An Experimental Performance Evaluation for a Swirl-Vane Separator Using an Air-Water Test Facility
Abstract
:1. Introduction
2. Experimental Test Facility and Methods
2.1. Half-Sclae Swirl-Vane Separator
2.2. Experimental Method for MCO
2.3. Prediction Model for the Two-Phase Pressure Drop
3. Experimental Results
3.1. MCO Test Condtions and Results
3.2. Improvement of the Emprical Correlation for Two-Phase Pressure Drop
3.3. Discusssion of the Empricial Correlation Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
C.V | coefficient of variation |
hydraulic diameter of a moisture separator (m) | |
Eu | Euler number |
g | acceleration due to gravity (m/s2) |
Fc | centrifugal force per unit volume (N/m3) |
G | mass flux (kg/m2 s) |
j | superficial velocity (m/s) |
j* | non-dimensional superficial velocity |
K | loss coefficient |
average mass flow rate (kg/s) | |
P | pressure (kPa) |
Reynolds number | |
swril-shape factor | |
t | sampling time (sec) |
Time (sec) | |
x | vapor quality |
averaged value | |
Greek symbols | |
void fraction | |
density (kg/m3) | |
homogeneous density (kg/m3) | |
standard deviation | |
two-phase pressure drop multiplier | |
Subscripts | |
1 | single-phase |
2 | two-phase |
a | air |
CE | combustion engineering type |
f | liquid phase |
g | gas phase |
i | index of sampling time |
LO | meaning of liquid only |
m | air/water model |
MFC | mass flow controller |
p | prototype model |
tot | total |
T | measurement time (s) |
w | water |
WH | westinghouse type |
References
- Paik, C.Y.; Mullen, G.; Knoess, C.; Griffith, P. Steam separator modeling for various nuclear reactor transients. Nucl. Eng. Des. 1988, 108, 83–97. [Google Scholar] [CrossRef]
- Green, S.J.; Hestroni, G. PWR steam generators. Int. J. Multiph. 1995, 21, 1–97. [Google Scholar] [CrossRef]
- Xiong, Z.; Lu, M.; Wang, M.; Gu, H.; Chen, X. Study on flow pattern and separation performance for air-water swirl-van separator. Ann. Nucl. Energy 2014, 63, 138–145. [Google Scholar] [CrossRef]
- Funahashi, H.; Hayashi, K.; Hosokawa, S.; Tomiyama, A. Study on two-phase swirling flows in a gas-liquid separator with three pick-off rings. Nucl. Eng. Des. 2016, 308, 205–213. [Google Scholar] [CrossRef]
- Liu, S.; Yang, L.L.; Zhang, D.; Xu, J.Y. Separation characteristics of the gas and liquid phases in a vane-type swirling flow field. Int. J. Multiph. Flow 2018, 107, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, A.C.; Stein, L.E. Gas Cyclones and Swirl Tubes, 2nd ed.; Springer: New York, NY, USA, 2007. [Google Scholar]
- Sun, F.T.; Xiangbo, L.; Ming, X.; Zhongning, S. The investigation on performance of steam generator stationary vane separator. Chin. J. Nucl. Sci. Eng. 1994, 15, 213–219. [Google Scholar]
- Liu, L.; Bai, B. Scaling laws for gas–liquid flow in swirl vane separators. Nucl. Eng. Des. 2016, 298, 229–239. [Google Scholar] [CrossRef]
- Mauro, G.; Sala, M.; Hetsroni, G. Improved Italian moisture separators (IIMS). Nucl. Eng. Des. 1990, 118, 179–192. [Google Scholar] [CrossRef]
- Katono, K.; Ishida, N.; Sumikawa, T.; Yasuda, K. Air-water Downscaled Experiments and Three-dimensional Two-phase Flow Simulations of Improved Steam Separator for Boiling Water Reactor. Nucl. Eng. Des. 2014, 278, 465–471. [Google Scholar] [CrossRef]
- Kim, K.; Kim, W.; Lee, J.; Jeon, W. Development and experimental validation for quantifying the moisture carryover in a moisture separator using an air/water test facility. Sci. Technol. Nucl. Install. 2021, 2021, 5522439. [Google Scholar] [CrossRef]
- Kim, W.; Lee, J.; Kim, K. Development of empirical correlation of two-phase pressure drop in moisture separator based on separated flow model. Energies 2021, 14, 4448. [Google Scholar] [CrossRef]
- Liu, L.; Ying, B.; Gu, H.; Xu, D.; Huang, C.; Chen, S. Experimental study on the separation performance of a full-scale SG steam-water separator. Ann. Nucl. Energy 2020, 141, 1–12. [Google Scholar] [CrossRef]
- Kim, K.; Lee, J.; Kim, W.; Choi, H.; Kim, J.I. Development of a prediction model relating the two-phase pressure drop in a moisture separator using an air/water test facility. Nucl. Eng. Technol 2021, in press. [Google Scholar]
- Wallis, G.B. One-Dimensional Two-Phase Flow; McGraw-Hill Inc.: New York, NY, USA, 1969. [Google Scholar]
- Zeghloul, A.; Azzi, A.; Saidj, F.; Messilem, A.; Azzopardi, B.J. Pressure drop through orifices for single- and two-phase vertically upward flow–implication for metering. J. Fluids Eng. 2017, 139, 031302. [Google Scholar] [CrossRef]
- Funahashi, H.; Kirkland, V.; Hayashi, K.; Hosokwa, S.; Tomiyama, A. Interfacial and wall friction factors of swirling annular flow in a vertical pipe. Nucl. Eng. Des. 2018, 330, 97–205. [Google Scholar] [CrossRef]
Parameter | Operating Range |
---|---|
Design Pressure | 0.5 MPa |
Design Temperature | 60 |
Separator Diameter | 0.14~0.5 m |
Separator Height | 0.79~3.4 |
Water mass flow rate | 0.6 m3/min (ref. 1 atm, head of 57 m) |
Air mass flow rate | 110 m3/min (ref. 1 atm, head of 1.2 kgf/cm2) |
Parameter | Prototype | PEMS |
---|---|---|
Operating pressure [MPa] | 5.6 or 6.6 | 0.1 to 0.2 |
Operating temperature [] | 270.9~281.4 | 15~30 |
Separator diameter ratio [-] | 1 | 1/2 |
Aspect ratio [-] | 1 | 1/2 |
Area ratio [-] | 1 | 1/4 |
Quality [-] | 1 | 1 |
Centrifugal force [N/m3] | 1 | 1 |
Parameter/Pres. (Prototype) | 5.5 MPa | 6.5 MPa | ||
---|---|---|---|---|
Quality | 0.348 | 0.375 | 0.348 | 0.375 |
Centrifugal force [N/m3] | 15,445.7 | 18,000.4 | 13,169.7 | 15,325.5 |
[m/s] of PEMS | 0.053 | 0.053 | 0.049 | 0.049 |
[m/s] of PEMS | 23.5 | 26.3 | 21.7 | 24.3 |
No. | Inlet Pres. (kPa) | Inlet Temp. (°C) | ρg (kg/m3) | ΔPg (kPa) | jg (m/s) | Eu (-) |
---|---|---|---|---|---|---|
1 | 103.3 | 11.5 | 1.265 | 1.677 | 14.2 | 6.574 |
2 | 103.9 | 17.8 | 1.243 | 2.207 | 16.2 | 6.728 |
3 | 105.1 | 18.0 | 1.257 | 3.510 | 20.4 | 6.722 |
4 | 106.7 | 19.0 | 1.273 | 5.146 | 24.5 | 6.749 |
5 | 108.6 | 20.6 | 1.288 | 7.019 | 28.4 | 6.745 |
6 | 110.9 | 23.9 | 1.300 | 9.302 | 32.1 | 6.929 |
7 | 113.5 | 26.2 | 1.321 | 11.861 | 36.0 | 6.943 |
CE Separator | WH Separator | |||||
---|---|---|---|---|---|---|
Quality | jg (m/s) | ΔP (kPa) | Quality | jg (m/s) | ΔP (kPa) | |
0.314 | 23.3 | 16.78 | 0.315 | 23.4 | 6.47 | 2.60 |
0.364 | 24.0 | 15.58 | 0.365 | 24.0 | 6.37 | 2.45 |
0.440 | 25.0 | 14.30 | 0.441 | 24.9 | 6.38 | 2.24 |
0.419 | 23.4 | 12.32 | 0.422 | 23.5 | 5.60 | 2.20 |
0.346 | 22.7 | 13.48 | 0.346 | 22.8 | 5.67 | 2.38 |
0.297 | 21.9 | 14.55 | 0.296 | 21.8 | 5.57 | 2.61 |
0.288 | 21.2 | 13.43 | 0.287 | 21.3 | 5.27 | 2.55 |
0.335 | 21.9 | 12.50 | 0.336 | 22.0 | 5.25 | 2.38 |
0.410 | 22.8 | 11.39 | 0.411 | 22.8 | 5.18 | 2.20 |
0.375 | 20.2 | 9.05 | 0.376 | 20.2 | 4.15 | 2.18 |
0.305 | 19.5 | 9.95 | 0.303 | 19.6 | 4.29 | 2.32 |
0.260 | 18.9 | 10.72 | 0.260 | 19.0 | 4.37 | 2.45 |
0.217 | 15.4 | 7.06 | 0.216 | 15.4 | 3.09 | 2.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Kim, W.-S.; Lee, J.-B. An Experimental Performance Evaluation for a Swirl-Vane Separator Using an Air-Water Test Facility. Energies 2021, 14, 7072. https://doi.org/10.3390/en14217072
Kim K, Kim W-S, Lee J-B. An Experimental Performance Evaluation for a Swirl-Vane Separator Using an Air-Water Test Facility. Energies. 2021; 14(21):7072. https://doi.org/10.3390/en14217072
Chicago/Turabian StyleKim, Kihwan, Woo-Shik Kim, and Jae-Bong Lee. 2021. "An Experimental Performance Evaluation for a Swirl-Vane Separator Using an Air-Water Test Facility" Energies 14, no. 21: 7072. https://doi.org/10.3390/en14217072