-quality bicycle path service systems: A case study of popular bicycle paths in Taiwan. Sustainability 2020, 12, 7185. [Google Scholar] [CrossRef]
- McCahill, C.; Garrick, N.W. The Applicability of Space Syntax to Bicycle Facility Planning. Transp. Res. Rec. J. Transp. Res. Board 2008, 2074, 46–51. [Google Scholar] [CrossRef]
- Dill, J.; Voros, K. Factors Affecting Bicycling Demand: Initial Survey Findings from the Portland, Oregon, Region. Transp. Res. Rec. J. Transp. Res. Board 2007, 2031, 9–17. [Google Scholar] [CrossRef]
- Xing, Y.; Handy, S.L.; Buehler, T.J. Factors Associated with Bicycle Ownership and Use: A Study of 6 Small U.S. Cities. In Proceedings of the 87th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 13–17 January 2008. [Google Scholar]
- Ryu, S. A bicycle origin-destination matrix estimation based on a two-stage procedure. Sustainability 2020, 12, 2951. [Google Scholar] [CrossRef] [Green Version]
- Boettge, B.; Hall, D.M.; Crawford, T. Assessing the bicycle network in St. Louis: A place-based user-centered approach. Sustainability 2017, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- Furth, P.G.; Mekuria, M.C.; Nixon, H. Network Connectivity for Low-Stress Bicycling. Transp. Res. Rec. J. Transp. Res. Board 2016, 2587, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Useche, S.; Montoro, L.; Alonso, F.; Oviedo-Trespalacios, O. Infrastructural and human factors affecting safety outcomes of cyclists. Sustainability 2018, 10, 299. [Google Scholar] [CrossRef] [Green Version]
- Westin, K.; Nordlund, A.; Jansson, J. Goal Framing as a Tool for Changing People’s Car Travel Behavior in Sweden. Sustainability 2020, 12, 3695. [Google Scholar] [CrossRef]
- Kim, J.; Choi, K.; Kim, S.; Fujii, S. How to promote sustainable public bike system from a psychological perspective? Int. J. Sustain. Transp. 2017, 11, 272–281. [Google Scholar] [CrossRef]
- García, J.; Arroyo, R.; Mars, L.; Ruiz, T. The influence of attitudes towards cycling and walking on travel intentions and actual behavior. Sustainability 2019, 11, 2554. [Google Scholar] [CrossRef] [Green Version]
- Pijoan, A.; Kamara-Esteban, O.; Alonso-Vicario, A.; Borges, C.E. Transport choice modeling for the evaluation of new transport policies. Sustainability 2018, 10, 1230. [Google Scholar] [CrossRef] [Green Version]
- Santos, G.; Maoh, H.; Potoglou, D.; von Brunn, T. Factors influencing modal split of commuting journeys in medium-size European cities. J. Transp. Geogr. 2013, 30, 127–137. [Google Scholar] [CrossRef]
- Aultman-Hall, L.; Hall, F.L.; Baetz, B.B. Analysis of Bicycle Commuter Routes Using Geographic Information Systems: Implications for Bicycle Planning. Transp. Res. Rec. J. Transp. Res. Board 1997, 1578, 102–110. [Google Scholar] [CrossRef]
- Dill, J.; Gliebe, J. Understanding and Measuring Bicycling Behavior: A Focus on Travel Time and Route Choice; OTREC-RR-08-03; Oregon Transportation Research and Education Consortium: Portland, OR, USA, December 2008. [Google Scholar]
- Nikitas, A. How to save bike-sharing: An evidence-based survival toolkit for policy-makers and mobility providers. Sustainability 2019, 11, 3206. [Google Scholar] [CrossRef] [Green Version]
- Heinen, E.; van Wee, B.; Maat, K. Commuting by Bicycle: An Overview of the Literature. Transp. Rev. 2010, 30, 59–96. [Google Scholar] [CrossRef]
- Miranda-Moreno, L.F.; Nosal, T. Weather or Not to Cycle: Temporal Trends and Impact of Weather on Cycling in an Urban Environment. Transp. Res. Rec. J. Transp. Res. Board 2011, 2247, 42–52. [Google Scholar] [CrossRef]
- Holmgren, J.; Ivehammar, P. Mode choice in home-to-work travel in mid-size towns: The competitiveness of public transport when bicycling and walking are viable options. Transp. Res. Procedia 2020, 48, 1635–1643. [Google Scholar] [CrossRef]
- Pogodzinska, S.; Kiec, M.; D’Agostino, C. Bicycle Traffic Volume Estimation Based on GPS Data. Transp. Res. Procedia 2020, 45, 874–881. [Google Scholar] [CrossRef]
- Pazdan, S.; Kiec, M.; D’Agostino, C. Impact of environment on bicycle travel demand—Assessment using bikeshare system data. Sustain. Cities Soc. 2021, 67, 102724. [Google Scholar] [CrossRef]
- Trost, S.G.; Owen, N.; Bauman, A.E.; Sallis, J.F.; Brown, W. Correlates of adults’ participation in physical activity: Review and update. Med. Sci. Sports Exerc. 2002, 34, 1996–2001. [Google Scholar] [CrossRef]
- Choi, J.; Lee, M.; Lee, J.K.; Kang, D.; Choi, J.Y. Correlates associated with participation in physical activity among adults: A systematic review of reviews and update. BMC Public Health 2017, 17, 356. [Google Scholar] [CrossRef]
- Turner, S.; Shunk, G.; Hottenstein, A. Development of a Methodology to Estimate Bicycle and Pedestrian Travel Demand; Texas Transportation Institute, Research Project Number 0-1723, Report 1723-S; Texas Department of Transportation, Federal Highway Administration: Austin, TX, USA, September 1998.
- Landis, B.W. The Bicycle System Performance Measures: The Intersection Hazard and Latent Demand Score Models. ITE J. 1996, 66, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Hankey, S.; Lindsey, G.; Wang, X.; Borah, J.; Hoff, K.; Utecht, B.; Xu, Z. Estimating use of non motorized infrastructure: Models of bicycle and pedestrian traffic in Minneapolis, MN. Landsc. Urban Plan. 2012, 107, 307–316. [Google Scholar] [CrossRef]
- Fagnant, D.J.; Kockelman, K. A direct-demand model for bicycle counts: The impacts of level of service and other factors. Environ. Plan. B Plan. Des. 2015, 43, 93–107. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Mondschein, A.; Buehler, R.; Hankey, S. Adding temporal information to direct-demand models: Hourly estimation of bicycle and pedestrian traffic in Blacksburg, VA. Transp. Res. Part D Transp. Environ. 2018, 63, 244–260. [Google Scholar] [CrossRef]
- McDaniel, S.; Lowry, M.B.; Dixon, M. Using Origin-Destination Centrality to Estimate Directional Bicycle Volumes. Transp. Res. Rec. J. Transp. Res. Board 2014, 2430, 12–19. [Google Scholar] [CrossRef]
- Cooper, C.H.V. Using spatial network analysis to model pedal cycle flows, risk and mode choice. J. Transp. Geogr. 2017, 58, 157–165. [Google Scholar] [CrossRef]
- Lindsey, G.; Nordback, K.; Figliozzi, M.A. Institutionalizing Bicycle and Pedestrian Monitoring Programs in Three States. Transp. Res. Rec. J. Transp. Res. Board 2014, 2443, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.G.; Ryan, S.; Donlon, J.; Ledbetter, L.; Ragland, D.R.; Arnold, L.S. Seamless Travel: Measuring Bicycle and Pedestrian Activity in San Diego County and Its Relationship to Land Use, Transportation, Safety, and Facility Type; PATH Research Report: Berkeley, CA, USA, 1 February 2010. [Google Scholar]
- Wallentin, G.; Loidl, M. Agent-based Bicycle Traffic Model for Salzburg City. GI_Forum J. Geogr. Inf. Sci. 2015, 1, 558–566. [Google Scholar] [CrossRef]
- Ziemke, D.; Metzler, S.; Nagel, K. Modeling bicycle traffic in an agent-based transport simulation. Procedia Comput. Sci. 2017, 109, 923–928. [Google Scholar] [CrossRef]
- DKS Associates; The University of California. Assessment of Local Models and Tools for Analyzing Smart-Growth Strategies; Final Report Prepared for the State of California Business, Transportation and Housing Agency, California Department; The State of California Business, Transportation and Housing Agency, California Department: Sacramento, CA, USA, 2007.
- Transportation Research Board. Smart Growth and Urban Goods Movement; NCFRP Report 24; TRB Publication: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Dimitriou, H.T.; Thompson, R. Strategic Planning for Regional Development in UK; Routledge: Abingdon, UK, 2008. [Google Scholar]
- Banister, D.; Hickman, R. Transport futures: Thinking the unthinkable. Transp. Policy 2013, 29, 283–293. [Google Scholar] [CrossRef]
- Bliemer, M.C.J.; Mulley, C.; Moutou, C.J. Handbook on Transport and Urban Planning in the Developed World. Edward Elgar Publishing Ltd: Cheltenham, UK; Northampton, MA, USA, February 2016. [Google Scholar]
- Gudmundsson, H. Analysing Models as a Knowledge Technology in Transport Planning. Transp. Rev. 2011, 31, 145–159. [Google Scholar] [CrossRef]
- Hanson, S.; Hanson, P. Problems in integrating bicycle travel into the urban transportation planning process. Transp. Res. Rec. J. Transp. Res. Board 1976, 570, 24–30. [Google Scholar]
- Nosal, K.; Starowicz, W. Evaluation of influence of mobility management instruments implemented in separated areas of the city on the changes in modal split. Arch. Transpor 2015, 35, 41–52. [Google Scholar] [CrossRef]
- Jacyna, M.; Wasiak, M.; Kłodawski, M.; Gołȩbiowski, P. Modelling of Bicycle Traffic in the Cities Using VISUM. Procedia Eng. 2017, 187, 435–441. [Google Scholar] [CrossRef]
- Oskarbski, J.; Jamroz, K.; Budziszewski, T.; Birr, K.; Oskarbski, G.; Gumińska, L.; Oskarbska, I.; Michalski, L. Report on the Traffic Model Development for SUMP Implementation Status Report G3.1, Civitas Dyn@mo Project; Gdansk University of Technology: Gdańsk, Poland, 2016; Available online: https://civitas.eu/sites/default/files/d3.3_impl_stat_rep_g3.1_report_on_the_traffic_model_development_for_sump_final_0.pdf (accessed on 1 April 2021).
- Project FLOW. HORIZON. 2020. Available online: http://h2020-flow.eu/ (accessed on 20 March 2021).
- PTV Group. VISUM Fundamentals; PTV Group: Karlsruhe, Germany, 2012. [Google Scholar]
- Rupi, F.; Poliziani, C.; Schweizer, J. Analysing the dynamic performances of a bicycle network with a temporal analysis of GPS traces. Case Stud. Transp. Policy 2020, 8, 770–777. [Google Scholar] [CrossRef]
- Birr, K. Mode Choice Modeling for Urban Areas. Ph.D. Thesis, Cracow University of Technology, Kraków, Poland, 2018. [Google Scholar]
- Birr, K. Mode Choice Modelling for Urban Areas. Tech. Trans. 2018, 6, 67–77. [Google Scholar] [CrossRef]
- Daganzo, C.F.; Sheffi, Y. On Stochastic Models of Traffic Assignment. Transp. Sci. 1977, 11, 253–274. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Oh, J.S.; Jayakrishnan, R. Effects of user equilibrium assumptions on network traffic pattern. KSCE J. Civ. Eng. 2009, 13, 117–127. [Google Scholar] [CrossRef]
- Winters, M.; Davidson, G.; Kao, D.; Teschke, K. Motivators and deterrents of bicycling: Comparing influences on decisions to ride. Transportation 2011, 38, 153–168. [Google Scholar] [CrossRef]
- Chen, P.; Shen, Q.; Childress, S. A GPS data-based analysis of built environment influences on bicyclist route preferences. Int. J. Sustain. Transp. 2018, 12, 218–231. [Google Scholar] [CrossRef]
- Misra, A.; Watkins, K. Modeling Cyclist Route Choice using Revealed Preference Data: An Age and Gender Perspective. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 145–154. [Google Scholar] [CrossRef]
- Veillette, M.-P.; Gris’e, E.; El-Geneidy, A. Does One Bicycle Facility Type Fit All? Evaluating the Stated Usage of Different Types of Bicycle Facilities among Cyclists in Quebec City, Canada. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 650–663. [Google Scholar] [CrossRef]
- Lu, W.; Scott, D.M.; Dalumpines, R. Understanding bike share cyclist route choice using GPS data: Comparing dominant routes and shortest paths. J. Transp. Geogr. 2018, 71, 172–181. [Google Scholar] [CrossRef]
- Kaplan, S.; Luria, R.; Prato, C.G. The relation between cyclists’ perceptions of drivers, self-concepts and their willingness to cycle in mixed traffic. Transp. Res. Part F Traffic Psychol. Behav. 2019, 62, 45–57. [Google Scholar] [CrossRef]
- Alattar, M.A.; Cottrill, C.; Beecroft, M. Modelling cyclists’ route choice using Strava and OSMnx: A case study of the City of Glasgow. Transp. Res. Interdiscip. Perspect. 2021, 9, 100301. [Google Scholar] [CrossRef]
- Broach, J.; Dill, J.; Gliebe, J. Where do cyclists ride? A route choice model developed with revealed preference GPS data. Transp. Res. Part A Policy Pract. 2012, 46, 1730–1740. [Google Scholar] [CrossRef]
- Ton, D.; Cats, O.; Duives, D.; Hoogendoorn, S. How Do People Cycle in Amsterdam, Netherlands?: Estimating Cyclists’ Route Choice Determinants with GPS Data from an Urban Area. Transp. Res. Rec. J. Transp. Res. Board 2017, 2662, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Szabo, N.; Kretz, T.; Sielemann, S. Extended Versions of PTV Visum, PTV Vissim and PTV Viswalk; D2.2 Flow Report; PTV AG: Karlsruhe, Germany, 2016; Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5aff61994&appId=PPGMS (accessed on 5 June 2021).
- ZKM Gdynia. Transport Preferences and Behaviour of Residents of Gdynia; Marketing Survey Report 2015; ZKM: Gdynia, Poland, 2015. [Google Scholar]
- ZKM Gdynia. Transport Preferences and Behaviour of Residents of Gdynia; Marketing Survey Report 2018; ZKM: Gdynia, Poland, 2018. [Google Scholar]
- Oskarbski, J.; Zawisza, M.; Miszewski, M. Information system for drivers within the integrated traffic management system—TRISTAR. In Tools of Transport Telematics; TST 2015; Communications in Computer and Information Science; Mikulski, J., Ed.; Springer: Cham, Switzerland, 2015; Volume 531, ISBN 9783319245768. [Google Scholar] [CrossRef]
- Le Pira, M.; Marcucci, E.; Gatta, V.; Ignaccolo, M.; Inturri, G.; Pluchino, A. Towards a decision-support procedure to foster stakeholder involvement and acceptability of urban freight transport policies. Eur. Transp. Res. Rev. 2017, 9, 54. [Google Scholar] [CrossRef]
- Zhong, T.; Young, R.K.; Lowry, M.; Rutherford, G.S. A model for public involvement in transportation improvement programming using participatory Geographic Information Systems. Comput. Environ. Urban Syst. 2008, 32, 123–133. [Google Scholar] [CrossRef]
- Piantanakulchai, M.; Saengkhao, N. Evaluation of alternatives in transportation planning using multi-stakeholders multi-objectives AHP modelling. Proc. East. Asia Soc. Transp. Stud. 2003, 4, 1613–1628. [Google Scholar]
- Dueñas, M.; Campi, M.; Olmos, L. Changes in mobility and socioeconomic conditions in Bogotá city during the COVID-19 outbreak. Humanit. Soc. Sci. Commun. 2021, 8, 101. [Google Scholar] [CrossRef]
- Dias, G.; Arsenio, E.; Ribeiro, P. The Role of Shared E-Scooter Systems in Urban Sustainability and Resilience during the COVID-19 Mobility Restrictions. Sustainability 2021, 13, 7084. [Google Scholar] [CrossRef]
- Jacyna, M.; Żochowska, R.; Sobota, A.; Wasiak, M. Scenario analyses of exhaust emissions reduction through the introduction of electric vehicles into the city. Energies 2021, 14, 2030. [Google Scholar] [CrossRef]
- Corchado, J.M.; Chamoso, P.; Hernández, G.; San, A.; Gutierrez, R.; Camacho, A.R.; González-briones, A.; Pinto-santos, F.; Goyenechea, E.; Garcia-retuerta, D.; et al. Deepint.net: A Rapid Deployment Platform for Smart Territories. Sensors 2021, 21, 236. [Google Scholar] [CrossRef] [PubMed]
- Jing, C.; Du, M.; Li, S.; Liu, S. Geospatial dashboards for monitoring smart city performance. Sustainability 2019, 11, 5648. [Google Scholar] [CrossRef] [Green Version]
- Handy, S.; van Wee, B.; Kroesen, M. Promoting Cycling for Transport: Research Needs and Challenges. Transp. Rev. 2014, 34, 4–24. [Google Scholar] [CrossRef]
- Shen, L.; Stopher, P.R. Review of GPS Travel Survey and GPS Data-Processing Methods. Transp. Rev. 2014, 34, 316–334. [Google Scholar] [CrossRef]
- Loidl, M.; Stutz, P.; Fernandez Lapuente de Battre, M.D.; Schmied, C.; Reich, B.; Bohm, P.; Sedlacek, N.; Niebauer, J.; Niederseer, D. Merging self-reported with technically sensed data for tracking mobility behavior in a naturalistic intervention study. Insights from the GISMO study. Scand. J. Med. Sci. Sports 2020, 30, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, M.; Dias, C.; Muley, D.; Shahin, M. Exploring the impacts of COVID-19 on travel behavior and mode preferences. Transp. Res. Interdiscip. Perspect. 2020, 8, 100255. [Google Scholar] [CrossRef]
- De Vos, J. The effect of COVID-19 and subsequent social distancing on travel behavior. Transp. Res. Interdiscip. Perspect. 2020, 5, 100121. [Google Scholar] [CrossRef]
- González-Briones, A.; Hernandez, G.; Corchado, J.M.; Omatu, S.; Mohamad, M.S. Machine Learning Models for Electricity Consumption Forecasting: A Review. In Proceedings of the 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 1–3 May 2019. [Google Scholar] [CrossRef]
- Pooley, C.G.; Horton, D.; Scheldeman, G.; Mullen, C.; Jones, T.; Tight, M.; Jopson, A.; Chisholm, A. Policies for promoting walking and cycling in England: A view from the street. Transp. Policy 2013, 27, 66–72. [Google Scholar] [CrossRef]
- Rudolph, F. Analysing the Impact of Walking and Cycling on Urban Road Performance: A Conceptual Framework; Project FLOW; European Commission: Brussels Belgium, January 2017; Available online: http://h2020-flow.eu/fileadmin/templates/documents/Deliverables/FLOW_Conceptual_Framework_FINAL_web.pdf (accessed on 11 August 2020).
- Oskarbski, J.; Jamroz, K. Reliability and Safety As An Objective of Intelligent Transport Systems in Urban Areas. J. Konbin 2015, 34, 59. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, S.; Cohen, A.; Zohdy, I. Shared Mobility: Current Practices and Guiding Principles; Report No. FHWA-HOP-16-022; U.S. Department of Transportation, Federal Highway Administration: Washington, DC, USA, 2016.
- Tyndall, J. Free-floating carsharing and extemporaneous public transit substitution. Res. Transp. Econ. 2019, 74, 21–27. [Google Scholar] [CrossRef]
- Aguilera-García, Á.; Gomez, J.; Sobrino, N.; Vinagre Díaz, J.J. Moped Scooter Sharing: Citizens’ Perceptions, Users’ Behavior, and Implications for Urban Mobility. Sustainability 2021, 13, 6886. [Google Scholar] [CrossRef]
- Scott, D.M.; Lu, W.; Brown, M.J. Route choice of bike share users: Leveraging GPS data to derive choice sets. J. Transp. Geogr. 2021, 90, 102903. [Google Scholar] [CrossRef]
- Fitch, D.T.; Handy, S.L. Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA. J. Transp. Geogr. 2020, 85, 102705. [Google Scholar] [CrossRef]
- Rybarczyk, G.; Wu, C. Bicycle facility planning using GIS and multi-criteria decision analysis. Appl. Geogr. 2010, 30, 282–293. [Google Scholar] [CrossRef]
- Bíl, M.; Andrášik, R.; Kubeček, J. How comfortable are your cycling tracks? A new method for objective bicycle vibration measurement. Transp. Res. Part C Emerg. Technol. 2015, 56, 415–425. [Google Scholar] [CrossRef]
- Joo, S.; Oh, C.; Jeong, E.; Lee, G. Categorizing bicycling environments using GPS-based public bicycle speed data. Transp. Res. Part C Emerg. Technol. 2015, 56, 239–250. [Google Scholar] [CrossRef]
- Landis, B.W.; Vattikuti, V.R.; Brannick, M.T. Real-time human perceptions: Toward a bicycle level of service. Transp. Res. Rec. 1997, 1578, 119–126. [Google Scholar] [CrossRef]
Scenario | Traffic Demand (Cyclists/ Hour) | Bicycle Traffic Demand Increase (%) | Bicycle Network Performance | |
---|---|---|---|---|
Total Travel Time (Pers-h) | Total Travelled Distance (Pers-km) | |||
0—base | 1689 | – | 556.0 | 12,381.1 |
1 | 1710 | 1.24 | 549.6 | 12,370.6 |
2 | 1704 | 0.89 | 543.4 | 12,115.0 |
3 | 1700 | 0.65 | 554.6 | 12,395.3 |
4 | 1693 | 0.24 | 553.0 | 11,490.7 |
5 | 1703 | 0.83 | 543.6 | 11,910.2 |
6 | 1702 | 0.77 | 552.6 | 12,375.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oskarbski, J.; Birr, K.; Żarski, K. Bicycle Traffic Model for Sustainable Urban Mobility Planning. Energies 2021, 14, 5970. https://doi.org/10.3390/en14185970
Oskarbski J, Birr K, Żarski K. Bicycle Traffic Model for Sustainable Urban Mobility Planning. Energies. 2021; 14(18):5970. https://doi.org/10.3390/en14185970
Chicago/Turabian StyleOskarbski, Jacek, Krystian Birr, and Karol Żarski. 2021. "Bicycle Traffic Model for Sustainable Urban Mobility Planning" Energies 14, no. 18: 5970. https://doi.org/10.3390/en14185970
APA StyleOskarbski, J., Birr, K., & Żarski, K. (2021). Bicycle Traffic Model for Sustainable Urban Mobility Planning. Energies, 14(18), 5970. https://doi.org/10.3390/en14185970