Application of the Sinusoidal Voltage for Detection of the Resonance in Inductive Voltage Transformers
Abstract
:1. Introduction
2. The Laboratory Setup and Tests Conditions
- 50 Hz: ±0.015%\±0.013°;
- 5 kHz: ±0.071%\±0.137°.
- 50 Hz: ±0.104%\±0.171°;
- 5 kHz: ±0.216%\±0.338°.
- 50 Hz: ±0.507%\±0.535°;
- 5 kHz: ±0.178%\±2.160°.
3. The Results of the Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
(−) | the maximum negative values of voltage error and phase displacement |
(+) | the maximum positive values of voltage error and phase displacement |
ΔU | voltage error |
ψURVD | the phase angle of sinusoidal voltage or a harmonic in the output of RVD with respect to its main component |
ψUTVT | the phase angle of sinusoidal voltage or a harmonic component in the secondary voltage of TVT with respect to the reference sinusoidal voltage from RVD or the main component of the non-sinusoidal voltage |
“50 Hz”, “49 Hz” and “51 Hz” dots | presents the results of the transformation accuracy of a given harmonic with main component of frequency 50 Hz, 49 Hz, and 51 Hz, respectively |
AWG | arbitrary waveform generator |
B(H) curve | magnetization characteristic of magnetic core |
CLo | load capacitor |
DA | differential amplifier |
DPM | digital power meter |
MV | medium voltage |
PA | power amplifier |
RMS | root mean square |
RVD | reference voltage divider |
sin. app. | sinusoidal approximation of transformation accuracy for harmonics of distorted voltage determined for transformation of sinusoidal primary voltage |
SVT | step-up voltage transformer |
TVT | tested voltage transformer |
UTVT/URVD | the RMS value of the sinusoidal voltage or a harmonic of the non-sinusoidal voltage in the secondary/output voltage of the TVT/RVD |
VT | voltage transformer |
φU | phase displacement |
References
- Kaczmarek, M.; Stano, E. Why Should We Test the Wideband Transformation Accuracy of Medium Voltage Inductive Voltage Transformers? Energies 2021, 14, 4432. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Brodecki, D. Transformation of Transient Overvoltages by Inductive Voltage Transformers. Sensors 2021, 21, 4167. [Google Scholar] [CrossRef] [PubMed]
- Buchhagen, C.; Fischer, M.; Hofmann, L.; Daumling, H. Metrological determination of the frequency response of inductive voltage transformers up to 20 kHz. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Buchhagen, C.; Reese, C.; Hofmann, L.; Daumling, H. Calculation of the frequency response of inductive medium voltage transformers. In Proceedings of the 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), Florence, Italy, 9–12 September 2012; pp. 794–799. [Google Scholar] [CrossRef]
- Zhao, S.; Li, H.; Crossley, P.; Ghassemi, F. Test and analysis of harmonic responses of high voltage instrument voltage transformers. In Proceedings of the 12th IET International Conference on Developments in Power System Protection (DPSP 2014), Copenhagen, Denmark, 31 March–3 April 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Lamedica, R.; Pompili, M.; Sangiovanni, S.; Calcara, L.; Ruvio, A.; Cauzillo, B.A. Transient-state analysis of MV instrument transformers. Electr. Power Syst. Res. 2019, 168, 162–168. [Google Scholar] [CrossRef]
- Faifer, M.; Laurano, C.; Ottoboni, R.; Toscani, S.; Zanoni, M. Nonlinear Behavioral Modeling of Voltage Transformers in the Frequency Domain: Comparing Different Approaches. IEEE Trans. Instrum. Meas. 2020, 69, 8137–8145. [Google Scholar] [CrossRef]
- Mingotti, A.; Baldi, A.; Peretto, L.; Tinarelli, R. A General Easy-to-Use Expression for Uncertainty Evaluation in Residual Voltage Measurement. IEEE Trans. Instrum. Meas. 2019, 69, 1576–1584. [Google Scholar] [CrossRef]
- Dirik, H.; Duran, I.U.; Gezegin, C. A Computation and Metering Method for Harmonic Emissions of Individual Consumers. IEEE Trans. Instrum. Meas. 2019, 68, 412–420. [Google Scholar] [CrossRef]
- Castello, P.; Laurano, C.; Muscas, C.; Pegoraro, P.A.; Toscani, S.; Zanoni, M. Harmonic Synchrophasors Measurement Algorithms with Embedded Compensation of Voltage Transformer Frequency Response. IEEE Trans. Instrum. Meas. 2021, 70, 9001310. [Google Scholar] [CrossRef]
- Moghbel, M.; Masoum, M.A.S.; Fereidouni, A.; Deilami, S. Optimal sizing, siting and operation of custom power devices with STATCOM and APLC functions for real-time reactive power and network voltage quality control of smart grid. IEEE Trans. Smart Grid 2018, 9, 5564–5575. [Google Scholar] [CrossRef]
- Elphick, S.; Gosbell, V.; Smith, V.; Perera, S.; Ciufo, P.; Drury, G. Methods for Harmonic Analysis and Reporting in Future Grid Applications. IEEE Trans. Power Deliv. 2017, 32, 989–995. [Google Scholar] [CrossRef]
- Lipsky, A.; Miteva, N.; Lokshin, E. Errors in measuring of high voltage harmonics in the medium voltage power networks. In Proceedings of the 2014 IEEE International Energy Conference (ENERGYCON), Cavtat, Croatia, 13–16 May 2014; pp. 153–156. [Google Scholar] [CrossRef]
- Garnacho, F.; Khamlichi, A.; Rovira, J. The design and characterization of a prototype wideband voltage sensor based on a resistive divider. Sensors 2017, 17, 2657. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Hu, B.; Tong, Y.; Yuan, T.; Yang, F. Characteristic study of electronic voltage transformers’ accuracy on harmonics. In Proceedings of the 2016 China International Conference on Electricity Distribution (CICED), Xi’an, China, 10–13 August 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Zucca, M.; Modarres, M.; Giordano, D.; Crotti, G. Accurate Numerical Modelling of MV and HV Resistive Dividers. IEEE Trans. Power Deliv. 2017, 32, 1645–1652. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Stano, E. Measuring system for testing the transformation accuracy of harmonics of distorted voltage by medium voltage instrument transformers. Measurement 2021, 181, 109628. [Google Scholar] [CrossRef]
- Letizia, P.S.; Crotti, G.; Giordano, D.; Delle Femine, A.; Gallo, D.; Landi, C.; Luiso, M. Low cost procedure for frequency characterization of voltage instrument transformers. In Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 20–23 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Gianesini, B.M.; Brito, V.H.F.; Lima, R.N.C.; Santos, I.N. Frequency response test of MV inductive voltage transformers for power quality applications. Renew. Energy Power Qual. J. 2020, 18, 556–561. [Google Scholar] [CrossRef]
- Crotti, G.; Giordano, D.; D’Avanzo, G.; Letizia, P.S.; Luiso, M. A New Industry-Oriented Technique for the Wideband Characterization of Voltage Transformers. Meas. J. Int. Meas. Confed. 2021, 182, 109674. [Google Scholar] [CrossRef]
- Stiegler, R.; Meyer, J.; Kilter, J.; Konzelmann, S. Assessment of voltage instrument transformers accuracy for harmonic measurements in transmission systems. In Proceedings of the 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), Belo Horizonte, Brazil, 16–19 October 2016; pp. 152–157. [Google Scholar] [CrossRef]
- IEC 61869-1. Instrument transformers–Part 1: General Requirements; International Electrotechnical Commission: Geneva, Switzerland, 2007. [Google Scholar]
- IEC 61869-3. Instrument transformers–Part 3: Additional Requirements for Inductive Voltage Transformers; International Electrotechnical Commission: Geneva, Switzerland, 2011. [Google Scholar]
- Kaczmarek, M.; Stano, E. Nonlinearity of Magnetic Core in Evaluation of Current and Phase Errors of Transformation of Higher Harmonics of Distorted Current by Inductive Current Transformers. IEEE Access 2020, 8, 118885–118898. [Google Scholar] [CrossRef]
- Stano, E.; Kaczmarek, M. Wideband self-calibration method of inductive cts and verification of determined values of current and phase errors at harmonics for transformation of distorted current. Sensors 2020, 20, 2167. [Google Scholar] [CrossRef] [Green Version]
- Brodecki, D.; Stano, E.; Andrychowicz, M.; Kaczmarek, P. Emc of wideband power sources. Energies 2021, 14, 1457. [Google Scholar] [CrossRef]
- Kaczmarek, M.L.; Stano, E. Application of the inductive high current testing transformer for supplying of the measuring circuit with distorted current. IET Electr. Power Appl. 2019, 13, 1310–1317. [Google Scholar] [CrossRef]
- IEC 61869-11. Instrument transformers–Part 11: Additional Requirements for Low Power Passive Voltage Transformers; International Electrotechnical Commission: Geneva, Switzerland, 2017. [Google Scholar]
- Kaczmarek, M. Development and application of the differential voltage to single-ended voltage converter to determine the composite error of voltage transformers and dividers for transformation of sinusoidal and distorted voltages. Meas. J. Int. Meas. Confed. 2017, 101, 53–61. [Google Scholar] [CrossRef]
- Kaczmarek, M. The effect of distorted input voltage harmonics rms values on the frequency characteristics of ratio error and phase displacement of a wideband voltage divider. Electr. Power Syst. Res. 2019, 167, 1–8. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Szatilo, T. Reference voltage divider designed to operate with oscilloscope to enable determination of ratio error and phase displacement frequency characteristics of MV voltage transformers. Meas. J. Int. Meas. Confed. 2015, 68, 22–31. [Google Scholar] [CrossRef]
- Lesniewska, E.; Kaczmarek, M.; Stano, E. 3D Electromagnetic Field Analysis Applied to Evaluate the Accuracy of a Voltage Transformer under Distorted Voltage. Energies 2021, 14, 136. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczmarek, M.; Stano, E. Application of the Sinusoidal Voltage for Detection of the Resonance in Inductive Voltage Transformers. Energies 2021, 14, 7047. https://doi.org/10.3390/en14217047
Kaczmarek M, Stano E. Application of the Sinusoidal Voltage for Detection of the Resonance in Inductive Voltage Transformers. Energies. 2021; 14(21):7047. https://doi.org/10.3390/en14217047
Chicago/Turabian StyleKaczmarek, Michal, and Ernest Stano. 2021. "Application of the Sinusoidal Voltage for Detection of the Resonance in Inductive Voltage Transformers" Energies 14, no. 21: 7047. https://doi.org/10.3390/en14217047
APA StyleKaczmarek, M., & Stano, E. (2021). Application of the Sinusoidal Voltage for Detection of the Resonance in Inductive Voltage Transformers. Energies, 14(21), 7047. https://doi.org/10.3390/en14217047